
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

147 | P a g e

www.ijacsa.thesai.org

Modeling of Compensation in Long-Running

Transactions

Rebwar Mala Nabi

Technical College of Informatics

Sulaimani Polytechnic University

Sulaimani, Iraq

Sardasht M-Raouf Mahmood

Statistics and Computer Department

University of Sulaimani

Sulaimani, Iraq

Rebaz Mala Nabi

Technical College of Informatics

Sulaimani Polytechnic University

Sulaimani, Iraq

Rania Azad Mohammed

Computer Science Institute

Sulaimani Polytechnic University

Sulaimani, Iraq

Abstract—nowadays, the most controversial issue is

transaction in database systems or web services. Specifically, in

the area of service-oriented computing, where business

transactions always need long periods of time to finish. In the

case of a failure rollback, which is the traditional method, it will

not be enough and not suitable for handling errors during long

running transactions. As a substitute, the most appropriate

approach is compensation which is used as an error recovery

mechanism. Therefore, transactions that need a long time to

complete are programmed as a composition of a set of

compensable transactions. This study attempts to design several

compensation policies in the long running web transaction

especially when the transaction has parallel threads. Meabwhile,

one thread in sequence steps of the transaction may fail. This

paper also describes and models many different ways to

compensate to the thread. Moreover, this study proposes a

system to implement creating long running transactions as well

as simulating failures by using compensation policies.

Keywords—transaction; compensation; long-running

transaction and interruption

I. INTRODUCTION

Over the past decades, business transactions have become
incredibly important and compound. It is usually refered to as
coordinations and communications between multiple partners.
In this case, faults are possible at any stage of the transactions.
In standard ACID transaction, (with properties of Atomicity,
Consistency, Isolation, and Durability), solving and handling
faults are done by using a rollback mechanism to provide all or
nothing atomicity for transactions [1]. However, rollback is not
always satisfactory, especially for transactions needing long
life of the time, as widely known as long running transactions
(LRT). LRTs usually involve more than one agent. It can be
seen that handling faults or errors are difficult and critical,
particularly when several partners are involved. Check-pointed
is impossible in the LRTs due to their nature, e.g. an email that
was sent cannot be unsent. Therefore, LRTs need a
comprehensive and separate mechanism to solve such
problems. In order to terminate such problems the system need
to be designed as a compensation mechanism for those actions
that cannot be undone.

Compensation as described in [1] is taken from recovery
faults in a business transaction as an action. Consider bookshop
as an example, a user buys some books from an online book
shop. The system charges the customer’s account for the
payment of the selected books. Meanwhile, the store of the
bookshop knows that one or more books are not on hand at that
time. So, to compensate the customer the system can refund the
amount already debited and also notified the customer about
the situation. Based on this scenario, the importance of the
compensation is more reasonable than traditional database
rollback. It can be argued that compensations are imperative in
terms of handling faults in the long-running transaction.
Compensations in LRT are set up for every committed activity.

Recently, many policies have been produced and proposed
which used to define approaches of modelling LRTs such as
Sagas [3], StAC [4, 5], CSP [6], πcalculus [7, 8], Join calculus
[9]. There are also some compensation policies as shown in
figure 1. Firstly, no interruption and centralised compensation;
Compensations only occur, if some transactions abort at the
end of the process after all branches were executed [17, 18, 19,
20, 21]. Secondly, no interruption and distributed
compensation; Parallel flows compensate as needed without
others to complete [17, 18, 19, 20, 21]. Thirdly, coordinated
interruption; Parallel branches are free to stop when abortion
happens, but compensation is in a centralised way [17, 18, 19,
20, 21]. Finally, distributed interruption which flows are
interrupted, if needed, and later on their compensation
procedures can be activated independently from the rest of the
flows [17, 18, 19, 20, 21]. In the case of compensation, all
executed steps have to be compensated in reverse order. The
system evaluates all possible compensation forms. It implies
we have to compensate the executed steps more than once,
each time in a dissimilar manner. For instance, if we have four
executed steps, then we have to pay off the system twenty four
times for example.

In this study, we model some different policies of
compensation in the LRTs. It is obvious that the transaction has
many parallel as well as sequence steps and ocasionally some
of them may fail.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

148 | P a g e

www.ijacsa.thesai.org

Fig. 1. Compensation Policies

Therefore, defining and applying all possible ways of
compensating found to be crucial for the falsified cases. In
addition, developing a system to create such transactions and
impelementing it. Through using compensation policies
failures will be simulated.

II. LITRETURE REVIEW

Nowadays, integration between applications and processes
is needed in web services on the enterprise level. Web services
need a mechanism of transaction that run long-running
transactions to address loosely coupled threads, instead of
having traditional ACID transaction. BPML [10] by BPMI,
XLANG [11] and BizTalk [12] by Microsoft, WSFL [13] by
IBM, BPEL4WS [14] by OASIS, these proposals all use long
running transactions to describe the activities.

In the sense of web services, interaction and coordination
among various services that each one might refer to different
companies involve in business transactions. Dealing with faults
that occur at any level of such situations in long running
transactions is essential but it is difficult. Traditional database
mechanism in a long running transaction, such as rollback, is
not suitable to rectify faults. For example, cancellation of hotel
booking, or hiring taxi, in such cases rollback is not an option
as they may need further instructions to handle faults. Usually,
in the real world of the long running transaction undoing the
transaction is difficult.

Ideally, the idea of compensation was introduced to recover
from faults in long-running transactions. As described in [1]
compensation is a mechanism to handle the error or change in
the plan. When one branch goes wrong in a long running
transaction, programmable compensations are to be set to
compensate the parts that already completed of the transaction.
The transaction concept was defined in [15] where
compensation is suited with transactions that correct errors or
faults of committed transactions. The later idea of the saga in
[16] was defined; to describe long running transaction
compensations. Transactions in the saga are divided to a chain
of sub-transactions and each of them has its own
compensation. Compensation of the committed sub-transaction
executes when failures occur of a sub-transaction in the
sequence.

There are other approaches that have been modelled in the
long-running transaction and have used compensation
mechanism. The πt-calculus in [22] which is inspired by
BizTalk and it contains asynchronous polyadic as an extension
π-calculus [23] with the transaction notion. However, the
compensation is defined statically in each transaction.

The extension of Join calculus [24] is the cJoin calculus
[25] with the primitives for representing transactions. The
compensation method is defined statically in this calculus.

StAC language is another model in [26], which is inspired
by BPBeans. The language includes the theory of the
compensation pair; it is similar to the conception of sagas that
is defined by Gargia-Molina and Salem [27]. In StAC, a long-
running transaction is a structure of one or more sub-
transaction. On the same hand, compensating CSP [28],
proposed by cCSP, and Sagas calculi [29] are also based on
flow composition, particularly, the embrace a centralized
coordination mechanism. However, they have different
compensation policies. A calculus named webπ that described
by Laneve and Zavattaro [30]. It is also an extension of π-
calculus with a timed transaction structure. Webπ∞ is the
untimed version of webπ that was proposed by Mazzara and
Lanese [31]. Although, both calculi and Webπ∞ are different in
some syntax, with following different rules. Namely, nested
transactions are surfaced. Therefore, nested failure do not
supply by these calculi because the abortion of the sub -
transaction cannot be affected by the failure of a transaction.

An extension of SOCK [33] expanded by GuiDi et al. [32],
which inspired by WSDL and BPEL. The clear primitives for
dynamic handler installation included in this calculus, for
example, error and compensation handlers and automatic
failure announcement. The correctness properties, namely
expected behaviour of a scope cited by them for their calculus,
the right termination upon an error, communication and the
warranty correct behaviour of fault activation. Our approach is
dissimilar in the sense that activation of compensations is
obvious to the user. Therefore, addressing the syntax is
explicitly and uncomplicated. Related to webπ∞, the only
identification of the transaction is assumable by them, do not
help to ensure this specialty. Another difference is that we
utilize a kind system to assure soundness and activation of
transaction compensations.

Gray [36] defines compensating transactions as expanding
on the same idea, later saga [39], as an added layer on top of
ACID transactions. This is debatable: (i) ACID transactions are
impossible in the long live transaction, as in the long period of
time systems, locking resources are impractical in a highly
concurrent world, and (ii) nesting transactions are not
supported in the ACID transaction, so working with
compensation as counter transaction, transactions can be
composed and nested into a saga. According to contemporary
literature there are compensable transactions as shown in figure
2.

A. Atomicity

All or nothing; That is, all the changes to the state of the
transaction are done, none of them happen. For example,
sending money from one account to another, the atomicity

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

149 | P a g e

www.ijacsa.thesai.org

guarantees that, if a debit is made successfully from the first
one, the responding later is made to the other account.

B. Consistency

When a transaction either begins and when it finishes its
execution, data is in a consistent state. For example,
transferring some amount from one account to another, the
consistency secures that the transfer amount in both accounts at
the same of each transaction.

C. Isolation

The intermediate step of the transaction is hidden to other
transactions. As a result, transactions that run simultaneously
seems to be serialized. If we consider the example above, the
isolation feature assures that the transferred money in one or
the others can be seen by another transaction, but it is
impossible in both.

D. Durability

Changing to data continues and cannot be undone, once the
transaction successfully finishes even in the case of failure.
Again, the same example, the durability property warrants that
the accounts have been changed, it will not be converted.

Fig. 2. ACID

III. SYSTEM DESIGN

This chapter will describe and justify the design of the
system and how it satisfies the requirements. The diagram
below demonstrates the intended design for the system.

As can be seen in the figure 3, the process starts by
indicating the numbers of the steps that involve in the
transaction digram. Afterwards, each step has a compensation
step as well as having a name. Then, users can create a
connection between the steps and the diagram according to the
connections that have been created by them. Also, there is a
command to check the connection, whether there is any
incorrect connection such as loop connection and the
connection between the step and itself.

Fig. 3. System Design

After that, by that time a digram is ready to start. Once, the
transaction command is pressed, the transaction starts as a
forward execution. This means from the beginning to the end
(Digram may contain parallel and sequence steps.).

This study demonstrates two policies regarding forward
execution. They are distributed interruption and no interruption
and distributed compensation. The former stops the whole
execution immediately after catching the fault [17, 18, 19, 20,
21]. In contrast, the latter parallel step may continue until the
completion [17, 18, 19, 20, 21]. It is unlikely forthe transaction
digram expecting an error in each step of the whole transaction.
Assume that the transaction digram catches he fault and now
the system should compensate for these steps that already were
executed. This absolutely happens in reverse order. The
compensation, which is our main goal, likely to be run many
times and each time compensates the executed step in a
different order. More importantly, in order to remember which
order they compensated, the system has to save the steps that
are compensated each time.

IV. IMPLEMENTATION

This section in this study intends to explain the
implementation of the compensation of modelling in long
running web services transaction. C# programming language
has been used to build a system and design a graphical user
interface (GUI). The GUI allows users to choose the number of
the transaction steps and preparing all the works that are
needed for the system. The designed system consists of many
different parts. Figure 4 shows the GUI system.

As shown in figure 4, the system contains different parts. In
the beginning, the number of the transaction steps should be
chosen. Then the names of the steps have to be written as well
as the names of the compensations that are programmed for
each step. This is used for creating dynamic diagrams which
users can indicate and create a connection on demand.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

150 | P a g e

www.ijacsa.thesai.org

Fig. 4. Compensation of Modelling in web services LRT

Moreover, there is an option that offers two saved
diagrams. Hence, users have two options, one they can create
diagrams as they want, later is to choose one among these
diagrams that are already saved before. Continuously, the
second peace is that the users' concern with creating
connections between steps. In this section system should
prevent users to create incorrect connections such as loop
connections or any inconvenient relations.

Fig. 5. Compensation of Modelling in web services LRT

V. CASE STUDY

1) Distributed Interruption
As usual the transaction starts from the beginning of the

diagram. In the figure 6, there are three parallel branches and
two sub-transaction. The system runs the first step and then
should randomly choose one of the three branches and then
continues to the end. According to the distributed interruption

policy, when the transaction gets an error, all other steps in the
diagram are forced to stop the forward execution by the
system. Meanwhile, the system should also set up a checkpoint
in the step after the last executed steps.

For instance, according to figure 6 the system starts the
transaction from A, and the form one among B, C and D
randomly. The system continues until it faces a failure in the F
step. Then the system immediately asks to stop the forward
execution, and is ready to compensate the executed steps.
Again, from the diagram, the green color declaration to the
successful execution, red color indicates failure occurred and
the purple colors are checkpoints as knowledge centre to the
previous step that the system stopped because of failure.

Fig. 6. Distributed Interruption

Simultaneously, in the case of failure, all steps that have
been executed are likely to be compensated. Unlike the
forward execution, it starts from the reverse order, from the end
to the beginning. This study attempts many different
simulations. This means the system compensates all executed
steps in the different ways. For example, the first step that
should start its compensated is the red color, then there are
three options GG, CC and BB that should be compensated.
Noticeably, we have a lot of probabilities to compensate. To
exemplify, the set of compensation should be FF, GG, CC, BB,
DD and AA, or FF, BB, GG, CC, DD and AA, or FF, CC, GG,
BB, DD and AA, or FF, GG, DD, BB, CC and AA, and so on.

2) No interruption and Distributed Compensation
The transaction starts from the beginning to the end.

Similar to the distributed interruption, parallel branches should
randomly start the forward execution, but the only and very
important point is that the difference in the failure case. Thais
means when the transaction failed, the parallel branches still
continue to the step that cannot be continued any longer (the
step that set up the checkpoint in.). If consider figure 7 with a
bit change from figure 6.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

151 | P a g e

www.ijacsa.thesai.org

Fig. 7. No interruption and Distributed Compensation

From the figure 7, the transaction starts from step A, then
B, C or D to the end. Once the transaction noticed that the
failure occurred, unlike the distributed interruption, parallel
branches can continue and have not been informed about the
issue until reaching the step that cannot be executed (that is the
purple color). As shown in the above diagram, green colors
indicate the executed steps, red color means failure and the
purple one is a point to inform the previous step that the system
went wrong and cannot be run any more.

In the term of compensation, similar to the distributed
interruption it starts from the back to the beginning. The
executed steps should start their compensation as soon as the
system failed. There are a lot of compensation simulations such
as CC, JJ, HH, DD, EE, KK, GG, DD, BB, and AA, or CC,
KK, HH, JJ, GG, EE, DD, BB, and AA, or CC, HH, KK, EE,
JJ, GG, FF, DD, and AA, or CC, JJ, KK, GG, KK, HH, GG,
EE, DD, BB and AA, or so on.

VI. EVALUATION AND ANALYSIS

The original goal of this project was to build a system to
model compensation in the long running transaction. This
means when we have a diagram including the parallel and
sequence steps, once one of the sequential steps fail the system
should compensate to the step and to the other steps as well. It
is worth mentioning that the main aim is achieved.

The system is capable of creating dynamic diagrams and
users can also choose the organised diagrams. Moreover, the
system allows the users to indicate the number of steps and
make them being able to create connections between involved
steps. Another feature is that the system can check connection.
Afterwards, the diagram can be drawn easily. Once it has been
done, the diagram can be transacted according to the
distributed interruption and no interruption and distributed
compensation. The former, the execution of the steps may stop
immediately when a failure occurs. Later, the parallel step may
continue to the end. It is clear that it is the forward execution.
At the same time,, in the case of failure the system has to
compensate the failed step and the others that are already
executed. In contrast, the compensation starts from the end to

the beginning. As the system programmed, the compensation
mechanism should provide different ways to compensate these
steps.

VII. CONCLUSION AND FUTURE WORK

In conclusion, the complex business logic, many partners
interactions today transactions require a strong framework able
to handle efficiently with failures. Furthermore, because of the
communication involved with various agents transactions
became more and more important and longer, delivering ACID
transactions unsuitable. The mechanism of compensation was
introduced to transactions, enabling them to manage the new
difficulties. Later, the sense of compensable transactions
developed and were integrated with more complicated models
concerning, amongst other aspects, parallelism, exception
handling, transaction composition, and communication
amongst activities. Many approaches and models have
emerged, providing different solutions to the design issues
involved.

In this study, the modelling of compensation in long
running transaction system has been developed. The system
allows users to choose between diagrams that saved or to
create dynamic diagrams. Moreover, if users decide to work on
the dynamic one, there are a variety of features such as giving a
name to each transaction step as well as for each
programmable compensation. Furthermore, some other features
are applied, for exemple, creating a connection between
transaction steps. Then the system can approve these
connections that were made if the system found that
connections are not correct, it immediately informs the users to
check and change these inappropriate connections. Once, the
system knows that the connections are all connected correctly,
the diagram can be drawn according to the connections which
have been made. Additionally, now the users have a diagram
that is ready to run, by running it, the transaction starts as
forward execution. In the case of failure, the system should
compensate the executed steps. More importantly, by repeating
the compensation, users might get a different set of
compensation steps.

Overall, it can be argued that some requirements have been
achieved whereas some have not. The system was developed
successfully, two policies have been implemented and the
compensation mechanism was performed. On the other hand,
only two policies have been used which means more policies
would be more efficient. Similarly,, multi-threading is reliable
and efficient to design such a system, however, this system is
not created by them. The main goal has achieved.

It can be identified that further researchs need to be made to
improve the system more. Firstly, create a bigger diagram by
increasing the number of steps or offering more samples.
Additionally, create a system that allows a user to indicate all
the transaction step’s location not only the first step. Secondly,
further research could be done to add more compensation
policies to the system. In this study, only distributed
interruption and no interruption and distributed compensation
were used. Therefore, adding more compensation policies may
increase the system’s reliability and performance. Additionally,
using multi-threading in order to make the system more
efficient, insuring and working properly. Finally, when users

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

152 | P a g e

www.ijacsa.thesai.org

intend to use the dynamic diagram they have to move steps and
order, but in the new research this can be updated and be
changed to create diagrams that do not need to be organized.

REFERENCES

[1] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publishers, 1993.

[2] Hector Garcia-Molina and Kenneth Salem. Sagas. In Umeshwar Dayal
and Irving L. Traiger, editors, SIGMOD Conference, pages 249–259.
ACM Press, May 27-29 1987.

[3] Roberto Bruni, Hern´an Melgratti, and Ugo Montanari. Theoretical
foundations for compensations in flow composition languages. In
POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 209–220.
ACM Press, 2005.

[4] Michael Butler and Carla Ferreira. A process compensation language. In
Integrated Formal Methods (IFM’2000), volume 1945 of LNCS, pages
61 – 76. Springer-Verlag, 2000.

[5] Carla Ferreira. Process Modelling of Business Processes with
Compensation. PhD thesis, University of Southampton, November
2002.

[6] Michael Butler, Tony Hoare, and Carla Ferreira. A trace semantics for
long-running transactions. In A.E. Abdallah, C.B. Jones, and J.E.
Sanders, editors, Proceedings of 25 Years of CSP, volume 3525 of
LNCS, London, 2004. Springer-Verlag.

[7] Robin Milner. A calculus of mobile processes. Journal of Information
and computing, 100 (1): 1–77, 1992.

[8] Joachim Parrow. An Introduction to the _-Calculus, chapter 8,
Handbook of Process Algebra, pages 479–543. Handbook of Process
Algebra. Elsevier, 2001.

[9] C´edric Fournet and Georges Gonthier. The reflexive chemical abstract
machinceand the Join-calculus. In POPL ’96, 23rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 372–385. ACM Press, 1996.

[10] Business process modeling language (BPML). [www.bpmi.org].

[11] S. Thatte. XLANG: Web Services for Business Process Design.
Microsoft Corporation, 2001.
 [www.gotdotnet.com/team/xml/wsspace/xlang-c].

[12] B. Metha, M. Levy, G. Meredith, T. Andrews, B. Beckman, J. Klein,
and A. Mital. BizTalk server 2000 business process orchestration. IEEE
Data Engineering Bulletin, 24 (1): 35–39, 2001.

[13] Frank Leymann. The web services flow language (WSFL1.0).
Technical report, Member IBM Academy of Technology, IBM Software
Group,2001.
 [http://www4.ibm.com/software/solutions/webservices/pdf/WSFL.pd
f].

[14] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S.
Weerawarana. Business process execution language for web services,
version 1.1., 2003. [http://www-
106.ibm.com/developerworks/library/ws-bpel/].

[15] Jim Gray. The Transaction Concept: Virtues and Limitations (invited
paper). In Very Large Data Bases, 7th International Conference, pages
144–154. IEEE Computer Society, 1981.

[16] Hector Garcia-Molina and Kenneth Salem. Sagas. In Umeshwar Dayal
and Irving L. Traiger, editors, SIGMOD Conference, pages 249–259.
ACM Press, May 27-29 1987.

[17] Bruni, R., Butler, M., Ferreira, C., Hoare, T., Melgratti, H., &
Montanari, U. (2005). Comparing two approaches to compensable flow
composition. In CONCUR 2005–Concurrency Theory (pp. 383-397).
Springer Berlin Heidelberg.

[18] Bruni, R., Kersten, A., Lanese, I., & Spagnolo, G. (2012). A new
strategy for distributed compensations with interruption in long-running

transactions. In Recent Trends in Algebraic Development Techniques
(pp. 42-60). Springer Berlin Heidelberg.

[19] Bruni, R., Ferrari, G., Melgratti, H., Montanari, U., Strollo, D., &
Tuosto, E. (2005). From theory to practice in transactional composition
of web services. In Formal Techniques for Computer Systems and
Business Processes (pp. 272-286). Springer Berlin Heidelberg.

[20] Bruni, R., Kersten, A., & Lanese, I. (2010). On the Semantics of
Distributed Compensations with Interruption.

[21] Lanese, I. (2010). Static vs dynamic sagas. arXiv preprint
arXiv:1010.5569.

[22] Bocchi, L., Laneve, C., Zavattaro, G.: A calculus for long-running
transactions. In Najm, E., Nestmann, U., Stevens, P., eds.: FMOODS.
Volume 2884 of LNCS., Springer (2003) 124–138.

[23] Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile
Processes. Cambridge University Press (2001).

[24] Bruni, R., Melgratti, H.C., Montanari, U.: Nested commits for mobile
calculi: Extending join. In L´evy, J.J., Mayr, E.W., Mitchell, J.C., eds.:
IFIP TCS, Kluwer (2004) 563–576.

[25] Fournet, C., Gonthier, G.: The reflexive cham and the join-calculus. In:
POPL. (1996) 372–385.

[26] Butler, M.J., Ferreira, C.: An operational semantics for StAC, a
language for modelling long-running business transactions. In
Nicola, R.D., Ferrari, G.L., Meredith, G., eds.: COORDINATION.
Volume 2949 of LNCS., Springer (2004) 87–104

[27] Garcia-Molina, H., Salem, K.: Sagas. In Dayal, U., Traiger, I.L., eds.:
SIGMOD Conference, ACM Press (1987) 249–259

[28] Butler, M.J., Hoare, C.A.R., Ferreira, C.: A trace semantics for long-
running transactions. In Abdallah, A.E., Jones, C.B., Sanders, J.W., eds.:
25 Years Communicating Sequential Processes. Volume 3525 of
 LNCS., Springer (2004) 133–150

[29] Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical
 foundations for compensations in flow composition languages. In
Palsberg, J., Abadi, M., eds.: POPL, ACM (2005) 209–220

[30] Laneve, C., Zavattaro, G.: Foundations of web transactions. In Sassone,
V., ed.: FoSSaCS. Volume 3441 of LNCS., Springer (2005) 282–298

[31] Mazzara, M., Lanese, I.: Towards a unifying theory for web services
composition. In Bravetti, M., N´u˜nez, M., Zavattaro, G., eds.: WS-FM.
Volume 4184 of LNCS, Springer (2006) 257–272

[32] Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the interplay
between fault handling and request-response service invocations. In: 8th
International Conference on Application of Concurrency to System
Design, IEEE Computer Society (2008) 190–199

[33] Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G: A calculus for
service oriented computing. In Dan, A., Lamersdorf, W., eds.: ICSOC.
Volume 4294 of LNCS, Springer (2006) 327–338

[34] Chris Peltz. Web services orchestration and choreography. IEEE
Computer, 36(10):46–52, October 2003.

[35] Hector Garcia-Molina and Kenneth Salem. Sagas. In Umeshwar Dayal
and Irving L. Traiger, editors, SIGMOD Conference, pages 249–259.
ACM Press, May 27-29 1987.

[36] Jim Gray. The Transaction Concept: Virtues and Limitations (invited
paper). In Very Large Data Bases, 7th International Conference, pages
144–154. IEEE Computer Society, 1981.

[37] DAVIES, JR., C. T. 1973. Recovery semantics for a DB/DC system. In
Proceedings of the ACM Annual Conference. ACM, 136–141.

[38] RANDELL,B.,LEE,P.,ANDTRELEAVEN, P. C. 1978. Reliability
issues in computing system design. ACM Comput. Surv. 10, 123–165.

[39] GARCIA-MOLINA,H.ANDSALEM, K. 1987. Sagas. InProceedings of
the ACM SIGMOD International Conference on Management of
Data (SIGMOD). ACM, 249–259.

