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Abstract—The last two decades were marked by an 

exponential growth in the volume of data originating from 

various data sources, from mobile phones to social media 

contents, all through the multitude devices of the Internet of 

Things. This flow of data can’t be managed using a classical 

approach and has led to the emergence of a new buzz word: Big 

Data. Among the research challenges related to Big Data there is 

the issue of data storage. Traditional relational database systems 

proved to be unable to efficiently manage Big Data datasets. In 

this context, Cloud Computing plays a relevant role, as it offers 

interesting models to deal with Big Data storage, especially the 

model known as Database as a Service (DBaaS). We propose, in 

this article, a review of database solutions that are offered as 

DBaaS and discuss their adaptability to Big Data applications. 
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I. INTRODUCTION 

The volume of data stored in the world has been doubling 
every two years, and will reach a dazzling 40 billion terabytes 
(TB) by the year 2020 [1]. By means of comparison, the total 
size of data that existed in the digital universe in 2000 is 
800 million TB, which means that the volume of data will be 
multiplied by 50 by 2020. This data is generated by various 
sources: Social Media, E-Commerce, Internet of Things, 
Sensors, etc. Organizations are also gathering more and more 
information, for various purposes: analysis to ameliorate their 
market position and offer better services to their customers, 
fraud detection, scientific projects like in genomics, legal 
reasons (for example, Moroccan firms are required by law to 
store ten years of financial data), etc. 

This flow of data, which has been referred to as a flood or a 
tsunami, can’t be managed using a classical approach and has 
led to the emergence of a new buzz word: Big Data. Almost all 
major IT leaders invested in various Big Data projects, from 
Google’s BigQuery and Datastore, to Amazon’s Elastic 
MapReduce, to Facebook’s Cassandra, Yahoo!’s PNUTS, etc. 

Cloud Computing has a leverage effect on Big Data, 
providing the computing and storage resources necessary to 
Big Data applications. The inherent characteristics of Cloud 
Computing, such as elasticity, scalability, automation, fault-
tolerance, and ubiquity offer an ideal environment for the 
development of Big Data applications. 

Cloud Computing is an established computing paradigm 
that gained in importance in the last decade. It refers to the 
utilisation of storage and computation resources as a utility. 

There is a great tendency to opt for using IT as a service. It 
is estimated that more than 80% of Internet users use Cloud 
Computing in one form or another, from email services to 
different business applications as a service, all through data 
storage, development platforms, etc [2]. This usage percentage 
is even greater when it comes to companies: In a survey 
conducted by RightScale in January 2015, 93% of respondent 
companies confirmed using Cloud Computing [3], which 
shows that the latter is steadily advancing to become an 
integral part of companies and individuals use of IT. 

Although the emergence of Cloud Computing is relatively 
new, the idea of delivering computing as a utility dates back to 
as far as the 1960s, when pioneers like John McCarthy, 
Leonard Kleinrock, and Douglas Parkhill predicted that, just 
like water, electricity, or the telephone, computing resources 
will someday be used as a public utility [4, 5, 6]. 

There is no consensual definition of Cloud Computing, yet. 
Many works have proposed their own as discussed in [7, 8]. 
One of the most cited definition is the NIST’s, where Cloud 
Computing is defined as being a ―model for enabling 
ubiquitous, convenient, on-demand network access to a shared 
pool of configurable computing resources that can be rapidly 
provisioned and released with minimal management effort or 
service provider interaction‖ [9]. 

Through the plethora of definitions, it emerges that cloud 
computing has several major characteristics, especially the 
following: 

 Virtualization: physical resources are virtualized in 
order to optimize their utilization; 

 Pooling: multiple users share access to the same pool of 
virtualized resources. This results in optimizing costs of 
infrastructure, installation, hosting, and maintenance for 
providers, who benefit from the economy of scale, and 
can offer more competitive prices; 

 Ubiquity: cloud services are always accessible, anytime, 
anywhere, and from various computing devices; 

 Remote access: cloud services are accessible via a 
network. It can be the Internet for cloud services that 
are destined to the general public, or LAN for private 
ones; 

 Automation: users can get the resources they need 
without having to interact with the provider or require 
their intervention; 
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 Elasticity: resources are automatically and rapidly 
increased or decreased to accommodate the workload: 
when it increases, more resources are added to support 
it, and when it decreases, superfluous resources are 
removed. Thus, available resources are directly 
proportional to workload requirements, ensuring that 
client applications will have the exact amount of 
resources needed at any given time; 

 Pay-as-you-go: users don’t need to make any upfront 
investment in infrastructure, software licenses, etc. 
They pay only for the resources they consumed, without 
surplus. Although these resources are multi-tenant, 
providers strictly measure each client’s resource 
consumption and bill them accordingly. Many billing 
plans are proposed, some based on the volume of 
resources used, others on the duration of usage (usually 
in hours), and others on ―commitment‖ (paying per 
month, for example). 

Cloud Computing’s major deployment models are public, 
private, community, and hybrid (Fig. 1). 

 

Fig. 1. Cloud deployment models 

A Public Cloud is a deployment model in which cloud 
services are provided via a public network, usually the Internet. 
Examples include Amazon’s Elastic Compute Cloud (EC2), 
Google’s App Engine, and Microsoft’s Azure. 

A Private Cloud is provided for the sole use of an 
organization that can either choose to be responsible for 
managing it or delegate its management to a third-party. The 
organization can also choose to host it on-premise or off-
premise. A variation of this deployment model is the On-Site 
Private Cloud, where the cloud is hosted and managed by the 
organization to which it is destined. The main advantage of 
both models is that there are no restrictions in bandwidth or 

resources, since all resources are exclusively intended for the 
sole use of the organization. It also allows organizations to 
manage themselves the security aspect of the cloud. 

A Community Cloud is a private Cloud that is shared by 
organizations belonging to the same community, for examples, 
many departments belonging to the same University, or many 
companies that want to use a specific application that the 
provider is going to offer solely to them. 

A Hybrid Cloud is composed of two or more of the Cloud 
models previously presented, interconnected by standard or 
proprietary technologies. 

As for service models, the major ones are Infrastructure as 
a Service (IaaS), Platform as a Service (PaaS), and Software as 
a Service (SaaS) (Fig. 2). 

 

Fig. 2. Components of the main Cloud services models 

IaaS provides basic virtualized resources, namely 
networking (network connections, bandwidth, IP addresses), 
virtual servers and virtual storage space. This infrastructure 
will be completed by clients with the various blocks necessary 
and used to run their applications. The provider manages the 
underlying infrastructure, while it is up to the user to handle 
anything other than the hardware part of the architecture. 
Although IaaS management is majorly incumbent to users, it is 
the model that satisfies best interoperability and portability 
needs, since users can compose the various blocks of the 
infrastructure used [10]. It is also used to build the other cloud 
service models. Prominent IaaS include Amazon Elastic 
Compute Cloud (EC2), Google App Engine, and Microsoft 
Azure. 

PaaS is built on top of IaaS by adding a software layer to 
offer a development environment that can be used by clients to 
build and deploy their applications. It provides various 
development tools, such as APIs, for users to develop their 
applications. Clients can control the deployment and hosting 
environment of their applications without having to manage the 
underlying infrastructure. Prominent PaaS include Salesforce’s 
Force.com, Google App Engine, and Microsoft Azure. 
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SaaS is arguably the most known and used cloud service 
model. It offers remote access to applications running in the 
Cloud, through various devices. Users seamlessly access 
―ready-to-go‖ applications without needing to invest or manage 
the underlying infrastructure, to buy software licenses, to 
handle updates and patches, etc. The provider is responsible for 
the smooth running of the applications and the maintenance of 
the underlying infrastructure. Prominent SaaS include Google 
Drive and Salesforce CRM. 

Other service models are increasingly used, among which 
there is Network as a Service (NaaS), Logging as a Service 
(LaaS) for log files management, Security as a Service 
(SECaaS), Recovery as a Service (RaaS), etc. And one of the 
most promising service models is DataBase as a Service 
(DBaaS): a report by CISCO showed that if users had the 
choice to move only one application to the cloud, 25% would 
choose data storage [11]. 

Many factors contributed to the rise of Cloud Computing. 
The widespread use of mobile devices, for example, with their 
limited storage and processing capacities, led to delegating 
storage and processing to third parties. The various advantages 
that come from using the Cloud are also encouraging its rise, 
especially regarding elasticity, scalability, ubiquity, and cost 
efficiency, etc. 

With Cloud Computing unlocking the barrier of storage and 
processing resources, developers could focus on their 
applications without fearing limitation. This led to an 
expansion of data-intensive applications where datasets are 
measured in terms of terabytes or petabytes, and the 
enhancement of Big Data. 

We propose, in this work, a review of Cloud Computing 
solutions for Big Data storage, more precisely the model of 
DataBase as a Service (DBaaS). 

Our paper is organized as follows. We present the 
definition and characteristics of Big Data in the next section. In 
section 3, we present some of the storage solutions for Big 
Data. Section 4 presents a review of several databases as a 
service, ensued by a discussion of the reviewed features in 
section 5. 

II. BIG DATA: DEFINITION AND CHARACTERISTICS 

Throughout the last decade, the increasing use of new 
technological trends, such as Social Media, E-Commerce, E-
Learning, video streaming, etc., resulted in a flood of data. For 
example, it is estimated that YouTube stores 1 000 TB of new 
data per day [12], Facebook 600 TB [13], eBay 100 TB [14], 
and Twitter 100 TB [15], to name but a few. Data thus 
generated can’t be gathered, stored and analyzed easily using 
traditional storage and analytics tools. This data is referred to 
as Big Data. 

One of the earliest works mentioning Big Data was in the 
1990s, where Big Data is referred to as multisource, distributed 
data that is ―too large to be processed by standard algorithms 
and software‖ [16]. This definition is also adopted by authors 
in [17], who define Big Data as ―information that can’t be 
processed or analyzed using traditional processes or tools‖ 
and in [18] where Big Data is a set of ―datasets which could 

not be captured, managed, and processed by general 
computers within an acceptable scope‖. 

Another definition of Big Data is proposed in [19] as a 
―phenomenon‖ that aims ―maximizing computation power and 
algorithmic accuracy to gather, analyze, link, and compare 
large data sets‖ to ―identify patterns in order to make 
economic, social, technical, and legal claims‖, while authors in 
[20] talk about ―a set of techniques and technologies that 
require new forms of integration to uncover large hidden 
values from large datasets that are diverse, complex, and of a 
massive scale‖, a definition that doesn’t confine Big Data to 
the generated data only, but includes both the technology and 
the architecture related to data. 

Cuzzocrea et al. [21] define Big Data as ―enormous 
amounts of unstructured data produced by high-performance 
applications‖ belonging to various domains, from social media, 
to e-government, to medical information systems, etc. This 
data is highly-scalable and requires the applications that handle 
it to be highly-scalable as well. 

Notorious consulting groups also attempted to define Big 
Data. McKinsey [22] talks about large datasets that can’t be 
―captured, communicated, aggregated, stored, and analyzed‖ 
using traditional tools, while Experton Group [23] defines it as 
a ―collection of new information which must be made available 
to high numbers of users in near real time, based on enormous 
data inventories from multiple sources, with the goal of 
speeding up critical competitive decision-making processes‖. 
Hortonworks defines Big Data as an ensemble of transaction 
data, interaction data, and observation data [24]. Transaction 
data is usually structured and stored in SQL databases, and 
results from applications such as ERP, CRM, transactional web 
applications, etc. Interaction data results from the interaction 
between users and applications, or users/applications with each 
other. This includes logs, social feeds, click streams, etc. As for 
observational data, it results from the Internet of Things, such 
as sensors, RFID chips, ATM machines, etc. Gartner [25] 
defines Big Data as being ―high-volume, high-velocity and 
high-variety information assets that demand cost-effective, 
innovative forms of information processing for enhanced 
insight and decision making.‖. This led to associating Big Data 
with the 3 Vs: Velocity, Variety, and Volume (Table I). 

1) Volume: data sets easily reach hundreds of gigabytes, 

or terabytes. According to IBM, 2.5 million TB of data is 

created every day [26]. However, volume isn’t always 

quantified by the size of data, but also by the number of 

transactions, the number of records, the number of files, etc.; 

2) Velocity: data is generated and delivered at a very rapid 

pace. Sensors alone, for example, generate thousand TB of 

data every hour [27], and Wal-Mart is reported to collect 

2 500 TB of customer transactions data per hour [28].  This 

flow of data can be in real time, near real time, batch, or 

streaming; 

3) Variety: data comes from various sources, such as 

social media, blogs, business applications, sensors, mobile 

devices, etc. This data has different forms. It doesn’t always 

have a specific format or respect a certain schema. 
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TABLE I.  CLASSIFICATION OF THE 3 VS OF BIG DATA 

Big Data’s V Classification Definition 

Volume  

Data is characterized by a large volume, easily reaching Terabytes, or even Petabytes. This data deluge is due to, inter 
alia, the multiplication of data sources (where data is both human and machine induced), the widespread use of 

smartphones and applications in an increasingly connected world 

Velocity 

Real time 
Data that is collected and then instantaneously made available for processing or analysis, such as data from GPS or 
ATM machines 

Near real time 
Data that is collected and then is made available for processing or analysis with some delay. An example is data from 

Geographic information systems 

Batch 
Data that is collected at a rather slow rate over a given period time of time, before being processed. Billing systems are 
an example of batch data 

Streaming Data that has an interrupted flow, such as data from sensors 

Variety 

Structured 
Data that respects a predefined data model, which makes it easy to collect and store. An example is data stored in 

relational databases 

Semi structured 
Data that doesn’t conform with a predefined formal data structure, but that has a certain level of data description, using 

tags (XML, HTML) or implementing a hierarchy (JSON)  [29] 

Unstructured Data that cannot be represented with a schema,  such as text messages, tweets, blog entries, videos, etc. 

Hybrid Data that combines two or more of the other data types 

Other works emphasize on a fourth V, Veracity, to avoid 
the risk of obtaining a huge amount of poor quality data, or 
―data garbage‖ [30, 31, 32]. Authors in [32] define Big Data as 
―the capture, management, and analysis of data that goes 
beyond typical structured data‖ to ―any data not contained in 
records with distinct searchable fields‖ and characterize it by 
the four Vs, namely Volume, Variety, Velocity, and Veracity. 
Thus, it is important to ensure good data quality by verifying 
its comprehensibility, completeness, and reliability. This 
represents a challenge because it is not always possible to 
validate data first-hand, especially as it is highly varied and 
comes from different sources, and in many cases entered by 
users. 

Gantz et al. define Big Data in [33] as ―a new generation of 
technologies and architectures, designed to economically 
extract value from very large volumes of a wide variety of data, 
by enabling high-velocity capture, discovery, and/or analysis‖. 
This definition highlights a fifth V related to Big Data, namely 
Value, as it is not enough to store a large amount of data, but it 
is important to analyze it in order to extract value from it. 

The NIST introduces another V, Variability, which 
describes any data change [34]. Thus, Big Data is defined as 
―extensive datasets - primarily in the characteristics of volume, 
variety, velocity, and/or variability - that require a scalable 
architecture for efficient storage, manipulation, and analysis‖. 

Authors in [35] emphasize on the fact that Big Data has 
two important sides, namely the storage of large volume of 
data as well as the analysis of said data, while authors in [36] 
state that Big Data is a ―cultural, technological, and scholarly 
phenomenon‖ that originates from the belief that the bigger the 
volume of data is, the more insight it would provide. It relies 
on technology and analysis to gather, store, analyze, and 
identify patterns in large datasets. 

Deriving from these various definitions, we propose to 
define Big Data as large-scale datasets that originate from a 
plurality of sources at a rapid pace, aren’t necessarily 
structured in a specific schema, can’t be stored using typical 
database management systems, and can’t be analyzed using 
conventional analytics tools. 

 

 

Fig. 3. Some of the V characterizing Big Data 

Many factors influence the growth of the Big Data market. 
Horton identified seven key drivers falling into three 
categories, namely business drivers, technical drivers, and 
financial drivers [24]. Among these key drivers, there is the 
fact that Big Data enables innovative new business models to 
find adapted solutions to their needs, without requiring big 
investments in hardware or software, as it runs on commodity 
computers and offers a multitude of open source software. In 
fact, Big Data’s influence is so tangible in business that some 
go as far as calling it a ―management revolution‖ that 
challenges established conceptions of expertise, experience and 
management practice [37]. Many works have been trying to 
understand the source and nature of Big Data, and come up 
with new ways to address the challenges encountered in its 
different phases, from data collection to archiving, all through 
storage and analytics. Each one of Big Data’s lifecycle’s 
phases called for new solutions to be developed, as shown in 
Fig. 4. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 1, 2016 

161 | P a g e  

www.ijacsa.thesai.org 

Fig. 4. Big Data’s lifecycle 

One of the challenges that rose with the growth of Big Data 
is the storage of the huge volume of generated data. We present 
in the next section the main storage systems used. 

III. BIG DATA STORAGE 

One of the challenges that face organizations dealing with 
Big Data is how and where to store the tremendous amount of 
data. 

The most widespread data management technology is 
relational database management systems (RDBMS). However, 
with the rise of Big Data, these RDBMS became unfit for 
large, distributed data management, especially regarding data 
Velocity and Variety, since they require data to respect a 
relational schema before being imported in the database, while 
Big Data is about managing data of various formats and flow 
rate (streaming, real-time, etc.). Regarding data Volume, 
RDBMS are required to be distributed over multiple clusters, 
sometimes geographically distant. While most proprietary 
RDBMS scale to large amounts of data, open source ones, such 
as MySQL and PostgreSQL, are still far behind [38]. 

First approaches tried to adapt traditional RDBMS by using 
replication to scale reads, adding a caching layer, using vertical 
scaling (scale up) or horizontal scaling (scale out) to cope with 
said volume. Vertical scaling adds more resources to the 
machine that stores data. This needs powerful machines and 
can be expensive. Moreover, there is a physical storage limit 
that can’t be exceeded (the current maximum size of a hard 
disk drive is 8 TB, with the project to reach 10 TB by 2017 
[39]). Horizontal scaling, on the other hand, adds more 
machines to cope with the increasing data volume. Now that 
the cost of hardware is significantly less than it used to be, it is 
more interesting to add new servers to the cluster, whenever 
resources are needed. However, users would ultimately need to 
shard data across many clusters, which they would have to 
manage in the application layer. 

A real-world example is the expansion of Twitter. 
Launched in 2006, Twitter knew an exponential growth leading 
to an average of 500 million tweets per day [40]. In order to 
manage the expansion of data volume, Twitter had to rethink 
its architecture, which was relying on MySQL for data storage, 
when sharding couldn’t keep up with the increasing data 
traffic. This called for developing new adapted solutions used 
internally by Twitter, such as T-Bird and Snowflake [41]. In 
general, alternative database solutions are increasingly used in 
order to provide advantages in terms of performance, 
scalability, and suitability for Big Data environments. Among 

these solutions, there are NoSQL databases, NewSQL 
databases, and file storage systems like HDFS [50] and GFS 
[49]. 

A. NoSQL database systems 

The term NoSQL, or Not Only SQL, was first coined in 
1998 as the name of a relational database, based on the Unix 
Shell, and conceived to give better flexibility and optimize the 
use of resources compared with existing relational databases 
[42]. It was revived in 2009 with the rise of Cloud Computing 
and the presentation of Google’s Bigtable [43], and has since 
been generalized to describe databases that model, store, and 
retrieve data in a different way than traditional relational 
databases. Many NoSQL databases are well-known today, such 
as MongoDB, HBase, Facebook’s Cassandra, Linkedin’s 
Voldemort, etc. One of the main features of NoSQL databases 
is that they are schema free, which means that the structure of 
data can be easily and quickly modified without needing to 
rewrite tables. This aims to overcome the inflexibility of 
traditional relational databases schemas. And while many 
NoSQL databases don’t implement certain relational 
functionalities, such as JOINs, ordering, and aggregation, many 
offer support for SQL-like querying. 

While relational databases permit handling data storage and 
management simultaneously, especially with implemented 
SQL-querying interfaces, NoSQL databases handle them 
separately. Data storage is done according to the adopted data 
model (key-value, document, etc.) with a primary focus on 
scalability. Data access is done using APIs. This renders 
NoSQL databases flexible for data modelling and easy for 
application development and deployment updates [44]. 

Relational databases guarantee ACID (Atomic, Consistent, 
Isolated, and Durable) transaction properties. However, CAP 
theorem (Fig. 5) states that at most two out of the three 
properties (Consistency, Availability, and Partition tolerance) 
can be achieved simultaneously in distributed environments 
[45]. While RDBMS do well on Consistency and Availability, 
they don’t scale well. The main idea behind NoSQL databases 
is to loosen up on one of these two properties, namely 
Consistency and Availability, in order to enhance scalability. 
They provide what can be called BASE (Basically Available, 
Soft state, and Eventually consistent) [46] properties, in 
contrast with ACID. NoSQL database systems differ in which 
of the two properties they loosen, and how much they do 
loosen it. Many however provide eventual consistency to 
ensure high scalability and availability. 
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Fig. 5. The CAP theorem 

NoSQL databases have many data models: Key-Value, 
Document, Column, and Graph, as shown in Table II. 

Key-value databases store data as a collection of 
(key, value) pairs where a unique identifier, key, is used to 
access and retrieve data. They are schema-free, as values are 
independent from each other, with no restriction on their 
nature. As data is completely opaque to the system, the only 
way to access and retrieve it is by using the unique key. They 
support basic insert, read, and delete operations. Most are 
persistent while others like Memcached cache data in memory. 
Notorious examples include Redis, Memcached, and 
DynamoDB. 

Document databases store data as documents that are based 
on a specific encoding (JSON, BSON, XML, etc.) and 
identified by a unique ―ID‖. Document databases being 
schema-free, documents can store attributes of any kind. Most 
document databases generally support more complex data 
(such as nested documents) and offer more indexing and 

querying functionalities, but relatively less performance, than 
Key-Value ones. 

Column databases are modelled after Google’s Bigtable 
[43]. They store data using tables (columns and rows) but 
without any association between them. Columns consist of a 
unique identifier, a value, and a timestamp used for versioning. 
They are grouped in column families that have to be 
predefined, which affects flexibility. 

Graph databases store data nodes interconnected with edges 
where each node and edge consists of key-value pairs. This 
allows graph databases to store not only data, but also 
relationships between data nodes. They are the tool of choice 
when dealing with heavily linked data. Some examples include 
Neo4J database, which supports ACID properties, and 
OrientDB. 

Although they differ in their data model, all NoSQL 
databases allow a relatively simple storage of unstructured, 
distributed data and achieve high scalability. They are best 
adapted for applications that don’t use a fixed schema, or don’t 
require ACID operations, and for intensive read and update 
OLTP workloads [47]. 

B. NewSQL database systems 

NewSQL originated from the affirmation that the relational 
model can be implemented to scale by retaining its key aspects 
and removing some of the general purpose ones [48]. NewSQL 
databases aim to answer Big Data storage needs, especially 
regarding volume and scalability, while providing the 
traditional functionalities of relational databases, especially 
regarding ACID transactions, querying operations such as 
JOINs and aggregations, etc. They are an attempt to realize the 
three properties featured in the CAP theorem, proving that 
Consistency and Availability can be achieved simultaneously 
in distributed environments. 

NewSQL databases provide an SQL query interface, and 
clients (users and applications) interact with them the same 
way they interact with relational databases. They manage 
read/write conflicts using non-lock concurrency control [48]. 

TABLE II.  NOSQL DATA MODELS 

Data model Definition Use case Advantages Limitations Examples 

Key-Value 

Stores data as a 

collection of 

(key,value) pairs 

Applications with only 

one kind of object where 
search is performed based 

on one attribute 

Simple to use 

Relationships between 

data must be explicitly 
managed in the 

application layer 

Memcached 

Redis 

DynamoDB 

Document 
Stores data as encoded 

documents 

Applications with many 
kinds of objects where 

search is done on multiple 

attributes 

Management of 

complex data structures 

Relationships between 
data must be explicitly 

managed in the 

application layer 

CouchDB 

MongoDB 

Column 

Stores data as columns 

consisting of a key, a 
value, and a timestamp 

Applications with many 
kinds of objects where 

search is done on multiple 

attributes and that need 
data to be partitioned both 

horizontally and vertically 

 

Allows high throughput 

and low latency 
Less flexibility 

Bigtable 

HBase 
Cassandra 

Graph 
Stores linked data as 

graphs 

Applications that handles 

heavily connected data 

(social networks, location 
based services, etc.) 

Seamless manipulation 

of graphs 

Relatively high 
complexity and less 

scalability 

Ne04j 
GraphDB 

OrientDB 
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Many NewSQL solutions extend existing relational 
databases to support high scalability, like Infobright, TokuDB, 
and MySQL cluster NDB, which are all built on MySQL. 
Other solutions retain existing relational databases and add a 
middleware for achieving high scalability through shading or 
clustering, such as ScaleArc, ScaleBase, dbShards, etc. There 
are also solutions that were developed from scratch to provide 
relational features in distributed environments, such as NuoDB. 

NewSQL databases are relatively new compared to NoSQL 
ones. They are most adapted to use case scenarios that call for 
relational databases with more scalability. They try to combine 
the advantages of both relational and NoSQL databases, as 
detailed in Table III. 

TABLE III.  COMPARISON OF RELATIONAL, NOSQL, AND NEWSQL 

DATABASES 

Feature 
Relational 

databases 

NoSQL 

databases 

NewSQL 

databases 

Relational 
schema 

Yes No Yes 

SQL Querying Yes No Yes 

ACID 

transactions 
Yes No Yes 

Big Data 
compatibility 

No Yes Yes 

Availability Yes Yes Yes 

Strong 

Consistency 
Yes No Yes 

Scalability No Yes Yes 

C. File Storage Systems 

File storage systems are another solution to deal with large 
volume of data in distributed environments. The major ones are 
Google File Storage (GFS) [49] and Hadoop Data File Storage 
(HDFS) [50]. 

GFS is a scalable distributed file system developed by 
Google to meet the needs of its large distributed data-intensive 
applications [49]. It is designed for environments that are prone 
to failures, that manipulate huge data files by frequent 
read/append operations, and that need to process data in batch 
rather than in real-time. Thus, it is highly fault-tolerant and 
reliable, and emphasizes on high throughput rather than low 
latency. 

GFS has a master-slave architecture (Fig. 6), a typical 
cluster consisting of one master and many chunkservers to 
which clients access directly after consulting the master. The 
master divides each file into 64 MB chunks and manages the 
mapping and replication of said chunks through the different 
chunkservers. 

 
Fig. 6. GFS architecture 

GFS maintains multiple replicas of each file, which leads to 
higher reliability and availability. 

HDFS [50] is an open source implementation of GFS. It is 
part of the Apache Hadoop, an open source framework for 
distributed storage and distributed processing of large data sets. 
The biggest clusters implementing Hadoop are composed of 
45 000 machines and store up to 25 petabyte of data [51]. 

HDFS is one of the four modules composing Hadoop, 
which are Hadoop commons, Hadoop YARN, and Hadoop 
MapReduce, the open source implementation of Google’s 
Map/Reduce for the parallel processing of large distributed 
data. 

HDFS is implemented based on the fact that moving 
computation is cheaper than moving data, providing interfaces 
to client applications to move where data is stored. Like GFS, 
HDFS has master-slave architecture (Fig. 7) consisting of a 
single master node, NameNode, and a slave for each node in 
the cluster, DataNode. 

 
Fig. 7. HDFS architecture 

The NameNode is the coordinator of HDFS. It divides files 
into fixed-sized blocks and maps them to DataNodes, and 
client applications consult it to know where to access data. The 
DataNode manages data storage in the node where it is 
installed. It can also create, delete, and replicate blocks when 
instructed by the NameNode. 

The adoption of NoSQL, NewSQL and File Storage 
systems is mainly driven by six key factors, regrouped in the 
acronym SPRAIN [52]. These key drivers, which are the weak 
points of traditional RDBMS, are Scalability, Performance, 
Relaxed consistency, Agility, Intricacy, and Necessity. And 
while these new database systems are becoming the tool of 
choice to meet the demands of Big Data applications, it can be 
complicated and costly to run and manage them, especially at 
scale. One solution is to move them to the Cloud in order to 
take full advantage of the elasticity, scalability, availability, 
and performance of the latter, and meet the ever-growing 
storage and processing requirements of Big Data applications. 
And one of the currently most adapted Cloud Computing 
models to Big Data storage requirements is DataBase as a 
Service (DBaaS), as it can combine many of the 
aforementioned storage systems to offer scalable, on-demand, 
pay-as-you-go storage resources to organizations without any 
upfront investment. 

We present, in the next section, a review of several DBaaS 
and discuss their suitability for Big Data storage. 
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IV. DATABASE AS A SERVICE (DBAAS) FOR BIG DATA 

An ever growing number of companies found themselves 
swamped with the large amount of data generated and stored 
for different purposes (user based preference suggestions, 
business analysis...). Storing and retrieving data becomes a 
costly and complex operation, involving investments in 
infrastructure and database managers. It is only normal then 
that the question of outsourcing data was one of the earliest to 
surface with the emergence of Cloud Computing, which led to 
the DataBase as a Service (DBaaS) model. 

DBaaS can be simply defined as ―a paradigm for data 
management in which a third party service provider hosts a 
database and provides the associated software and hardware 
support‖ [53]. Companies using this model outsource all 
database management operations, from installation to backups, 
to the provider, and focus on developing applications. They can 
access their databases instances on-demand, using querying 
interfaces or programming tools. 

 

Fig. 8. DBaaS components 

The increasing use of Cloud Computing, and especially 
SaaS, called for rethinking the persistency layer. The inherent 
characteristics of cloud computing, such as elasticity, 
scalability, self-service, and easy management make traditional 
RDBMS not fully adapted for applications that run in cloud 
environments. Early solutions tried extending existing DBMS 
to support high-scalability, but it only led to complex solutions 
with poor performance [54]. Leader IT operators, such as 
Google, Yahoo!, and Facebook, chose to implement their own 
data management solutions, respectively Bigtable, PNUTS, and 
Cassandra. Various other databases provided as DBaaS were 
developed from scratch to integrate the advantages of the 
cloud, with the exception of few providers who offer 
established relational or NoSQL databases, such as MySQL, 
PostgreSQL, MongoDB, and Redis, as a service. 

Database as a Service (DBaaS) in one of the Cloud 
Computing models that is most suitable for Big Data. In this 
model, it is possible to use a database as a service and benefit 
from the high-scalability and storage capacity offered by the 
Cloud, without having to install, maintain, upgrade, backup or 
manage the database or the underlying infrastructure. 

DBaaS is a different concept from the concept of cloud 
databases, which is beyond the scope of our paper. In this 
concept, users can either upload their machine image, with the 
database installed, to the cloud infrastructure or use a ready one 
offered by the provider. In both scenarios, the various database 
management operations are incumbent to users. Datawarehouse 
Cloud solutions are also beyond the scope of this paper. 

We propose to review some of the most prominent 
databases that are DBaaS and discuss their adaptability to Big 
Data uses. 

A. Cloud Bigtable 

Cloud Bigtable is a DBaaS based on Bigtable [43], a 
highly-scalable, distributed, structured, and highly-available 
column database developed by Google that has been used 
internally since 2003 to store the data of numerous Google 
projects (Google Finance, Google Analytics, Google Earth, 
etc.). Bigtable was made publically available as Cloud Bigtable 
in May 2015 [55]. 

Bigtable stores data in tables, which are ―sparse, 
distributed, persistent sorted‖ maps. [43]. These tables are 
sharded into tablets containing blocks of adjacent rows. Each 
cell is referenced by three dimensions: a row key, a column 
key, and a timestamp. 

A row key is an arbitrary string and is the unit of 
transactional consistency in Bigtable. Rows with consecutive 
keys are grouped into tablets, which are the unit of distribution 
and load balancing. A column key is also an arbitrary string, 
and column keys are grouped into columns families, the unit of 
access control. Timestamps are used to manage data 
versioning. A cell can store different versions of the same data, 
each referenced by a timestamp. Older data is garbage-
collected depending on the user’s specifications. 

Bigtable relies on Google File System (GFS), a scalable 
distributed file system presented in Section 4, for storing data 
in SSTable [43] file format. An SSTable is a file of key/value 
string pairs that is sorted by keys. It is used to map keys to 
values. Bigtable also uses Chubby, a highly-available and 
persistent distributed lock service, for synchronizing data 
access [56]. A Chubby service has four replicas and one master 
replica. The latter is used to serve requests. Bigtable 
architecture is composed of one master server, many tablet 
servers, and a library, as shown in Fig. 9. 

 
Fig. 9. Bigtable architecture 
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The library is linked to client applications and is used to 
retrieve the location of tablets. The master server performs 
many tasks: assigning tablets to tablet servers, load balancing, 
detecting new or expired tablets, detecting schema changes, 
and GFS garbage collection. A tablet server is responsible for 
managing a set of tablets, receiving read /writes requests from 
client applications, serving client requests that are directed to 
the tablets it manages, and splitting tablets when their size 
exceeds 1 GB. 

Each tablet is assigned to one tablet server at a time. Tablet 
servers use Chubby to obtain an exclusive lock on the tablets 
they manage. The master server consults Chubby to discover 
tablet servers. 

While being manipulated, tablets are stored in memory in a 
buffer called memtable. When the size of a memtable reaches a 
certain level, it is stored as an immutable SSTable in GFS. 
Tablet servers perform write operations on tablets in memtable, 
and read operations on views obtained from merging SSTables 
and the memtable. 

 
Fig. 10. Management of Read and Write operations 

Bigtable maintains a high level of consistency. Reads are 
strongly consistent, since SSTables are immutable. As for 
writes, memtables perform a row copy each time there is a 
write operation in a row, ensuring that updates are seen by 
reads. 

Client applications can connect to Cloud Bigtable using the 
Cloud Bigtable HBase client. The latter supports HBase shell, 
which can be used to perform queries and administrative tasks. 

Cloud Bigtable was designed for Big Data applications that 
handle terabytes of data in clusters composed of thousands of 
nodes. Google recommends it for applications where the 
volume of data exceeds 1 TB. For Big Data applications with 
less than 1 TB data volume, Google recommends another 
solution, namely Cloud Datastore. 

B. Cloud Datastore 

Cloud Datastore is a NoSQL, schemaless, highly-scalable, 
and highly-reliable database for storing non-relational data 
developed by Google as a part of the App Engine. The main 
motivation for its development is to answer the need for high-
scalability that couldn’t be met by traditional relational 
databases. It supports basic SQL functionalities, including 
filtering and sorting. Other functionalities like table joins, sub 
queries and flexible filtering are not supported. Cloud 
Datastore is based on another Google’s solution, namely 
Megastore, which is built on Bigtable. Thus, Cloud Datastore 
architecture is as shown in Fig. 11. 

 
Fig. 11. Cloud Datastore architecture 

Megastore [57] is a distributed data store that combines the 
scalability of NoSQL databases and some key features of 
relational databases, especially in terms of consistency and 
ACID transactions. It allows users to define tables just like in 
traditional SQL databases, and then maps them to Bigtable 
columns. It is used by more than 300 applications within 
Google [58]. 

Megastore ensures strong consistency. It replicates data 
across multiple geographically distributed datacenters using an 
algorithm based on a distributed consensus algorithm, Paxos 
[59], for committing distributed transactions. It also 
implements two-phase commit (2PC) [60] for committing 
atomic updates. Unlike 2PC, Paxos doesn’t require a master 
node for committing transactions. Instead, it ensures that only 
one of the proposed values is chosen and, when it is, that all the 
nodes forming the cluster get the value.  Thus, all future read 
and/or write access to the value will give the same result. 

For each new transaction, Megastore identifies the last 
transaction committed and the responsible node then uses 
Paxos to get a consensus on appending the transaction to the 
commit log. Megastore is built on Bigtable to overcome the 
difficulty to use in applications that have relational schemas, or 
that need to implement strong consistency [86]. An 
amelioration to Megastore is Spanner [86], a highly-scalable, 
globally-distributed, semi-relational database where queries are 
done in an SQL-like language and offers better write 
throughput. Though Spanner is not offered as a service to 
developers, it is used internally by Google as the backend of 
F1, Google’s distributed RDBMS supporting its online ad 
business. However, there is a project for building an open 
source version of Spanner, CockroachDB. 

Cloud Datastore relies on Megastore to support 
transactions, ensuring strong consistency. The entity data, 
which is the equivalent of a row in relational databases, is 
written in two phases: the commit phase and the apply phase. 
In the commit phase, data is recorded in the transaction logs of 
a majority of replicas. It is also recorded in the transaction logs 
of all replicas in which it was not recorded and that are not up-
to-date. In the second phase, the entity data and its index rows 
are written in each replica. 

Cloud Datastore also relies on Bigtable’s automatic 
sharding and replication to ensure high-scalability and 
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reliability. Performance is ensured by reducing lock granularity 
and allowing collocation of data to minimize the 
communication between nodes. 

In Cloud Datastore, client applications perform queries and 
manipulate data using APIs, third-party implementations of the 
Java Data Objects (JDO) and Java Persistence API (JPA), or 
third-party frameworks such as Objectify, Slim3 or Twig. 

Google intents to prove, with Cloud Datastore, that 
scalability can be achieved while keeping some features of 
traditional relational databases, especially transactions, ACID 
semantics, schema support, etc. It thus provides a highly-
scalable and reliable cloud database that is adequate for Big 
Data applications that need to implement strong consistency. 

C. Cloud SQL 

Cloud SQL is a fully-managed, highly-available MySQL 
database hosted in Google’s cloud and offered as DBaaS. It 
allows users to easily create, run, and manage MySQL 
databases in Google’s infrastructure, with a promise of 99.95% 
uptime SLA [61]. It is simple to use and gives users the 
possibility to control the geographical location where their data 
is stored, the RAM capacity they need (ranging from 0.125 to 
16 GB), the billing plan they prefer (based on the number of 
hours the database is accessed or based on the number of days 
the database exists), the backup frequency, the replication 
mode, the connection encryption mode, etc. Many companies 
opted for migrating their data into Cloud SQL, such as 
CodeFutures and KiSSFLOW. 

Cloud SQL is distributed, and it replicates data across 
multiple datacenters in order to be fault-tolerant, using both 
synchronous and asynchronous replication. It supports all 
MySQL features with some exceptions (user defined functions, 
LOAD_FILE function, installing and uninstalling plugins). It is 
accessible via MySQL clients, standard MySQL database 
drivers, App Engine applications written in Java or Python, and 
third-party tools such as Toad for MySQL. 

In Cloud SQL, the maximum size of an instance is 10 GB, 
with a total size limit of 500 GB. Moreover, it doesn’t scale 
automatically, but it is up to the user to handle scalability, and 
it is not adapted to applications where data schema changes 
frequently. This makes Cloud SQL unsuited for Big Data 
applications. 

D. Cloudant 

Cloudant [62] is a scalable, distributed, NoSQL database as 
a service provided by IBM, with the assurance, through SLAs, 
of uninterrupted, highly-performant access to data. Cloudant’s 
infrastructure consists of over 35 datacenters distributed in 
more than 12 countries all over the world. Data is stored in 
server nodes, grouped into clusters that can either be multi-
tenant or single-tenant. Cloudant also offers users the 
possibility to deploy it on-premise, or to select other hosting 
providers such as Rackspace, SoftLayer, and Microsoft Azure. 
This is done in the optic of bringing Cloudant near to users’ 
data, in the case where it is already hosted in the cloud. As for 
the billing, it is adaptable to the growth of the user’s 
applications, offering a ―pay-as-you-grow‖ billing plan. 

Cloudant is interoperable with many open source solutions, 
which enhances its capabilities and features, as shown in Fig. 
12. 

 
Fig. 12. An overview of Cloudant interaction with various open source 

solutions [62] 

Cloudant is based on Apache CouchDB, with some 
additional features regarding data management, advanced 
geospatial capabilities, full-text search, and real-time analytics. 
It stores data as JSON documents (Fig. 13), which is a 
lightweight data-interchange format that is built on a collection 
of name/value pairs, and an ordered list of values. 

 
Fig. 13. An example of JSON-formatted documents 

JSON documents are accessed using an HTTP-based 
RESTful API. Querying is done using Cloudant query, a 
declarative system based on MongoDB’s declarative query. 
Cloudant assigns a unique identifier to each JSON document 
and uses a MapReduce-based framework to query data. Users 
write MapReduce functions in JavaScript, where the Map 
function defines which JSON documents are concerned by the 
Reduce function that specifies the operations to perform. Then 
Cloudant distributes the MapReduce functions to all nodes 
forming the cluster. It is noted that Cloudant allows 
MapReduce functions to be ―chainable‖, meaning that the 
output of a MapReduce job can be used as input for other 
MapReduce jobs in the chain. 
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Data distribution is done by multi-master replication, 
ensuring a high fault-tolerance, and reducing latency by 
connecting users to data that is geographically closest. Users 
can replicate data not only through all nodes forming the 
cluster, but also to CouchDB, being able to benefit from an 
open source data storage solution to increase their datacenter 
size. 

Cloudant is adapted to Big Data uses, especially for web, 
mobile, and the Internet of Things [63]. It is also suitable for 
applications that deal with unstructured data or that need to 
synchronously replicate data across multiple datacenters. 

E. MongoLab 

MongoLab is a fully-managed, highly-performant, highly-
available MongoDB database offered as DBaaS that runs in 
major cloud infrastructures: Amazon WS, Google Cloud 
Platform, Rackspace, and Windows Azure, etc. It is also 
possible to integrate it with users’ applications that run on other 
PaaS providers’ platforms, like AppFog, Heroku, OpenShift, 
etc. 

 
Fig. 14. MongoDB control panel 

MongoDB is a schema-free, scalable document database 
that offers, along with the basic CRUD functions of traditional 
relational databases, many features such as indexing, 
aggregation, session-like data expiration management, native 
support of geo-spatial indexing, etc. Other features specific to 
relational databases, such as JOINs, are not supported. 

MongoDB stores data as BSON documents, a lightweight, 
binary interchange format based on JSON. BSON represents 
data efficiently, optimizing storage space and scan speed, and 
rendering encoding and decoding data simple and fast. Data 
access, data requests and background management operations 
are performed by mongod, the primary daemon process of 
MongoDB. 

Users can browse their data stored in MongoLab via the 
management portal, or the MongoDB shell, which is an 
interactive JavaScript shell. Applications can be connected to 
the MongoLab databases using a MongoDB driver, or 
MongoLab RESTful APIs. 

MongoDB defines its own query language. Users can 
perform ad hoc queries using two functions like find() and 
findOne() that return a subset of documents. Queries can be 
performed with complex criteria (such as ranges or negatives), 

conditions, sorting, embedded documents, etc. It is also 
possible to use indexing, like in relational databases, which 
allows performing faster queries. In addition, MongoDB offers 
a wide range of commands to be used to manage servers and 
databases. 

MongoDB handles replication using a master-slave 
strategy. Users define a replica set, which is composed of a 
primary server and many secondary servers. The primary 
server gets the requests from applications and users, and 
secondary servers store copies of the data contained in the 
primary server. This way, if the primary server becomes 
unavailable, one of the secondary servers is chosen by its peers 
to replace it. MongoDB also offers an interesting feature, slave 
delay, which sets a secondary server to lag by a predefined 
number of seconds to allow retrieving an earlier version of 
damaged data. 

Scalability in MongoDB is ensured by autosharding. 
Mongos, MongoDB’s routing service, is used to keep track of 
the location of data in the different shards. Applications 
connect to Mongos and send their queries the way they’d do 
with a stand-alone MongoDB instance, as shown in Fig. 15. 
This allows MongoDB to handle higher throughput in read and 
write operations than what a stand-alone instance can handle 
[64]. 

 
Fig. 15. Access by applications to sharded data in MongoDB 

MongoDB’s design makes it suitable for storing large 
volumes of heterogeneous, evolving collections of data. 

F. Morpheus 

Morpheus is a fully managed, highly-available DBaaS that 
provides access to SQL (MySQL), NoSQL (MongoDB), and 
cache (Redis) databases. It also offers a fully managed access 
to Elasticsearch, a full-text search engine.  

As mentioned above, Morpheus offers a fully managed 
access to four databases. MongoDB and MySQL have been 
presented in previous chapters. We will present Elasticsearch 
and Redis. 
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Fig. 16. Available databases in Morpheus41 

Elasticsearch is an open source distributed, scalable, 
highly-available full-text search engine.  It is built on Apache 
Lucene, an open source library for data retrieval. 

Redis is an open source key-value cache and store that 
keeps data in memory for faster treatment, handling over 
100 000 read/write operations per second [65]. Redis can also 
store data on hard disk asynchronously using snapshots or 
append-only logs. 

Morpheus allows users to easily select one of the available 
databases and create an instance with a size ranging from 1 to 
200 GB, as shown in Fig. 17. It supports many versions of each 
database and gives users the possibility to select one. Users can 
create many instances using disparate databases. 

 

Fig. 17. Available instance sizes on Morpheus and their cost41 

Morpheus uses Solid State Drives (SSD) for data storage, 
which improves the speed of data access. It also uses 
Amazon’s datacenters. Replication is done using a master-
slave strategy to ensure availability and fault-tolerance. 
Scalability is achieved using autosharding. 

Use cases show that Morpheus allows creating up to 2000 
instances, with a total data size of 400 TB [66]. This, along 
with its scalability and high availability, makes Morpheus 
suitable for Big Data uses. 

G. Postgres Plus Cloud Database 

Postgres Plus Cloud Database (PPCD) [67] is a fully-
managed, highly-performant, highly-available, scalable access 
to PostgreSQL, an object-relational database management 
system. It supports relational databases ACID transactions, as 
well as NoSQL databases features. 

The architecture of PPCD is composed of one server, and 
clusters, as shown in Fig. 18. 

 
Fig. 18. The architecture of PPCD [67] 

This architecture is for each cloud region. Users in a cloud 
region connect to a centralized console, the PPCD Console, to 
create clusters. The PPCD server deploys these clusters to the 
instances hosted by a Cloud provider (Amazon’s EC2 [67], 
Amazon’s VPC [68], etc) and connects to the cloud using 
JCloud APIs. The console uses jgroups, a toolkit for nodes 
messaging, to communicate with the various Cloud 
environments where clusters are deployed. 

PPCD ensures reliability and availability using master-
slave replication. The first database deployed by the console is 
designed as the master database, the other replicas are slaves 
and used for read-only operations. So PPCD clusters consist of 
a master and one or more replicas. They have built-in load 
balancers that receive incoming requests from applications and 
distribute them through the nodes. 

The PPCD server manages the instances in the clusters 
using the Cloud Cluster Management (CCM). In case of 
failure, the CCM initiates automatic failover.  

Automatic failover is implemented in two ways, as shown 
in Fig. 19. One way is to switch to a replica, which minimizes 
downtime, another is to migrate data from the failed master to 
a new one, which minimizes data loss. 

PPCD offers, as a service, PostgreSQL databases that are 
hosted in the cloud, especially using Amazon’s WS. This lets 
PPCD benefit from Amazon’s powerful resources and makes it 
suitable for Big Data applications. 
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Fig. 19. Automatic failover scenario [67] 

H. SimpleDB 

SimpleDB is a highly available, scalable, schemaless non-
relational document database that is part of Amazon’s Web 
Services. It provides many of the functionalities provided by 
relational databases as a service in the cloud. SimpleDB is 
designed to run on other web services provided by Amazon. 
Developers that use SimpleDB can run their applications using 
Amazon’s Elastic Compute Cloud (EC2) and store their data in 
Simple Storage Service (S3). 

Data is structured in domains, which are the equivalent of 
tables in relational databases. Each domain is composed of 
attributes and items, and each attribute has one or more values 
for a given item, as shown in Fig. 20. Currently, users can store 
up to 10 GB of data per domain, and can create up to 250 
domains [69]. However, they can request to create additional 
domains if needed. 

 

Fig. 20. Example of a domain in SimpleDB 

SimpleDB provides a group of API calls to build 
applications [69], such as CreateDomain for creating domains, 
DeleteDomain for deleting domains, PutAttributes for adding, 
modifying, and removing data in domains, etc. Querying 
domains is done using an SQL-like Select query, but multi-
domain querying is not supported. 

SimpleDB implements automatic data indexing for a better 
performance. To ensure high-availability, asynchronous 
replication is implemented, and multiple copies of the domain 
are done after a successful write. Two consistency options are 
supported for read operations, namely strong consistency and 
eventual consistency. Strong consistency requires a majority of 
replicas to commit writes and acknowledge reads. Eventual 

consistency asynchronously propagates writes through the 
nodes, and any replica can acknowledge reads. Automatic data 
sharding is not supported, so users have to manually partition 
their data across multiple domains for better scaling. SimpleDB 
is optimized for parallel-queries. 

SimpleDB is designed for fast reading and is a simple way 
to store data in a schema-free database offered as a DBaaS. 
However, it has many drawbacks, such as the storage limit of 
10 GB per domain, the maximum attribute values of 256 per 
item, the limit response size of 1 MB per query [70], the 
performance setback due to the automatic indexing of all 
attributes, etc. For all these reasons, Amazon built upon 
SimpleDB to develop DynamoDB, which can be considered an 
improved version of SimpleDB that is more adapted to Big 
Data applications. 

I. DynamoDB 

Amazon’s DynamoDB is a fully-managed, highly-
available, highly-scalable, distributed NoSQL database. It is an 
answer to Amazon’s need of a performant, reliable, efficient 
database able to scale up to meet the ever growing load on their 
servers, which simultaneously serve, at peak times, more than 
tens of millions of customers [71], with all the economical 
issues at stake. DynamoDB is fast and flexible, and supports 
document and key-value data models. 

Since strong consistency and high availability are 
complementary (according to the CAP theorem), and one must 
be sacrificed in order to achieve the other in distributed 
environments, Amazon chose to privilege high availability. 
Thus DynamoDB supports eventual consistency, which is 
achieved by asynchronously propagating updates, and 
considering each update to be a new version of data. This 
versioning is done by using vector clocks [72]. DynamoDB 
uses sloppy quorum, a quorum-based technique, and hinted 
handoff, a decentralized replica synchronization protocol, to 
achieve consistency among replicas while ensuring availability 
in case of server failures [71]. 

Conflicts during updates needed to be addressed too. The 
classical approach is to resolve these conflicts during writes, 
committing them only when the majority of replicas can be 
reached. To be more suitable for Amazon’s services, where 
rejecting a write can be prejudicial from the customer’s 
perspective, DynamoDB opts for resolving conflicts during 
reads. However, DynamoDB leaves it up to developers to 
implement their own conflict resolution strategy at the 
application level. By default, DynamoDB uses ―the last write 
wins‖ strategy [71]. 

DynamoDB scalability is designed using a variant of 
consistent hashing in order to partition data and scale 
incrementally [71]. This variant dynamically partitions data 
over all the nodes in the clusters, knowing that each node 
communicates with its immediate neighbours. Some of these 
nodes are used as coordinators to replicate data on many nodes. 
DynamoDB optimizes throughput and latency at any scale by 
using automatic partitioning and Solid State Drive (SSD). 

As for querying and manipulating stored data, it is done 
using two functions: get(key) to retrieve all the versions of the 
object associated with the key ―key‖ along with their context, 
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and put(key, context, object) to determine where to store the 
replicas of the object ―object‖ and to write them to the disk. 
Data is stored as binary objects, or blobs. 

 
Fig. 21. A list of techniques used by DynamoDB as a response to some 

encountered problems and their advantages [71] 

In DynamoDB, each node shares the routing table with the 
other nodes in the cluster in order to know what data is stored 
by which node. In the case of large clusters composed of 
thousands of nodes, the size of the routing table is significantly 
large. An improvement is suggested in [71] by using 
hierarchical extensions. 

DynamoDB is Amazon’s NoSQL solution for Big Data 
storage. It has been used by Amazon’s services and given good 
performance, especially regarding availability and data loss. It 
is well-suited for many Big Data applications, from gaming to 
the Internet of Things. 

J. Azure SQL Database 

Azure SQL Database is a highly-available, scalable, 
relational database built on Microsoft SQL Server and hosted 
in Microsoft’s cloud. It offers the main features of traditional 
relational databases (tables, views, indexes, procedures, 
complex queries, full-text search, etc.) as a service in the cloud. 
It also supports Transact-SQL, ADO.net, and ODBC. Azure 
SQL Database supports Microsoft SQL Server only, though it 
is not completely compatible with it. However, a recent version 
offers a near total compatibility [73]. 

Azure SQL Database is a TDS [74] proxy endpoint that 
routes the requests of client applications to the SQL server 
node that contains the primary replica of data. It has a four-
layer architecture, as shown in Fig. 22. First, the infrastructure 
layer, which is Microsoft Azure datacenter, provides powerful 
computing and storage resources on which the other layers are 
built. Then there’s the platform layer that contains at least three 

nodes of SQL server running in the infrastructure layer. Then 
there’s the services layer that controls Azure SQL Database in 
terms of partitioning, billing, and connection routing. Last 
there’s the client layer that contains various tools to allow 
client applications to connect to Azure SQL Database. 

 
Fig. 22. Microsoft Azure SQL Database architecture [75] 

Azure SQL Database organizes data in table groups, which 
are the equivalent of databases in SQL Server. A table group 
can be keyless or keyed. All tables in a keyed table group must 
have a common column called partitioning key. Rows that 
have the same partitioning key are grouped into row groups. 
However, Azure SQL Database doesn’t support executing 
transactions on more than one table group and, if the table 
group is keyed, on more than one row group. 

Azure SQL Database performs automatic scalability when 
the table groups are keyed. Each table group is partitioned 
based on its partitioning key in a way that each row group is 
contained in one partition. To ensure availability, partitions are 
replicated using a Paxos-based algorithm, and each partition is 
stored on a server. 

As for consistency, it is ensured by taking snapshots of the 
table group to verify that committed transactions are reflected 
in the table group, and uncommitted ones aren’t. 

Azure SQL Database is used by many companies, 
including Xerox, Siemens, and Associated Press. However, it 
suffers from many limitations that render it unsuitable for Big 
Data applications. For example, the maximum database size 
supported is 500 GB, and the maximum database number 
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supported by a server is 150. So for Big Data applications, 
Microsoft’s more adopted solution is DocumentDB. 

DocumentDB is a fully-managed, scalable, NoSQL 
document database offered as a service. It supports SQL 
querying of JSON stored documents, which are all indexed by 
default to optimize query performance. Users can also query 
databases using JavaScript. 

DocumentDB supports four levels of consistency, 
configurable by users. In addition to strong and eventual 
consistencies, there is session consistency, which is the default 
mode, and bounded staleness consistency. Session consistency 
asynchronously propagates writes, and sends read requests to 
the one replica that contains the requested version. Bounded 
staleness consistency asynchronously propagates writes, while 
reads are acknowledged by a majority of nodes, but may be 
lagged by a certain number of time or operations. 

DocumentDB is still at its early stages and lacks many 
important features, such as backups and replication. Another 
solution developed by Microsoft and adapted to Big Data is 
SQL Server in Azure VM, which is not a DBaaS, but an IaaS 
to run SQL Server databases on virtual machines in the cloud. 

K. Amazon RDS 

Amazon Relational Database Service (RDS) offers a 
highly-available access to five distributed relational database 
management systems (MySQL, Oracle, Microsoft SQL Server, 
PostgreSQL, and Amazon Aurora) as a service in Amazon’s 
Cloud. RDS aims to make setting up, running, and scaling 
relational databases simpler and easier, and to automate 
administrative tasks such as backups, point-in-time recoveries, 
and patching. 

Scalability in RDS is achieved horizontally and vertically. 
RDS relies on sharding and read replicas to achieve horizontal 
scalability. As for vertical scalability, users can perform it by 
using command line tools, APIs, or AWS Management 
Console. 

RDS supports automated backups. These backups can be 
used as point-in-time recoveries. In addition, users can 
program backups in the form of snapshots and that can be 
manually restored afterwards. 

RDS replicates data synchronously using the Multi-AZ 
deployment [76] feature, where data is replicated between a 
primary instance and a standby instance, as shown in Fig. 23. 
Each one of these instances is stored in a different Availability 
Zone (AZ) to minimize downtime. If the primary instance fails, 
RDS performs an automatic failover to the standby instance.  

RDS is most adapted to applications that already use one of 
the five supported database systems, or new applications that 
work with structured data and need relational features not 
supported by NoSQL databases, such as join operations [78]. It 
is also optimized for databases that support heavy I/O 
workloads. The size of databases stored in RDS can reach up to 
3 TB and 30 000 IOPS [79], which makes it suitable for Big 
Data applications. 

 

 
Fig. 23. Example of replication in RDS [77] 

L. Other DBaaS solutions 

There are various other DBaaS solutions, such as ClearDB, 
Clustrix, CumuLogic, Heroku, Percona, etc. They are meant 
for relatively small cloud deployment projects, not Big Data 
applications. Two prominent DBaaS solutions are HP Cloud 
Relational Database and Rackspace Cloud Database, two fully-
managed, highly-available databases. Both support MySQL, 
with Rackspace Cloud Database supporting Percona Server, 
MariaDB also. 

HP Cloud Relational Database is provided by HP and 
hosted in HP Helion Public Cloud. It is still in its early 
development stages, available in a beta version only for the 
users of HP Helion Public Cloud. Rackspace Cloud Database is 
provided by Rackspace. Both databases use OpenStack, an 
open source cloud computing platform. Users can manage their 
databases via the native OpenStack command-line interface 
tools, or APIs. HP Cloud Relational Database supports 
automated backup/restore operations to enhance fault-
tolerance. Both databases offer the possibility for users to 
initiate backups. Availability is ensured by implementing 
snapshots and keeping replicas in different availability zones. 
Both databases are not suitable for Big Data applications, 
especially regarding data volume, HP Cloud Relational 
Database having a limiting size of 480 GB per database 
instance, and Rackspace Cloud SQL supporting a maximum 
size of 150 GB per database instance. 

Rackspace acquired another DBaaS solution, Objectrocket, 
which is a fully-managed, highly scalable database that 
supports MongoDB and Redis. It offers the possibility of 
having instances of multiple TB. Another prominent DBaaS is 
Salesforce’s Database.com, a fully-managed, highly-scalable 
relational database. It was first used as part of Salesforce’s 
PaaS, force.com, before being available in a stand-alone 
version.  
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Database.com uses one large Oracle instance as the main 
data storage system. It arguably stores data in one wide table 
composed of hundreds of flex columns, which are columns 
storing various data types [80]. Salesforce doesn’t disclose 
much of the technical details of Database.com’s functionalities 
and architecture. For example, there are no resources detailing 

how Database.com handles scalability, replication, or 
consistency. The maximum supported data size isn’t specified 
either. 

We present, in tables IV, V, and VI hereafter, a summary of 
the databases as a service reviewed in this section. 

TABLE IV.  COMPARISON BETWEEN THE REVIEWED DATABASES (PART 1) 

Name Provider Data Model Supported databases Data Storage Type Querying 

Cloud Bigtable Google Column database N/A Tables and Tablets HBase Shell 

Azure SQL Database Microsoft Relational Microsoft SQL Server Tables SQL 

Cloud Datastore Google NoSQL  N/A 
Kinds (equivalent of 

relational tables) 
API 

HP Cloud Relational 
Database 

HP Relational  MySQL Tables 
OpenStack CLI 
API 

Cloud SQL Google Relational  MySQL Tables SQL 

Cloudant IBM 
Document 

datastore 
N/A JSON documents API 

DynamoDB Amazon Key-value store N/A Key-Value objects API 

MongoLab MongoDB 
Document 

datastore 
MongoDB BSON documents 

MongoDB driver 

API 

Morpheus Morpheus 
Relational or 

NoSQL 

MySQL 
MongoDB 

Redis 

Elasticsearch 

Tables 

JSON documents 
Key-Value objects 

API 

Postgres Plus Cloud 

Database 
EnterpriseDB Relational PostgreSQL Tables API 

Rackspace Cloud Database Rackspace Relational 

MySQL 

Percona Server 
MariaDB 

Tables 
CLI 

API 

RDS Amazon Relational 

MySQL 

Oracle 

Microsoft SQL Server 

PostgreSQL 

Amazon Aurora 

Tables SQL 

SimpleDB Amazon Key-value store N/A Key-Value objects API 

Database.com Salesforce Relational N/A 

Organizations 

(equivalent of 

relational tables) 

SOQL 
SOSL 

Objectrocket Rackspace 
Document and 
Key-value store 

MongoDB 
Redis 

Key-Value objects 
BSON 

API 

N/A: NOT APPLICABLE                 X: NOT AVAILABL 

TABLE V.  COMPARISON BETWEEN THE REVIEWED DATABASES (PART 2) 

Name Consistency Replication Scalability 
Deployment 

Model 
Clusters Tenancy 

Interoperability with 

other cloud platforms 

Geographical 

region choice 

Cloud Bigtable 
Strong Row 

Consistency 
X Horizontal Cloud Multi-tenancy No Yes 

Azure SQL 

Database 
Strong Asynchronous Horizontal Cloud Multi-tenancy No Yes 

Cloud Datastore 
Strong  

Eventual 
Asynchronous 

Vertical 

Horizontal 
Cloud Multi-tenancy No Yes 

HP Cloud 
Relational 

Database 

X X 
Vertical 

Horizontal 
Cloud Multi-tenancy No Yes 

Cloud SQL X 
Synchronous 

Asynchronous 
Vertical Cloud Multi-tenancy No Yes 

Cloudant Eventual Synchronous Horizontal 

Cloud 

On-premise 

Hybrid 

Single-tenancy 
Multi-tenancy 

Rackspace 

Microsoft Azure 

SoftLayer 

Depending on the 
provider 

DynamoDB Eventual Asynchronous 
Vertical 
Horizontal 

Cloud 
Single-tenancy 
Multi-tenancy 

No Yes 

MongoLab Eventual Asynchronous Horizontal Cloud 
Single-tenancy 

Multi-tenancy 

Amazon Web Services 

Google Cloud Platform 
Windows Azure 

Rackspace 

Joyent 

Depending on the 

provider 
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Name Consistency Replication Scalability 
Deployment 

Model 
Clusters Tenancy 

Interoperability with 

other cloud platforms 

Geographical 

region choice 

Morpheus X Asynchronous Horizontal 

Cloud 

On-premise 

Hybrid 

Single-tenancy 
Multi-tenancy 

Yes (through Morpheus 
Virtual Appliance) 

No 

Postgres Plus 
Cloud Database 

Eventual Asynchronous 
Vertical 
Horizontal 

Cloud 
On-premise 

Single-tenancy 
Multi-tenancy 

Amazon Web Services 
HP Cloud 

Yes 

Rackspace Cloud 

Database 
Eventual Asynchronous Vertical 

Cloud 

On-premise 

Single-tenancy 

Multi-tenancy 
No X 

RDS Strong 
Synchronous 
Asynchronous 

Vertical 
Horizontal 

Cloud 
Single-tenancy 
Multi-tenancy 

No Yes 

SimpleDB 
Strong 

Eventual 
Asynchronous 

Vertical 

Horizontal 
Cloud 

Single-tenancy 

Multi-tenancy 
No Yes 

Database.com X X X Cloud Multi-tenancy No X 

Objectrocket Eventual Asynchronous Horizontal 
Cloud 

On-premise 

Single-tenancy 

Multi-tenancy 
No Yes 

N/A: NOT APPLICABLE                 X: NOT AVAILABLE 

TABLE VI.  COMPARISON BETWEEN THE REVIEWED DATABASES (PART 3) 

Name Client libraries License billing 
SLA 

commitment 

Initial release 

date 

Big Data 

compatible 
Used by 

Cloud Bigtable HBase Client Commercial Per hour Yes 2015 Yes Google 

Azure SQL Database 

PHP 

ODBC/JDBC 
.NET 

SQL Server 

Tools 
WCF Data 

Services 

TDS 

Commercial Per hour Yes 2009 Yes 
Samsung 

easyJet 

Cloud Datastore 

Java 

JavaScript 

PHP 

Python 

.NET 

Objective-C 

Commercial Per hour Yes 2013 Yes 
Ubisoft 

GenieConnect 

HP Cloud Relational 
Database 

RESTful API Commercial Per hour No 
2012 (beta 
version) 

No X 

Cloud SQL 

Java 

JavaScript 
PHP 

Python 

.NET 
Objective-C 

Commercial 
Package 

Per hour 
Yes 2013 No 

BeDataDriven 

CodeFutures 

Cloudant 
Java 

Node.js 
Commercial Per month Yes 2008 Yes 

Adobe 

DHL 

DynamoDB 

Java 
PHP 

.NET 

Ruby 

Commercial Per month Yes 2012 Yes 

Elsevier 

Amazon Cloud 

Drive 

MongoLab 

Java 

PHP 

Python 
Ruby 

Note.js 

Commercial Per month Yes 2011 Yes 
Toyota 

Lyft 

Morpheus Not Available Commercial On estimate No 2014 Yes 
Spireon 

Rowmark 

Postgres Plus Cloud 

Database 

Java 

.Net 
Commercial 

Per hour 

Per month 

One Year 
subscription 

Yes 2012 Yes 
Bouygues Telecom 

Los Angeles Times 

Rackspace Cloud 

Database 

Java 

PHP 

.Net 

RESTful API 

Commercial Per hour Yes 2012 No InferMed 

RDS 

Java 

PHP 
.Net 

Commercial Per month Yes 2009 Yes 
Airbnb 

Unilever 
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Name Client libraries License billing 
SLA 

commitment 

Initial release 

date 

Big Data 

compatible 
Used by 

SimpleDB 

Java 

PHP 

Python 
Ruby 

.NET 

Commercial Per hour Yes 2007 Yes 
MyMiniLife.com 

Issuu 

Database.com 
RESTful API 

SOAP API 
Commercial On estimate Yes 2010 X Cirrus Computing 

Objectrocket 

Java 

PHP 

Python 
Node.js 

cURL 

Commercial On estimate Yes 2012 Yes 
SponsorHub 

SumAll 

N/A: NOT APPLICABLE                 X: NOT AVAILABLE 

V. DISCUSSION 

As presented in the previous section, there are various 
databases offered as a service by many Cloud providers. This 
model of use, namely DBaaS, offers many advantages both to 
users and providers. Users find themselves exempt from up-
front investments and relieved from the burden of installing, 
running and administrating their databases. As for providers, 
the costs of providing their service are optimized, especially in 
the case of multi-tenancy. 

However, there are several points to take into consideration 
when selecting a DBaaS, few of which we discuss hereafter. 

A. Provider’s reputation 

Within the last decade, Cloud Computing has positioned 
itself as a primordial technology with an ever growing market, 
although big IT names still have a dominating position. In the 
first quarter of 2015 [81], Amazon held 29% of the market 
share, followed by Microsoft (10%), IBM (7%), Google (5%), 
Salesforce (4%), and Rackspace (3%). Every one of these 
providers has a DBaaS solution that benefit from their 
established Cloud platforms, whether relational (Amazon’s 
RDS and SimpleDB, Microsoft’s Azure SQL Database, 
Google’s Cloud SQL, and Rackspace’s Cloud SQL) or NoSQL 
(Amazon’s DynamoDB and SimpleDB, IBM’s Cloudant, and 
Google’s Cloud Datastore). 

In addition to these providers, other ones have positioned 
themselves quite successfully in the DBaaS market, such as 
Mongo inc. (MongoLab), Morpheus, and EnterpriseDB 
(Postgres Plus Cloud Database). 

Users may be more confident confiding their data to well-
established Cloud ―pioneers‖, or choose to rely on other users’ 
feedback, which every provider has on their website in the 
form of use cases. 

B. Deployment 

Users who are looking for a DBaaS should consider the 
deployment model to know whether their data will be stored 
on-premise or off-premise. For example, some users would 
choose to keep their data on-premise, for security concerns. 
Many providers don’t offer the choice, as their databases are 
hosted in the Cloud only. This is the case for Amazon, Google, 
Microsoft, MongoDB, and Salesforce. Other providers give the 
possibility to choose between using their database as a hosted 
service in their Cloud or on-premise. This is the case of 
EnterpriseDB, HP, IBM, Morpheus, and Rackspace. 

Another point regarding deployment is the interoperability 
of the DBaaS with other Cloud providers’ solutions. In many 
cases, users’ applications are already deployed, whether 
internally or in the Cloud. Thus, it would be more convenient 
when a DBaaS provider enables users to select the cloud 
platform they want to use, even if it is provided by another 
Cloud provider. This is not the case for providers like Amazon, 
Google, Microsoft, HP, Rackspace, and Salesforce, who 
compel customers to use their specific Cloud platforms, as 
their databases can’t be used elsewhere. 

Tenancy mode is also a point to consider when selecting a 
DBaaS. Customers desiring to optimize their database 
performance may want to opt for single-tenancy, where they 
get dedicated clusters and don’t share resources with other 
customers. Not all DBaaS have this option. Database.com, for 
example, was specifically designed to be multitenant. Providers 
like Microsoft, Google, and HP don’t offer this possibility 
either. 

C. Database model 

Providers who support many database systems give users 
the possibility to select a database to use from available 
databases. This way, customers can choose the database to 
which they are used or that they are most comfortable with. 
This can be particularly interesting for users who already have 
their applications deployed and running, because when a 
DBaaS offers access to a traditional database (MySQL or 
PostgreSQL for example), the codes that were designed to 
work with these databases can work seamlessly in the cloud, 
exempting users from rewriting their code. 

Another point to study before choosing a DBaaS is the data 
model. Customers must have a clear idea of how they project 
to use their database, and especially the type of data they deal 
with. Although developers may benefit from the flexibility of 
NoSQL databases, due to their being schema free, they will 
have to explicitly manage data coherence in the application 
layer (relationships between data, for example, as there are no 
defined foreign keys in the database). Thus, if data is variably 
structured and can’t be represented using the relational schema, 
then NoSQL databases will be more adapted. If not, then some 
relational DBaaS can offer good performance for Big Data 
applications, like Amazon RDS or Microsoft Azure SQL 
database. 

D. Law and regulations 

Data collection and storage are increasingly subject to 
regulations, whether directly, such as the ―Data Protection 
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Directive‖ (DPD) [82] in the European Union, or indirectly, 
such as the ―USA Patriot Act‖ in the United States of America. 
Such legislation affects the storage of data. The DPD, for 
example, requires personal data to be stored inside the EU, or 
only in countries outside the EU that ensure a certain level of 
data protection. 

DBaaS physically store data in various datacenters in 
different locations. Moreover, to ensure availability, data is 
replicated across geographically distributed datacenters. Users 
in some cases may need to choose the geographical location 
where their data will be stored. This possibility is offered by 
the majority of the reviewed providers (except Morpheus), who 
have datacenters mainly in the USA and the EU. Other 
providers, like Salesforce and Rackspace, don’t give details 
about the location of their datacenters. Another possibility is to 
opt for keeping data on-premise, which is possible for DBaaS 
like Cloudant, Postgres Plus Cloud Database, Rackspace Cloud 
Database, and Objectrocket. 

E. Payment mode 

One of the main characteristics of Cloud Computing is the 
concept of pay-as-you-go, where users strictly pay for the 
resources they consume. DBaaS users pay for the volume of 
data they store, according to several purchasing options. The 
majority of providers adopt a billing by the hour plan, where 
users pay for the volume of data stored during one hour. 
Examples include Google and Microsoft. Amazon, IBM, and 
MongoDB enlarge the time period to a month, while other 
providers like Morpheus, Salesforce, and Rackspace tailor their 
payment to customers, on a case-by-case basis. 

F. Data volume 

Choosing a DBaaS for Big Data applications implies to 
carefully consider the maximum supported size in order to 
ensure that it can scale to handle terabytes of data. While most 
reviewed DBaaS verify this condition, HP Cloud Relational 
Database, Cloud SQL, and Rackspace Cloud Database only 
offer a maximum instance size of 500 GB. Salesforce doesn’t 
disclose information about Database.com maximum storage 
size. 

G. Data consistency 

Consistency, availability, and partition tolerance being 
complementary (as stated by the CAP theorem), most reviewed 
DBaaS chose to relax consistency in order to achieve high-
availability in distributed environments. This is the case for 
Cloudant, DynamoDB, MongoLab, Postgres Plus Cloud 
Database, Rackspace Cloud Database, and Objectrocket. For 
applications that can’t relax consistency, strong consistency is 
offered by DBaaS like Azure SQL Database, SimpleDB, and 
Cloud Datastore. The two latter ones implement both strong 
and eventual consistency, allowing users to choose the most 
adapted mode. 

H. Scalability 

Scalability allows adjusting computing resources and 
storage space to meet the increasing needs of applications. It is 
one of the inherent characteristics of cloud computing and one 
of the necessary requirements for Big Data applications. 

Most reviewed databases scale horizontally to meet the 
levels required by Big Data applications. Databases like Cloud 
Datastore, DynamoDB, Postgres Plus Cloud Database, 
Amazon RDS and SimpleDB implement both vertical and 
horizontal scalability. Cloud SQL and Rackspace Cloud 
Database scale only vertically, which, added to their size 
limitations, makes them further unsuitable for Big Data 
applications. As for Salesforce’s Database.com, there is no 
information on how it handles scalability. 

I. SLA 

A Service-Level Agreement (SLA) is a contractual 
document that governs the client’s use of the provider’s 
services. 

SLAs help providers manage the services contracted and 
maintain the overall level of quality agreed on with their 
customers. The providers of the reviewed databases use SLAs, 
except for HP and Morpheus, who don’t disclose their SLA 
policy. They all guarantee high availability, with an uptime of 
99.9% at least. 

J. Security and Privacy 

One of the main concerns that keep organizations and 
individuals from moving their data to the cloud is the security 
and privacy aspects. Recent leaks and hacks (iCloud and Sony, 
to name but a few) only reinforced their reluctance to entrust 
data to the Cloud [83, 84]. 

The concern of security and privacy in cloud environments 
is enhanced by the large volume of datasets managed by Big 
Data. And just like DBaaS removes the burden of database 
installation and management, it also ensures the security of 
data. DBaaS providers implement different levels of security, 
starting from identity and access management, to data 
encryption, all through assuring the physical security and 
monitoring of datacenters. In addition to securing data while 
being stored in datacenters, it is crucial to ensure its transfer to 
and from client applications, which can be implemented using 
cryptographic protocols like TLS or SSL. 

Providers like Amazon, Google, Microsoft, IBM, and 
Rackspace have achieved the ISO/IEC 27001 certification for 
their cloud platforms. 

VI. CONCLUSION 

Big Data has emerged as one of the most important 
technological trends for the current decade. It challenges the 
traditional approach to computing, especially regarding data 
storage. Traditional clustered relational database environments 
prove to be complex to scale and distribute to adapt to Big 
Data applications and new solutions are continually being 
developed. 

One of the most adapted answers to Big Data storage 
requirements is Cloud Computing, and more specifically 
Database as a Service, which allows storing and managing 
tremendous volume of variable data seamlessly, without need 
to make large investments in infrastructure, platform, software, 
and human resources. In this context, our article presents a 
benchmark of the main database solutions that are offered by 
providers as DataBase as a Service (DBaaS). We studied the 
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features of each solution and its adaptability to Big Data 
applications. 

Cloud Computing and Big Data are entwined, with Big 
Data relying on Cloud Computing’s computational and storage 
resources, and Cloud Computing pushing the limits of these 
resources. New extensions of Cloud Computing are emerging 
to further enhance Big Data, especially Fog Computing and 
Bare-Metal Cloud. Fog Computing uses edge devices and end 
devices, such as routers, switches, and access points to host 
services, which minimizes latency. This proximity to end-
users, along with its wide geographical distribution and support 
for mobility makes Fog Computing ideal for Big Data and the 
Internet of Things applications [85]. As for Bare-Metal Cloud, 
it aims to optimize performance for applications with high 
workloads by eliminating the virtualization layer and 
delivering ―bare‖ servers without hypervisors installed. This 
way, there won’t be too many virtual machines competing for 
physical resources and impeding the overall performance. 
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