
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 9, 2015

158 | P a g e

www.ijacsa.thesai.org

MCIP Client Application for SCADA in Iiot

Environment

Nicoleta Cristina GAITAN
1,2

1
Faculty of Electrical Engineering and Computer Science, Integrated Center for Research,

2
Development and Innovation in

Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD)
1,2

Stefan cel Mare University of Suceava

Suceava, Romania

Abstract—Modern automation systems architectures which

include several subsystems for which an adequate burden

sharing is required. These subsystems must work together to

fulfil the tasks imposed by the common function, given by the

business purpose to be fulfilled. These subsystems or

components, in order to perform these tasks, must communicate

with each other, this being the critical function of the

architecture of such a system. This article presents a MCIP

(Monitoring and Control of the Industrial Processes) client

application which allows the monitoring and control of the

industrial processes and which is object-oriented. As a novelty,

the paper presents the architecture of the user object, which is

actually a wrapper that allows the connection to Communication

Standard Interface bus, the characteristics of the IIoT (Industrial

Internet of Things) object and the correspondence between a

server’s address space and the address space of MCIP.

Keywords—SCADA; OPC DA; OPC.NET; OPC UA; DDS

I. INTRODUCTION

SCADA (Supervisory Control and Data Acquisition)
systems are those hardware/software systems that allow data
acquisition from sensors or field devices used in the industrial
process monitoring and control, and also allow the
transmission of command/instructions to the remote field
devices or actuators [1].

SCADA systems are usually distributed applications on a
local network or WAN. The main elements of the SCADA
architecture and security are presented in [2]. Usually in
process control, the typical information architecture is
hierarchically organized. A simplified model contains the
following levels: process and business management; process
control; management of field devices. These levels are not
clearly defined, but the vertical communication up to the
process component level is always necessary.

This communication requires solving the following
requirements: to provide an adequate level of reliability; to
comply with the time limits for delays; to support a diverse
communication infrastructure; to use the standards specific for
the producers in order to access the data from the process; the
communication architecture must use open solutions
(independent of the producers) for further development; to
provide a uniform model for data presentation. An innovative
idea is to solve the problem of system integration using a
homogeneous architecture and a real-time process level.

The architecture must be based on the international
standards for data exchange which allow data sharing from the
devices placed on the hierarchical levels of the enterprises by
the control and management systems of the processes. This
architecture is a virtual level model which offers an overview
of the underlying process level consisting of data units
accessible randomly by means of a standardized and unified
interface. As a result, the structure of the links becomes
systematic and, more than that, the superior levels can be
preserved.

The architecture must also ensure an optimum transfer of
data based on a simple but generally accepted rule that the
most important data must be transferred only once at any given
time. To achieve this goal, the acquisition of the data contained
by the process must be performed using appropriate
communication technologies. This functionality is very
important in order to achieve communication in the systems
using remotely-controlled terminals spread over a large
geographical area, such as heat and electricity meters.

Examples of such overall architectures were presented in
[3] and [4] for the Classic OPC based on architecture for
servers starting from standards [5] and [6] and in [7] based on a
general architecture for servers named OPC Unified
Architecture (OPC UA) [8].

An idea related to the standardization of the data is the use
of gateways which work in real time and which standardize the
access to various local industrial networks that implement
different algorithms [9][10].

The MCIP application, originally submitted in [11], is
object-oriented, the objects implementing the standard
interface of the client application which allows the
communication between the application objects. In addition to
this standard interface, each object may implement other
interfaces for the communication with other applications
(middleware interface) or user interaction (graphical interface).
The acronyms MCPI (Monitoring and control industrial
processes) in [11] and MCIP are equivalent.

Further, this article is structured as follows: Section II
presents the client application and its objects, in Section III the
processing triggered by events is presented, Section IV
presents the IoT (Internet of Things) object, Section V presents
the future development of the proposed solution. The
conclusions are drawn in Section VI.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 9, 2015

159 | P a g e

www.ijacsa.thesai.org

II. THE MCIP CLIENT APPLICATION AND ITS OBJECTS

This application was developed to allow the monitoring and
control of the industrial processes. The MCIP application is an
executable software module which is part of a complex
architecture (see Fig.1). MCIP has the following types of
objects: ornament objects (background or fonts for windows or
objects), graphical objects (display values from other objects or
expressions with values from other objects – window, scale,
trend, button, input box, etc.), expression-type objects which
produce value based on the evaluation of an expression that has
as an input values from other objects, middleware-type objects
which have two interfaces, one with the MCIP application’s

internal bus and one with a middleware bus (the bus has well
defined API functions, see Fig. 1), a middleware interface
specific for a server (OPC UA, .NET, Classic, TAO_OPC and
DDS_OPC) and the Internet of Things-type objects such as
DDS (ObIoT from Fig. 1). The TAO_OPC and DDS_OPC
servers are based on a set of interface functions defined by the
OPC DA 2.05 specification, while the middleware is specific
(CORBA for TAO_OPC and DDS for DDS_OPC). The items
marked in italics surpass the MCPI described in [11]. The
middleware objects define the MCIP application’s local
address space, while the DDS server defines the MCIP
application’s global space IIoT.

Middleware BUS

Legenda

NOb - Normal Object DOb - Display Object ObM - Object interface to middleware

SI - Standard Interface MI - Middleware Interface ObIoT - Object Internet of Things

LIN - Local Industrial Network

Client Application

ObM

SI

MI

DOb

SI

NOb

SI NOb

SI

ObM

SI

MI

ObIoT

SI

MI

DOb

SI

ObO

DOb

SI

middleware 1 middleware 2 middleware n

Comunication Standard Interface between client objects (triggered by events)

Servers

For ex. OPC UA, .NET, DA, TAO-OPC, DDS, and DDS-OPC

Interface server to the

middleware 1 middleware 2 middleware 3 middleware m

ClientLIN1 LIN2 LIN3 LIN k

Interface server to the Interface server to the Interface server to the

Interface client to the Interface client to the Interface client to the

Server Application
Data Provider (Object Dictionary)

In
Io

T

IoT

 Connection

Cloud,

Micro-Cloud,

Fog

computing

InIoT - Industrial Internet of Things ObO - Object Ornamental

Fig. 1. The architecture of the MCIP application

When designing the client application, the following
important features were taken into account from the beginning:

 The MCIP application is fully object-oriented. By
object we understand, in its most general meaning, a
software module with internal functioning, which has a
set of input sizes - binary or analogue, internal memory
and a set of output sizes - binary or analogue, resulting
from internal processing.

 The objects’ space is called Project. In a project there
can be several window-type objects, depending on the
application’s complexity.

 The mcip.exe application supports a single project. If
more than one project needs to be implemented, more
mcip.exe applications will be left running.

 Only within a project can all the objects communicate
among themselves.

 Only the middleware-type objects, OPC (Classic, NET
and UA), TAO_OPC (The ACE (Advanced
Collaborative Environment) ORB), DDS_OPC
(Distributed Data Services) and DDS can create the
connection to the data servers, histories and alarms and
events.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 9, 2015

160 | P a g e

www.ijacsa.thesai.org

Fig. 2. The correspondence between the server’s address spaces and MCIP

The middleware objects are designed to create groups with
common features (only pressures, only temperatures, a
complete installation, a control loop with parameters and the
connected orders, etc.) or any type of group depending on the
user’s needs.

 A middleware object can be connected to a single
server placed on the same computer as the application
or on another computer in the network.

 A value exposed (supplied) by the server can be taken
up by any number of local middleware objects (from
the same computer) or placed at a distance.

 The MCIP application is secured with a set of
passwords which allow only its use or both its use and
modification.

 The MCIP application has two working modes, namely:

 The editing mode when it is disconnected from
the servers and it allows the implementation or
modification of the project, and

 The execution mode, when the application runs
what it was designed to run.

 The mcip.exe application has a basic set of objects to
which, by loading some dynamic *.dll type libraries,
one can add other objects supplied by the producer or
objects can be added on demand or programmed by the
user. This is possible because the objects have a
standardized interface.

A. The objects of the MCIP application

As shown in Fig. 1, objects always have a standard
interface but they can also have other ones such as the
interfaces with the servers described and a user-defined
interface. From this point of view, we can distinguish the

ROOT

Industrial network 1

Device 11

Item 111

Item 112

Item 11n

Device 12

Item 121

Item 122

Item 12n

Device 1n

Item 1n1

Item 1n2

Item 1nn

Industrial network n

Device n1

Item n11

Item n12

Item n1n

Device n2

Item n21

Item n22

Item n2n

Device nn

Item nn1

Item nn2

Item nnn

O
rg

an
iz

in
g

th
e

se
rv

er
 a

dd
re

ss
 s

pa
ce

Group 1

Item 121

Item 12n

Item 1nn

Group 2

Item 1n2

Item n1n

Item 12n

Group 3

Item n22

Item 111

Item n2n

Item 122

Item n22

Item nn1

Group n

Item 111

Item 121

Item nnn

Th
e

si
gh

t o
f c

lie
nt

's
 a

dd
re

ss
 s

pa
ce

M
ID

D
LE

W
AR

E

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 9, 2015

161 | P a g e

www.ijacsa.thesai.org

following types of objects: a) general form, producer-consumer
object; b) empty object (text or image); c) an object which is
only a producer; d) an object which is only a consumer. The
graphical objects always have an expression in the form of text
or image in the window. For non-graphical objects, it is not
mandatory for their expression in the window to be text or
image (they are hidden). The software module attached to the
object runs only when the trigger is activated which is achieved
only on events (for example, changing the value of a
quantity).The MCIP application consists of an ensemble made
up of a project, objects and connections, the user’s being to
create, configure, and connect the objects among together. In
this subsection, the objects made available by the application
(the MCIP client) will be presented. A project is a group of
independent or interconnected objects. The user creates
projects (separate MCIP applications) in order to perform
certain tasks. The user can open and close projects without
affecting the other projects running in parallel. Each object will
have among its resources the parameter setup window and
other windows needed to display the object’s information and
configuration. It is possible for an object to have multiple
functions (for example, an object which can calculate either the
minimum or the maximum for a given input variable). The
middleware-type objects are the only objects which allow the
connection to the middleware servers. Because the architecture
of the MCIP application is based on objects and on the
connections between objects, once a middleware objects is
created, any other object within a project will be able to
connect to it. These objects can be graphic displays, control
objects through which the human operator has access to the
process values.

This is the usual mode of communication with the physical
devices part of the process, but, if necessary, communication
objects internal to the application can be developed (for serial
communication, Ethernet, wireless – with specific interfaces).
Each object has the “BaseObject” interface and can optionally
have a middleware or a specific interface.

The entirety of a project’s objects forms the project’s
address space which will always be displayed in the window
named “Manager of objects”. There is an exception here,
namely that the graphical objects, those displaying a text or
image, are not included in a project’s address space being
managed only as information display elements at window level
(those objects which do not produce outputs and, therefore, to
which other objects cannot connect).

The user will be able to create multiple windows in the
same project and will be able to connect the objects from the
same window or different windows but will not be able to
connect objects belonging to different projects. The client
application will allow the users to access take over and manage
the data displayed by the server. The user will be able to view
and browse the server’s address space, creating groups which
will contain a series of items available at this address space.

In other words, the customer will create his own vision of
the address space exhibited by the server. This concept is
illustrated in Fig. 2.

B. The user object

What is represented in Fig. 3 is an object adaptor (an
instance of a class) to which a base object is attached which
implements the standard interface), when created by the user.
Under this form can the objects from the application’s object
directory be found (of the project) [11]. This is an artifice for
the implementation of the connections between objects,
because the object’s common functionalities would have
otherwise implemented themselves repeatedly in each base
object’s case. The adapter automatically attaches the client
application whenever an object is created and, as a result, at the
dll level which implements new base objects, only the standard
interface must be implemented (CSI – Communication
Standard Interface of the Object Client).

The directory of the user objects is a set of objects and
subdirectories used to group the project’s user objects in
various categories. It will handle the management of the
component user objects. It consists of:

 List of directories;

 List of user objects.

The connection. Objects can be interconnected, allowing
signals to pass from one object to another. Thus, an object’s
data members can connect to the data members of another
object. A connection is described by the following information:

 A data member/alias handle which has connections
(that enter into an expression associated with a
parameter, or to which another object’s data member is
connected (directly or through an expression), or which
is displayed on a form (directly or through an
expression);

 A list of objects to be notified when the above-
mentioned data member/alias changes. Each listed item
will be a structure containing an object handle and a
handler list of data members or parameters to be
notified for that object.

User object name. Each object must have a unique name
within the project/directory (each object will belong to a
project/directory). The name of the object will be indicated in
the properties window, from where the parameters will be
configured. A set of rules must also be defined and must be
followed in order to give an object a name.

Alias. An alias for a data member is a generic name which
can be used in a project even if the connection with other
objects has changed (even if used a thousand times, there is no
need to change the name in a thousand places in the project). It
contains information such as:

 Data member handle;

 Alias name (optional). If a name for the alias is given, it
creates a new instance of the data member. Afterwards,
the alias can be configured with a different
configuration from that of the original data member.
The aliases are used to isolate the process from the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 9, 2015

162 | P a g e

www.ijacsa.thesai.org

hardware changes. Thus, supposing that for a
multichannel indicator, called IUM04, IUM04.Ch1
(Channel 1) has the alias Pressure and that everywhere
in the process it is referred to through this alias instead
of the data member, as IUM04.Pressure. Later, for some
reason, the pressure is acquired on Ch2 (Channel 2). In
this case, the alias will simply be changed to refer to
IUM04.Ch2 instead of IUM04.Ch1. If only the
parameters are changed and a name for the alias is not
given, all the connections towards the data member will
take into account these parameters.

 Description;

 The following information depends on the data type of
the data member for which the alias is given:

 Numeric: linear scaling from one domain to
another; deviation – in order not to take into
account the insignificant variations of the data
members (if the difference between the last
and the current value does not exceed the
deviation, it is considered that the amount did
not change); a forced value – the data member
will have this value no matter what happens
in the process. Usually, it is used when a
sensor breaks or when a sensor is being
repaired, or when a PLC receives erroneous
signals.

 Logic: The possibility of reversing the logic
signal.

 Text: It has no additional particularity.

Attribute. The generic term of attribute will be used for any
parameter, data member or alias of a base object. Where this
term appears, when it does not refer to all the properties, what
it refers to will, in principle, be listed (for example, through an
attribute only the parameters and the data members can be
determined in certain contexts). Attribute = data member =
properties.

Fig. 3. The architecture of the user object

C. The interface of the object implemented in dll

To access the object implemented in the dll a standard
interface is defined. The term object described above in the
terminology section refers to an object in the project which is
actually an adapter for the object in dll (because, for an object,
additional information is needed – aliases, filters, connections –
which do not need to be doubled, tripled in dlls). A standard
interface will be created (or a base class containing all the
virtual methods) to be implemented by all the objects defined
as independent components in dlls and by the possible objects
implemented in the application. The code implementation has
been done in C#. For the fast access to the information about
the data member and about the reading and writing methods of
the data members, a Hash table is used. The objects within the
hash tables are name_data_member–object_type_MemberInfo
pairs. For each data member exposed by the by the current
object, there will be a pair in the hash table.

III. PROCESSING TRIGGERED BY EVENTS

At process level, the code is only executed when an event is
activated. The characteristics referring to the events are as
follows:

 The functioning of the client application is entirely
driven by events.

 A particular code sequence is executed only when an
input variable changes.

 The execution of the code in an infinite loop is avoided
in order to save processor time.

 The update loops are avoided (the events which
generate themselves recursively).

 Each object remains inactive until an event occurs on
one of its connections.

 When an input signal changes, the object processes the
value according to the internal logic (given by the type
of object).

 The objects emit events only when the processing result
has changed.

This application’s approach will consume much less
processor time than a solution based on waiting in a loop until
the input signal changes.

IV. IOT OBJECTS

Several current technologies have revolutionized everyday
life. One of them is the Internet that has led to a new era of
information, available for everyone. Other technologies, such
as Radio-Frequency Identification (RFID), or Wireless Sensors
Network increased the ability to communicate among things.
Internet Protocol Version 6 (IPv6) removed the address
depletion problem existing in the Internet Protocol (IPv4). In
this context, it is only natural that the next wave in the
development of the Internet does not refer to people, but to
interconnected smart devices. The mobile revolution, with
more than 5 billion smart phones connected to various mobile
networks, provides the population with the possibility to access
the Internet.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 9, 2015

163 | P a g e

www.ijacsa.thesai.org

DDS RTS (Data Distribution Service for Real-Time
Systems) is a middleware standard based on the
publish/subscribe paradigm for distributing data between
heterogeneous applications developed by OMG consortium
[12]. An important feature of this protocol is that it has
facilities for implementing QoS (Quality of Service)
parameters in order to achieve real-time performance. It is also
data centric and allows the anonymous dissemination of
information. Due to real-time facilities, this protocol is used in
critical systems to the detriment of OPC based solutions. An
interesting comparison between DDS and OPC can be found in
[13]. There are several open source implementations of the
DDS standard [14], namely OpenDDS and OpenSpice, and
commercial implementations, for example, RTI-DDS.

The DDS standard can be used in two ways: as an object in
the MCIP application and as a “DDS server” type application
which instantiates the data provider. For both versions, the IDL
interface is used, in which the topics to be published are
defined. For this reason, data can be transmitted between the
MCIP applications, between the DDS server applications or
between the MCIP applications and the DDS servers. In MCPI,
the DDS object actually creates an interface between the DDS
topics defined in IDL and in the MCIP internal communication
bus and in the DDS server an interface is created between the
API provided by the data provider and the DDS topics defined
in IDL. The DDS will define the IoT workspace.

The OpenDDS object is currently in the development and
implementation stage. This object will expose the address
space of the DDS domain in the MCIP environment on which
it can connect. Each instance of the OpenDDS objects can
connect to only one DDS domain in terms of available QoS
parameters. In order to develop this object, the OpenDDS
implementation of the DDS standard was chosen because it is
an open-source solution and it is developed based on the TAO
middleware.

V. CONCLUSION

In this article, we have detailed aspects related to the MCIP
client. Thus, new MCIP objects were defined, the adapter
structure for user objects was presented, and a new object was
added which allows it to connect to the IIoT-type (Industrial
Internet of Things) applications. The object is based on the
DDS protocol from OMG because of the existence of a free
implementation called OpenDDS.

VI. FUTURE WORK

In the future, other IoT-type objects based on protocols will
be taken into account such as XMPP (Extensible Messaging
and Presence Protocol, AMPQ (Advanced Message Queuing
Protocol), MQTT (Message Queuing Telemetry Transport
(MQTT), OPC UA (OPC Unified Architecture), REST

(Representational State Transfer) and, CoAP (Constrained
Application Protocol).

ACKNOWLEDGMENT

This paper was partially supported from the project
„Integrated Center for research, development and innovation in
Advanced Materials, Nanotechnologies, and Distributed
Systems for fabrication and control”, Contract No.
671/09.04.2015, Sectorial Operational Program for Increase of
the Economic Competitiveness co-funded from the European
Regional Development Fund..

REFERENCES

[1] S. A. Boyer, SCADA: supervisory control and data acquisition, 4rd ed.,
International Society of Automation, ISBN-10: 19360070962009, June
15, 2009.

[2] R. Krutz, Securing SCADA Systems, ISBN-10: 0-7645-9787-6, Wiley,
2006.

[3] Nicoleta-Cristina GĂITAN, Vasile Gheorghiţă GĂITAN, Ştefan
Gheorghe PENTIUC,Ioan UNGUREAN, Eugen DODIU, Middleware
Based Model of Heterogeneous Systems for SCADA Distributed
Applications, pag. 121-124, ISSN: 1582-7445 e-ISSN: 1844-7600,
Advances in Electrical and Computer Engineering Volume 10, Number
2, 2010.

[4] Iwanitz, Franz și Lange, Jurgen. OPC - Fundamentals, Implementation,
and Application, third rev. Ed. [ed.] Softing. 3. Munich : Huthig, ISBN
3-7785-2904-8, 2005.

[5] OPC Foundation - DA 3.0. 2003. OPC Data Access Custom Interface
Standard Version 3.0. 2003.

[6] OPC Foundation- DA 2.05. 2002. OPC Data Access Custom Interface
Standard Version 2.05. 2002.

[7] Lange, Jurgen, Iwanitz, Frank și Burke, Thomas J. 2010. OPC From
Data Access To Unified Architecture. [ed.] Softing. Berlin : VDE
VERLAG GMBH,ISBN 3-978-3-8007-5, 2010.

[8] OPC Foundation: Home Page, https://opcfoundation.org/

[9] V.G. Gaitan, N. C. Gaitan, I. Ungurean, A flexible acquisition cycle for
incompletely defined fieldbus protocols, ISA Transactions, Volume 53,
Issue 3, Pages 776-786, ISSN 0019-0578,
http://dx.doi.org/10.1016/j.isatra.2014.02.006, May 2014.

[10] Gaitan, N. C. Real–time Acquisition of the Distributed Data by using an
Intelligent System. Electronics and Electrical Engineering.–Kaunas:
Technologija 8 (2010): 104, 2010.

[11] Vasile Gaitan, Valentin Popa, Nicoleta Cristina Gaitan, Mihai Gabriel
Danila, A scalable Human-Computer Interaction (HCI), Proceedings of
ED-MEDIA 2008 – World Conference on Educational Multimedia,
Hypermedia & Telecomunications, , pag. 1522-1527, ISBN 1-880094-
62-2, Viena, Austria, (http://www.editlib.org/), June 30- July 4 2008.

[12] Object Management Group, http://www.omg.org/ H. Perez, J.J.
Gutierrez, "A survey on Standards for real-time distribution
middleware" Journal ACM Computing Surveys, vol. 46, issue 4, March
2014.

[13] Comparison of OPC and DDS – RTI,
https://www.rti.com/docs/RTI_DDS_and_OPC.pdf.

[14] Best-Practices Data-Centric Programming: Using DDS to Integrate
Real-World Systems,
https://www.rti.com/docs/DDS_Best_Practices_WP.pdf.

