
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

157 | P a g e

www.ijacsa.thesai.org

Database-as-a-Service for Big Data: An Overview

Manar Abourezq
1
, Abdellah Idrissi

2

Computer Science Laboratory (LRI)

Computer Science Department, Faculty of Sciences

Mohammed V University

Rabat, Morocco

Abstract—The last two decades were marked by an

exponential growth in the volume of data originating from

various data sources, from mobile phones to social media

contents, all through the multitude devices of the Internet of

Things. This flow of data can’t be managed using a classical

approach and has led to the emergence of a new buzz word: Big

Data. Among the research challenges related to Big Data there is

the issue of data storage. Traditional relational database systems

proved to be unable to efficiently manage Big Data datasets. In

this context, Cloud Computing plays a relevant role, as it offers

interesting models to deal with Big Data storage, especially the

model known as Database as a Service (DBaaS). We propose, in

this article, a review of database solutions that are offered as

DBaaS and discuss their adaptability to Big Data applications.

Keywords—Cloud Computing; Big Data; Database as a Service

I. INTRODUCTION

The volume of data stored in the world has been doubling
every two years, and will reach a dazzling 40 billion terabytes
(TB) by the year 2020 [1]. By means of comparison, the total
size of data that existed in the digital universe in 2000 is
800 million TB, which means that the volume of data will be
multiplied by 50 by 2020. This data is generated by various
sources: Social Media, E-Commerce, Internet of Things,
Sensors, etc. Organizations are also gathering more and more
information, for various purposes: analysis to ameliorate their
market position and offer better services to their customers,
fraud detection, scientific projects like in genomics, legal
reasons (for example, Moroccan firms are required by law to
store ten years of financial data), etc.

This flow of data, which has been referred to as a flood or a
tsunami, can’t be managed using a classical approach and has
led to the emergence of a new buzz word: Big Data. Almost all
major IT leaders invested in various Big Data projects, from
Google’s BigQuery and Datastore, to Amazon’s Elastic
MapReduce, to Facebook’s Cassandra, Yahoo!’s PNUTS, etc.

Cloud Computing has a leverage effect on Big Data,
providing the computing and storage resources necessary to
Big Data applications. The inherent characteristics of Cloud
Computing, such as elasticity, scalability, automation, fault-
tolerance, and ubiquity offer an ideal environment for the
development of Big Data applications.

Cloud Computing is an established computing paradigm
that gained in importance in the last decade. It refers to the
utilisation of storage and computation resources as a utility.

There is a great tendency to opt for using IT as a service. It
is estimated that more than 80% of Internet users use Cloud
Computing in one form or another, from email services to
different business applications as a service, all through data
storage, development platforms, etc [2]. This usage percentage
is even greater when it comes to companies: In a survey
conducted by RightScale in January 2015, 93% of respondent
companies confirmed using Cloud Computing [3], which
shows that the latter is steadily advancing to become an
integral part of companies and individuals use of IT.

Although the emergence of Cloud Computing is relatively
new, the idea of delivering computing as a utility dates back to
as far as the 1960s, when pioneers like John McCarthy,
Leonard Kleinrock, and Douglas Parkhill predicted that, just
like water, electricity, or the telephone, computing resources
will someday be used as a public utility [4, 5, 6].

There is no consensual definition of Cloud Computing, yet.
Many works have proposed their own as discussed in [7, 8].
One of the most cited definition is the NIST’s, where Cloud
Computing is defined as being a ―model for enabling
ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources that can be rapidly
provisioned and released with minimal management effort or
service provider interaction‖ [9].

Through the plethora of definitions, it emerges that cloud
computing has several major characteristics, especially the
following:

 Virtualization: physical resources are virtualized in
order to optimize their utilization;

 Pooling: multiple users share access to the same pool of
virtualized resources. This results in optimizing costs of
infrastructure, installation, hosting, and maintenance for
providers, who benefit from the economy of scale, and
can offer more competitive prices;

 Ubiquity: cloud services are always accessible, anytime,
anywhere, and from various computing devices;

 Remote access: cloud services are accessible via a
network. It can be the Internet for cloud services that
are destined to the general public, or LAN for private
ones;

 Automation: users can get the resources they need
without having to interact with the provider or require
their intervention;

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

158 | P a g e

www.ijacsa.thesai.org

 Elasticity: resources are automatically and rapidly
increased or decreased to accommodate the workload:
when it increases, more resources are added to support
it, and when it decreases, superfluous resources are
removed. Thus, available resources are directly
proportional to workload requirements, ensuring that
client applications will have the exact amount of
resources needed at any given time;

 Pay-as-you-go: users don’t need to make any upfront
investment in infrastructure, software licenses, etc.
They pay only for the resources they consumed, without
surplus. Although these resources are multi-tenant,
providers strictly measure each client’s resource
consumption and bill them accordingly. Many billing
plans are proposed, some based on the volume of
resources used, others on the duration of usage (usually
in hours), and others on ―commitment‖ (paying per
month, for example).

Cloud Computing’s major deployment models are public,
private, community, and hybrid (Fig. 1).

Fig. 1. Cloud deployment models

A Public Cloud is a deployment model in which cloud
services are provided via a public network, usually the Internet.
Examples include Amazon’s Elastic Compute Cloud (EC2),
Google’s App Engine, and Microsoft’s Azure.

A Private Cloud is provided for the sole use of an
organization that can either choose to be responsible for
managing it or delegate its management to a third-party. The
organization can also choose to host it on-premise or off-
premise. A variation of this deployment model is the On-Site
Private Cloud, where the cloud is hosted and managed by the
organization to which it is destined. The main advantage of
both models is that there are no restrictions in bandwidth or

resources, since all resources are exclusively intended for the
sole use of the organization. It also allows organizations to
manage themselves the security aspect of the cloud.

A Community Cloud is a private Cloud that is shared by
organizations belonging to the same community, for examples,
many departments belonging to the same University, or many
companies that want to use a specific application that the
provider is going to offer solely to them.

A Hybrid Cloud is composed of two or more of the Cloud
models previously presented, interconnected by standard or
proprietary technologies.

As for service models, the major ones are Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software as
a Service (SaaS) (Fig. 2).

Fig. 2. Components of the main Cloud services models

IaaS provides basic virtualized resources, namely
networking (network connections, bandwidth, IP addresses),
virtual servers and virtual storage space. This infrastructure
will be completed by clients with the various blocks necessary
and used to run their applications. The provider manages the
underlying infrastructure, while it is up to the user to handle
anything other than the hardware part of the architecture.
Although IaaS management is majorly incumbent to users, it is
the model that satisfies best interoperability and portability
needs, since users can compose the various blocks of the
infrastructure used [10]. It is also used to build the other cloud
service models. Prominent IaaS include Amazon Elastic
Compute Cloud (EC2), Google App Engine, and Microsoft
Azure.

PaaS is built on top of IaaS by adding a software layer to
offer a development environment that can be used by clients to
build and deploy their applications. It provides various
development tools, such as APIs, for users to develop their
applications. Clients can control the deployment and hosting
environment of their applications without having to manage the
underlying infrastructure. Prominent PaaS include Salesforce’s
Force.com, Google App Engine, and Microsoft Azure.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

159 | P a g e

www.ijacsa.thesai.org

SaaS is arguably the most known and used cloud service
model. It offers remote access to applications running in the
Cloud, through various devices. Users seamlessly access
―ready-to-go‖ applications without needing to invest or manage
the underlying infrastructure, to buy software licenses, to
handle updates and patches, etc. The provider is responsible for
the smooth running of the applications and the maintenance of
the underlying infrastructure. Prominent SaaS include Google
Drive and Salesforce CRM.

Other service models are increasingly used, among which
there is Network as a Service (NaaS), Logging as a Service
(LaaS) for log files management, Security as a Service
(SECaaS), Recovery as a Service (RaaS), etc. And one of the
most promising service models is DataBase as a Service
(DBaaS): a report by CISCO showed that if users had the
choice to move only one application to the cloud, 25% would
choose data storage [11].

Many factors contributed to the rise of Cloud Computing.
The widespread use of mobile devices, for example, with their
limited storage and processing capacities, led to delegating
storage and processing to third parties. The various advantages
that come from using the Cloud are also encouraging its rise,
especially regarding elasticity, scalability, ubiquity, and cost
efficiency, etc.

With Cloud Computing unlocking the barrier of storage and
processing resources, developers could focus on their
applications without fearing limitation. This led to an
expansion of data-intensive applications where datasets are
measured in terms of terabytes or petabytes, and the
enhancement of Big Data.

We propose, in this work, a review of Cloud Computing
solutions for Big Data storage, more precisely the model of
DataBase as a Service (DBaaS).

Our paper is organized as follows. We present the
definition and characteristics of Big Data in the next section. In
section 3, we present some of the storage solutions for Big
Data. Section 4 presents a review of several databases as a
service, ensued by a discussion of the reviewed features in
section 5.

II. BIG DATA: DEFINITION AND CHARACTERISTICS

Throughout the last decade, the increasing use of new
technological trends, such as Social Media, E-Commerce, E-
Learning, video streaming, etc., resulted in a flood of data. For
example, it is estimated that YouTube stores 1 000 TB of new
data per day [12], Facebook 600 TB [13], eBay 100 TB [14],
and Twitter 100 TB [15], to name but a few. Data thus
generated can’t be gathered, stored and analyzed easily using
traditional storage and analytics tools. This data is referred to
as Big Data.

One of the earliest works mentioning Big Data was in the
1990s, where Big Data is referred to as multisource, distributed
data that is ―too large to be processed by standard algorithms
and software‖ [16]. This definition is also adopted by authors
in [17], who define Big Data as ―information that can’t be
processed or analyzed using traditional processes or tools‖
and in [18] where Big Data is a set of ―datasets which could

not be captured, managed, and processed by general
computers within an acceptable scope‖.

Another definition of Big Data is proposed in [19] as a
―phenomenon‖ that aims ―maximizing computation power and
algorithmic accuracy to gather, analyze, link, and compare
large data sets‖ to ―identify patterns in order to make
economic, social, technical, and legal claims‖, while authors in
[20] talk about ―a set of techniques and technologies that
require new forms of integration to uncover large hidden
values from large datasets that are diverse, complex, and of a
massive scale‖, a definition that doesn’t confine Big Data to
the generated data only, but includes both the technology and
the architecture related to data.

Cuzzocrea et al. [21] define Big Data as ―enormous
amounts of unstructured data produced by high-performance
applications‖ belonging to various domains, from social media,
to e-government, to medical information systems, etc. This
data is highly-scalable and requires the applications that handle
it to be highly-scalable as well.

Notorious consulting groups also attempted to define Big
Data. McKinsey [22] talks about large datasets that can’t be
―captured, communicated, aggregated, stored, and analyzed‖
using traditional tools, while Experton Group [23] defines it as
a ―collection of new information which must be made available
to high numbers of users in near real time, based on enormous
data inventories from multiple sources, with the goal of
speeding up critical competitive decision-making processes‖.
Hortonworks defines Big Data as an ensemble of transaction
data, interaction data, and observation data [24]. Transaction
data is usually structured and stored in SQL databases, and
results from applications such as ERP, CRM, transactional web
applications, etc. Interaction data results from the interaction
between users and applications, or users/applications with each
other. This includes logs, social feeds, click streams, etc. As for
observational data, it results from the Internet of Things, such
as sensors, RFID chips, ATM machines, etc. Gartner [25]
defines Big Data as being ―high-volume, high-velocity and
high-variety information assets that demand cost-effective,
innovative forms of information processing for enhanced
insight and decision making.‖. This led to associating Big Data
with the 3 Vs: Velocity, Variety, and Volume (Table I).

1) Volume: data sets easily reach hundreds of gigabytes,

or terabytes. According to IBM, 2.5 million TB of data is

created every day [26]. However, volume isn’t always

quantified by the size of data, but also by the number of

transactions, the number of records, the number of files, etc.;

2) Velocity: data is generated and delivered at a very rapid

pace. Sensors alone, for example, generate thousand TB of

data every hour [27], and Wal-Mart is reported to collect

2 500 TB of customer transactions data per hour [28]. This

flow of data can be in real time, near real time, batch, or

streaming;

3) Variety: data comes from various sources, such as

social media, blogs, business applications, sensors, mobile

devices, etc. This data has different forms. It doesn’t always

have a specific format or respect a certain schema.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

160 | P a g e

www.ijacsa.thesai.org

TABLE I. CLASSIFICATION OF THE 3 VS OF BIG DATA

Big Data’s V Classification Definition

Volume

Data is characterized by a large volume, easily reaching Terabytes, or even Petabytes. This data deluge is due to, inter
alia, the multiplication of data sources (where data is both human and machine induced), the widespread use of

smartphones and applications in an increasingly connected world

Velocity

Real time
Data that is collected and then instantaneously made available for processing or analysis, such as data from GPS or
ATM machines

Near real time
Data that is collected and then is made available for processing or analysis with some delay. An example is data from

Geographic information systems

Batch
Data that is collected at a rather slow rate over a given period time of time, before being processed. Billing systems are
an example of batch data

Streaming Data that has an interrupted flow, such as data from sensors

Variety

Structured
Data that respects a predefined data model, which makes it easy to collect and store. An example is data stored in

relational databases

Semi structured
Data that doesn’t conform with a predefined formal data structure, but that has a certain level of data description, using

tags (XML, HTML) or implementing a hierarchy (JSON) [29]

Unstructured Data that cannot be represented with a schema, such as text messages, tweets, blog entries, videos, etc.

Hybrid Data that combines two or more of the other data types

Other works emphasize on a fourth V, Veracity, to avoid
the risk of obtaining a huge amount of poor quality data, or
―data garbage‖ [30, 31, 32]. Authors in [32] define Big Data as
―the capture, management, and analysis of data that goes
beyond typical structured data‖ to ―any data not contained in
records with distinct searchable fields‖ and characterize it by
the four Vs, namely Volume, Variety, Velocity, and Veracity.
Thus, it is important to ensure good data quality by verifying
its comprehensibility, completeness, and reliability. This
represents a challenge because it is not always possible to
validate data first-hand, especially as it is highly varied and
comes from different sources, and in many cases entered by
users.

Gantz et al. define Big Data in [33] as ―a new generation of
technologies and architectures, designed to economically
extract value from very large volumes of a wide variety of data,
by enabling high-velocity capture, discovery, and/or analysis‖.
This definition highlights a fifth V related to Big Data, namely
Value, as it is not enough to store a large amount of data, but it
is important to analyze it in order to extract value from it.

The NIST introduces another V, Variability, which
describes any data change [34]. Thus, Big Data is defined as
―extensive datasets - primarily in the characteristics of volume,
variety, velocity, and/or variability - that require a scalable
architecture for efficient storage, manipulation, and analysis‖.

Authors in [35] emphasize on the fact that Big Data has
two important sides, namely the storage of large volume of
data as well as the analysis of said data, while authors in [36]
state that Big Data is a ―cultural, technological, and scholarly
phenomenon‖ that originates from the belief that the bigger the
volume of data is, the more insight it would provide. It relies
on technology and analysis to gather, store, analyze, and
identify patterns in large datasets.

Deriving from these various definitions, we propose to
define Big Data as large-scale datasets that originate from a
plurality of sources at a rapid pace, aren’t necessarily
structured in a specific schema, can’t be stored using typical
database management systems, and can’t be analyzed using
conventional analytics tools.

Fig. 3. Some of the V characterizing Big Data

Many factors influence the growth of the Big Data market.
Horton identified seven key drivers falling into three
categories, namely business drivers, technical drivers, and
financial drivers [24]. Among these key drivers, there is the
fact that Big Data enables innovative new business models to
find adapted solutions to their needs, without requiring big
investments in hardware or software, as it runs on commodity
computers and offers a multitude of open source software. In
fact, Big Data’s influence is so tangible in business that some
go as far as calling it a ―management revolution‖ that
challenges established conceptions of expertise, experience and
management practice [37]. Many works have been trying to
understand the source and nature of Big Data, and come up
with new ways to address the challenges encountered in its
different phases, from data collection to archiving, all through
storage and analytics. Each one of Big Data’s lifecycle’s
phases called for new solutions to be developed, as shown in
Fig. 4.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

161 | P a g e

www.ijacsa.thesai.org

Fig. 4. Big Data’s lifecycle

One of the challenges that rose with the growth of Big Data
is the storage of the huge volume of generated data. We present
in the next section the main storage systems used.

III. BIG DATA STORAGE

One of the challenges that face organizations dealing with
Big Data is how and where to store the tremendous amount of
data.

The most widespread data management technology is
relational database management systems (RDBMS). However,
with the rise of Big Data, these RDBMS became unfit for
large, distributed data management, especially regarding data
Velocity and Variety, since they require data to respect a
relational schema before being imported in the database, while
Big Data is about managing data of various formats and flow
rate (streaming, real-time, etc.). Regarding data Volume,
RDBMS are required to be distributed over multiple clusters,
sometimes geographically distant. While most proprietary
RDBMS scale to large amounts of data, open source ones, such
as MySQL and PostgreSQL, are still far behind [38].

First approaches tried to adapt traditional RDBMS by using
replication to scale reads, adding a caching layer, using vertical
scaling (scale up) or horizontal scaling (scale out) to cope with
said volume. Vertical scaling adds more resources to the
machine that stores data. This needs powerful machines and
can be expensive. Moreover, there is a physical storage limit
that can’t be exceeded (the current maximum size of a hard
disk drive is 8 TB, with the project to reach 10 TB by 2017
[39]). Horizontal scaling, on the other hand, adds more
machines to cope with the increasing data volume. Now that
the cost of hardware is significantly less than it used to be, it is
more interesting to add new servers to the cluster, whenever
resources are needed. However, users would ultimately need to
shard data across many clusters, which they would have to
manage in the application layer.

A real-world example is the expansion of Twitter.
Launched in 2006, Twitter knew an exponential growth leading
to an average of 500 million tweets per day [40]. In order to
manage the expansion of data volume, Twitter had to rethink
its architecture, which was relying on MySQL for data storage,
when sharding couldn’t keep up with the increasing data
traffic. This called for developing new adapted solutions used
internally by Twitter, such as T-Bird and Snowflake [41]. In
general, alternative database solutions are increasingly used in
order to provide advantages in terms of performance,
scalability, and suitability for Big Data environments. Among

these solutions, there are NoSQL databases, NewSQL
databases, and file storage systems like HDFS [50] and GFS
[49].

A. NoSQL database systems

The term NoSQL, or Not Only SQL, was first coined in
1998 as the name of a relational database, based on the Unix
Shell, and conceived to give better flexibility and optimize the
use of resources compared with existing relational databases
[42]. It was revived in 2009 with the rise of Cloud Computing
and the presentation of Google’s Bigtable [43], and has since
been generalized to describe databases that model, store, and
retrieve data in a different way than traditional relational
databases. Many NoSQL databases are well-known today, such
as MongoDB, HBase, Facebook’s Cassandra, Linkedin’s
Voldemort, etc. One of the main features of NoSQL databases
is that they are schema free, which means that the structure of
data can be easily and quickly modified without needing to
rewrite tables. This aims to overcome the inflexibility of
traditional relational databases schemas. And while many
NoSQL databases don’t implement certain relational
functionalities, such as JOINs, ordering, and aggregation, many
offer support for SQL-like querying.

While relational databases permit handling data storage and
management simultaneously, especially with implemented
SQL-querying interfaces, NoSQL databases handle them
separately. Data storage is done according to the adopted data
model (key-value, document, etc.) with a primary focus on
scalability. Data access is done using APIs. This renders
NoSQL databases flexible for data modelling and easy for
application development and deployment updates [44].

Relational databases guarantee ACID (Atomic, Consistent,
Isolated, and Durable) transaction properties. However, CAP
theorem (Fig. 5) states that at most two out of the three
properties (Consistency, Availability, and Partition tolerance)
can be achieved simultaneously in distributed environments
[45]. While RDBMS do well on Consistency and Availability,
they don’t scale well. The main idea behind NoSQL databases
is to loosen up on one of these two properties, namely
Consistency and Availability, in order to enhance scalability.
They provide what can be called BASE (Basically Available,
Soft state, and Eventually consistent) [46] properties, in
contrast with ACID. NoSQL database systems differ in which
of the two properties they loosen, and how much they do
loosen it. Many however provide eventual consistency to
ensure high scalability and availability.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

162 | P a g e

www.ijacsa.thesai.org

Fig. 5. The CAP theorem

NoSQL databases have many data models: Key-Value,
Document, Column, and Graph, as shown in Table II.

Key-value databases store data as a collection of
(key, value) pairs where a unique identifier, key, is used to
access and retrieve data. They are schema-free, as values are
independent from each other, with no restriction on their
nature. As data is completely opaque to the system, the only
way to access and retrieve it is by using the unique key. They
support basic insert, read, and delete operations. Most are
persistent while others like Memcached cache data in memory.
Notorious examples include Redis, Memcached, and
DynamoDB.

Document databases store data as documents that are based
on a specific encoding (JSON, BSON, XML, etc.) and
identified by a unique ―ID‖. Document databases being
schema-free, documents can store attributes of any kind. Most
document databases generally support more complex data
(such as nested documents) and offer more indexing and

querying functionalities, but relatively less performance, than
Key-Value ones.

Column databases are modelled after Google’s Bigtable
[43]. They store data using tables (columns and rows) but
without any association between them. Columns consist of a
unique identifier, a value, and a timestamp used for versioning.
They are grouped in column families that have to be
predefined, which affects flexibility.

Graph databases store data nodes interconnected with edges
where each node and edge consists of key-value pairs. This
allows graph databases to store not only data, but also
relationships between data nodes. They are the tool of choice
when dealing with heavily linked data. Some examples include
Neo4J database, which supports ACID properties, and
OrientDB.

Although they differ in their data model, all NoSQL
databases allow a relatively simple storage of unstructured,
distributed data and achieve high scalability. They are best
adapted for applications that don’t use a fixed schema, or don’t
require ACID operations, and for intensive read and update
OLTP workloads [47].

B. NewSQL database systems

NewSQL originated from the affirmation that the relational
model can be implemented to scale by retaining its key aspects
and removing some of the general purpose ones [48]. NewSQL
databases aim to answer Big Data storage needs, especially
regarding volume and scalability, while providing the
traditional functionalities of relational databases, especially
regarding ACID transactions, querying operations such as
JOINs and aggregations, etc. They are an attempt to realize the
three properties featured in the CAP theorem, proving that
Consistency and Availability can be achieved simultaneously
in distributed environments.

NewSQL databases provide an SQL query interface, and
clients (users and applications) interact with them the same
way they interact with relational databases. They manage
read/write conflicts using non-lock concurrency control [48].

TABLE II. NOSQL DATA MODELS

Data model Definition Use case Advantages Limitations Examples

Key-Value

Stores data as a

collection of

(key,value) pairs

Applications with only

one kind of object where
search is performed based

on one attribute

Simple to use

Relationships between

data must be explicitly
managed in the

application layer

Memcached

Redis

DynamoDB

Document
Stores data as encoded

documents

Applications with many
kinds of objects where

search is done on multiple

attributes

Management of

complex data structures

Relationships between
data must be explicitly

managed in the

application layer

CouchDB

MongoDB

Column

Stores data as columns

consisting of a key, a
value, and a timestamp

Applications with many
kinds of objects where

search is done on multiple

attributes and that need
data to be partitioned both

horizontally and vertically

Allows high throughput

and low latency
Less flexibility

Bigtable

HBase
Cassandra

Graph
Stores linked data as

graphs

Applications that handles

heavily connected data

(social networks, location
based services, etc.)

Seamless manipulation

of graphs

Relatively high
complexity and less

scalability

Ne04j
GraphDB

OrientDB

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

163 | P a g e

www.ijacsa.thesai.org

Many NewSQL solutions extend existing relational
databases to support high scalability, like Infobright, TokuDB,
and MySQL cluster NDB, which are all built on MySQL.
Other solutions retain existing relational databases and add a
middleware for achieving high scalability through shading or
clustering, such as ScaleArc, ScaleBase, dbShards, etc. There
are also solutions that were developed from scratch to provide
relational features in distributed environments, such as NuoDB.

NewSQL databases are relatively new compared to NoSQL
ones. They are most adapted to use case scenarios that call for
relational databases with more scalability. They try to combine
the advantages of both relational and NoSQL databases, as
detailed in Table III.

TABLE III. COMPARISON OF RELATIONAL, NOSQL, AND NEWSQL

DATABASES

Feature
Relational

databases

NoSQL

databases

NewSQL

databases

Relational
schema

Yes No Yes

SQL Querying Yes No Yes

ACID

transactions
Yes No Yes

Big Data
compatibility

No Yes Yes

Availability Yes Yes Yes

Strong

Consistency
Yes No Yes

Scalability No Yes Yes

C. File Storage Systems

File storage systems are another solution to deal with large
volume of data in distributed environments. The major ones are
Google File Storage (GFS) [49] and Hadoop Data File Storage
(HDFS) [50].

GFS is a scalable distributed file system developed by
Google to meet the needs of its large distributed data-intensive
applications [49]. It is designed for environments that are prone
to failures, that manipulate huge data files by frequent
read/append operations, and that need to process data in batch
rather than in real-time. Thus, it is highly fault-tolerant and
reliable, and emphasizes on high throughput rather than low
latency.

GFS has a master-slave architecture (Fig. 6), a typical
cluster consisting of one master and many chunkservers to
which clients access directly after consulting the master. The
master divides each file into 64 MB chunks and manages the
mapping and replication of said chunks through the different
chunkservers.

Fig. 6. GFS architecture

GFS maintains multiple replicas of each file, which leads to
higher reliability and availability.

HDFS [50] is an open source implementation of GFS. It is
part of the Apache Hadoop, an open source framework for
distributed storage and distributed processing of large data sets.
The biggest clusters implementing Hadoop are composed of
45 000 machines and store up to 25 petabyte of data [51].

HDFS is one of the four modules composing Hadoop,
which are Hadoop commons, Hadoop YARN, and Hadoop
MapReduce, the open source implementation of Google’s
Map/Reduce for the parallel processing of large distributed
data.

HDFS is implemented based on the fact that moving
computation is cheaper than moving data, providing interfaces
to client applications to move where data is stored. Like GFS,
HDFS has master-slave architecture (Fig. 7) consisting of a
single master node, NameNode, and a slave for each node in
the cluster, DataNode.

Fig. 7. HDFS architecture

The NameNode is the coordinator of HDFS. It divides files
into fixed-sized blocks and maps them to DataNodes, and
client applications consult it to know where to access data. The
DataNode manages data storage in the node where it is
installed. It can also create, delete, and replicate blocks when
instructed by the NameNode.

The adoption of NoSQL, NewSQL and File Storage
systems is mainly driven by six key factors, regrouped in the
acronym SPRAIN [52]. These key drivers, which are the weak
points of traditional RDBMS, are Scalability, Performance,
Relaxed consistency, Agility, Intricacy, and Necessity. And
while these new database systems are becoming the tool of
choice to meet the demands of Big Data applications, it can be
complicated and costly to run and manage them, especially at
scale. One solution is to move them to the Cloud in order to
take full advantage of the elasticity, scalability, availability,
and performance of the latter, and meet the ever-growing
storage and processing requirements of Big Data applications.
And one of the currently most adapted Cloud Computing
models to Big Data storage requirements is DataBase as a
Service (DBaaS), as it can combine many of the
aforementioned storage systems to offer scalable, on-demand,
pay-as-you-go storage resources to organizations without any
upfront investment.

We present, in the next section, a review of several DBaaS
and discuss their suitability for Big Data storage.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

164 | P a g e

www.ijacsa.thesai.org

IV. DATABASE AS A SERVICE (DBAAS) FOR BIG DATA

An ever growing number of companies found themselves
swamped with the large amount of data generated and stored
for different purposes (user based preference suggestions,
business analysis...). Storing and retrieving data becomes a
costly and complex operation, involving investments in
infrastructure and database managers. It is only normal then
that the question of outsourcing data was one of the earliest to
surface with the emergence of Cloud Computing, which led to
the DataBase as a Service (DBaaS) model.

DBaaS can be simply defined as ―a paradigm for data
management in which a third party service provider hosts a
database and provides the associated software and hardware
support‖ [53]. Companies using this model outsource all
database management operations, from installation to backups,
to the provider, and focus on developing applications. They can
access their databases instances on-demand, using querying
interfaces or programming tools.

Fig. 8. DBaaS components

The increasing use of Cloud Computing, and especially
SaaS, called for rethinking the persistency layer. The inherent
characteristics of cloud computing, such as elasticity,
scalability, self-service, and easy management make traditional
RDBMS not fully adapted for applications that run in cloud
environments. Early solutions tried extending existing DBMS
to support high-scalability, but it only led to complex solutions
with poor performance [54]. Leader IT operators, such as
Google, Yahoo!, and Facebook, chose to implement their own
data management solutions, respectively Bigtable, PNUTS, and
Cassandra. Various other databases provided as DBaaS were
developed from scratch to integrate the advantages of the
cloud, with the exception of few providers who offer
established relational or NoSQL databases, such as MySQL,
PostgreSQL, MongoDB, and Redis, as a service.

Database as a Service (DBaaS) in one of the Cloud
Computing models that is most suitable for Big Data. In this
model, it is possible to use a database as a service and benefit
from the high-scalability and storage capacity offered by the
Cloud, without having to install, maintain, upgrade, backup or
manage the database or the underlying infrastructure.

DBaaS is a different concept from the concept of cloud
databases, which is beyond the scope of our paper. In this
concept, users can either upload their machine image, with the
database installed, to the cloud infrastructure or use a ready one
offered by the provider. In both scenarios, the various database
management operations are incumbent to users. Datawarehouse
Cloud solutions are also beyond the scope of this paper.

We propose to review some of the most prominent
databases that are DBaaS and discuss their adaptability to Big
Data uses.

A. Cloud Bigtable

Cloud Bigtable is a DBaaS based on Bigtable [43], a
highly-scalable, distributed, structured, and highly-available
column database developed by Google that has been used
internally since 2003 to store the data of numerous Google
projects (Google Finance, Google Analytics, Google Earth,
etc.). Bigtable was made publically available as Cloud Bigtable
in May 2015 [55].

Bigtable stores data in tables, which are ―sparse,
distributed, persistent sorted‖ maps. [43]. These tables are
sharded into tablets containing blocks of adjacent rows. Each
cell is referenced by three dimensions: a row key, a column
key, and a timestamp.

A row key is an arbitrary string and is the unit of
transactional consistency in Bigtable. Rows with consecutive
keys are grouped into tablets, which are the unit of distribution
and load balancing. A column key is also an arbitrary string,
and column keys are grouped into columns families, the unit of
access control. Timestamps are used to manage data
versioning. A cell can store different versions of the same data,
each referenced by a timestamp. Older data is garbage-
collected depending on the user’s specifications.

Bigtable relies on Google File System (GFS), a scalable
distributed file system presented in Section 4, for storing data
in SSTable [43] file format. An SSTable is a file of key/value
string pairs that is sorted by keys. It is used to map keys to
values. Bigtable also uses Chubby, a highly-available and
persistent distributed lock service, for synchronizing data
access [56]. A Chubby service has four replicas and one master
replica. The latter is used to serve requests. Bigtable
architecture is composed of one master server, many tablet
servers, and a library, as shown in Fig. 9.

Fig. 9. Bigtable architecture

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

165 | P a g e

www.ijacsa.thesai.org

The library is linked to client applications and is used to
retrieve the location of tablets. The master server performs
many tasks: assigning tablets to tablet servers, load balancing,
detecting new or expired tablets, detecting schema changes,
and GFS garbage collection. A tablet server is responsible for
managing a set of tablets, receiving read /writes requests from
client applications, serving client requests that are directed to
the tablets it manages, and splitting tablets when their size
exceeds 1 GB.

Each tablet is assigned to one tablet server at a time. Tablet
servers use Chubby to obtain an exclusive lock on the tablets
they manage. The master server consults Chubby to discover
tablet servers.

While being manipulated, tablets are stored in memory in a
buffer called memtable. When the size of a memtable reaches a
certain level, it is stored as an immutable SSTable in GFS.
Tablet servers perform write operations on tablets in memtable,
and read operations on views obtained from merging SSTables
and the memtable.

Fig. 10. Management of Read and Write operations

Bigtable maintains a high level of consistency. Reads are
strongly consistent, since SSTables are immutable. As for
writes, memtables perform a row copy each time there is a
write operation in a row, ensuring that updates are seen by
reads.

Client applications can connect to Cloud Bigtable using the
Cloud Bigtable HBase client. The latter supports HBase shell,
which can be used to perform queries and administrative tasks.

Cloud Bigtable was designed for Big Data applications that
handle terabytes of data in clusters composed of thousands of
nodes. Google recommends it for applications where the
volume of data exceeds 1 TB. For Big Data applications with
less than 1 TB data volume, Google recommends another
solution, namely Cloud Datastore.

B. Cloud Datastore

Cloud Datastore is a NoSQL, schemaless, highly-scalable,
and highly-reliable database for storing non-relational data
developed by Google as a part of the App Engine. The main
motivation for its development is to answer the need for high-
scalability that couldn’t be met by traditional relational
databases. It supports basic SQL functionalities, including
filtering and sorting. Other functionalities like table joins, sub
queries and flexible filtering are not supported. Cloud
Datastore is based on another Google’s solution, namely
Megastore, which is built on Bigtable. Thus, Cloud Datastore
architecture is as shown in Fig. 11.

Fig. 11. Cloud Datastore architecture

Megastore [57] is a distributed data store that combines the
scalability of NoSQL databases and some key features of
relational databases, especially in terms of consistency and
ACID transactions. It allows users to define tables just like in
traditional SQL databases, and then maps them to Bigtable
columns. It is used by more than 300 applications within
Google [58].

Megastore ensures strong consistency. It replicates data
across multiple geographically distributed datacenters using an
algorithm based on a distributed consensus algorithm, Paxos
[59], for committing distributed transactions. It also
implements two-phase commit (2PC) [60] for committing
atomic updates. Unlike 2PC, Paxos doesn’t require a master
node for committing transactions. Instead, it ensures that only
one of the proposed values is chosen and, when it is, that all the
nodes forming the cluster get the value. Thus, all future read
and/or write access to the value will give the same result.

For each new transaction, Megastore identifies the last
transaction committed and the responsible node then uses
Paxos to get a consensus on appending the transaction to the
commit log. Megastore is built on Bigtable to overcome the
difficulty to use in applications that have relational schemas, or
that need to implement strong consistency [86]. An
amelioration to Megastore is Spanner [86], a highly-scalable,
globally-distributed, semi-relational database where queries are
done in an SQL-like language and offers better write
throughput. Though Spanner is not offered as a service to
developers, it is used internally by Google as the backend of
F1, Google’s distributed RDBMS supporting its online ad
business. However, there is a project for building an open
source version of Spanner, CockroachDB.

Cloud Datastore relies on Megastore to support
transactions, ensuring strong consistency. The entity data,
which is the equivalent of a row in relational databases, is
written in two phases: the commit phase and the apply phase.
In the commit phase, data is recorded in the transaction logs of
a majority of replicas. It is also recorded in the transaction logs
of all replicas in which it was not recorded and that are not up-
to-date. In the second phase, the entity data and its index rows
are written in each replica.

Cloud Datastore also relies on Bigtable’s automatic
sharding and replication to ensure high-scalability and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

166 | P a g e

www.ijacsa.thesai.org

reliability. Performance is ensured by reducing lock granularity
and allowing collocation of data to minimize the
communication between nodes.

In Cloud Datastore, client applications perform queries and
manipulate data using APIs, third-party implementations of the
Java Data Objects (JDO) and Java Persistence API (JPA), or
third-party frameworks such as Objectify, Slim3 or Twig.

Google intents to prove, with Cloud Datastore, that
scalability can be achieved while keeping some features of
traditional relational databases, especially transactions, ACID
semantics, schema support, etc. It thus provides a highly-
scalable and reliable cloud database that is adequate for Big
Data applications that need to implement strong consistency.

C. Cloud SQL

Cloud SQL is a fully-managed, highly-available MySQL
database hosted in Google’s cloud and offered as DBaaS. It
allows users to easily create, run, and manage MySQL
databases in Google’s infrastructure, with a promise of 99.95%
uptime SLA [61]. It is simple to use and gives users the
possibility to control the geographical location where their data
is stored, the RAM capacity they need (ranging from 0.125 to
16 GB), the billing plan they prefer (based on the number of
hours the database is accessed or based on the number of days
the database exists), the backup frequency, the replication
mode, the connection encryption mode, etc. Many companies
opted for migrating their data into Cloud SQL, such as
CodeFutures and KiSSFLOW.

Cloud SQL is distributed, and it replicates data across
multiple datacenters in order to be fault-tolerant, using both
synchronous and asynchronous replication. It supports all
MySQL features with some exceptions (user defined functions,
LOAD_FILE function, installing and uninstalling plugins). It is
accessible via MySQL clients, standard MySQL database
drivers, App Engine applications written in Java or Python, and
third-party tools such as Toad for MySQL.

In Cloud SQL, the maximum size of an instance is 10 GB,
with a total size limit of 500 GB. Moreover, it doesn’t scale
automatically, but it is up to the user to handle scalability, and
it is not adapted to applications where data schema changes
frequently. This makes Cloud SQL unsuited for Big Data
applications.

D. Cloudant

Cloudant [62] is a scalable, distributed, NoSQL database as
a service provided by IBM, with the assurance, through SLAs,
of uninterrupted, highly-performant access to data. Cloudant’s
infrastructure consists of over 35 datacenters distributed in
more than 12 countries all over the world. Data is stored in
server nodes, grouped into clusters that can either be multi-
tenant or single-tenant. Cloudant also offers users the
possibility to deploy it on-premise, or to select other hosting
providers such as Rackspace, SoftLayer, and Microsoft Azure.
This is done in the optic of bringing Cloudant near to users’
data, in the case where it is already hosted in the cloud. As for
the billing, it is adaptable to the growth of the user’s
applications, offering a ―pay-as-you-grow‖ billing plan.

Cloudant is interoperable with many open source solutions,
which enhances its capabilities and features, as shown in Fig.
12.

Fig. 12. An overview of Cloudant interaction with various open source

solutions [62]

Cloudant is based on Apache CouchDB, with some
additional features regarding data management, advanced
geospatial capabilities, full-text search, and real-time analytics.
It stores data as JSON documents (Fig. 13), which is a
lightweight data-interchange format that is built on a collection
of name/value pairs, and an ordered list of values.

Fig. 13. An example of JSON-formatted documents

JSON documents are accessed using an HTTP-based
RESTful API. Querying is done using Cloudant query, a
declarative system based on MongoDB’s declarative query.
Cloudant assigns a unique identifier to each JSON document
and uses a MapReduce-based framework to query data. Users
write MapReduce functions in JavaScript, where the Map
function defines which JSON documents are concerned by the
Reduce function that specifies the operations to perform. Then
Cloudant distributes the MapReduce functions to all nodes
forming the cluster. It is noted that Cloudant allows
MapReduce functions to be ―chainable‖, meaning that the
output of a MapReduce job can be used as input for other
MapReduce jobs in the chain.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

167 | P a g e

www.ijacsa.thesai.org

Data distribution is done by multi-master replication,
ensuring a high fault-tolerance, and reducing latency by
connecting users to data that is geographically closest. Users
can replicate data not only through all nodes forming the
cluster, but also to CouchDB, being able to benefit from an
open source data storage solution to increase their datacenter
size.

Cloudant is adapted to Big Data uses, especially for web,
mobile, and the Internet of Things [63]. It is also suitable for
applications that deal with unstructured data or that need to
synchronously replicate data across multiple datacenters.

E. MongoLab

MongoLab is a fully-managed, highly-performant, highly-
available MongoDB database offered as DBaaS that runs in
major cloud infrastructures: Amazon WS, Google Cloud
Platform, Rackspace, and Windows Azure, etc. It is also
possible to integrate it with users’ applications that run on other
PaaS providers’ platforms, like AppFog, Heroku, OpenShift,
etc.

Fig. 14. MongoDB control panel

MongoDB is a schema-free, scalable document database
that offers, along with the basic CRUD functions of traditional
relational databases, many features such as indexing,
aggregation, session-like data expiration management, native
support of geo-spatial indexing, etc. Other features specific to
relational databases, such as JOINs, are not supported.

MongoDB stores data as BSON documents, a lightweight,
binary interchange format based on JSON. BSON represents
data efficiently, optimizing storage space and scan speed, and
rendering encoding and decoding data simple and fast. Data
access, data requests and background management operations
are performed by mongod, the primary daemon process of
MongoDB.

Users can browse their data stored in MongoLab via the
management portal, or the MongoDB shell, which is an
interactive JavaScript shell. Applications can be connected to
the MongoLab databases using a MongoDB driver, or
MongoLab RESTful APIs.

MongoDB defines its own query language. Users can
perform ad hoc queries using two functions like find() and
findOne() that return a subset of documents. Queries can be
performed with complex criteria (such as ranges or negatives),

conditions, sorting, embedded documents, etc. It is also
possible to use indexing, like in relational databases, which
allows performing faster queries. In addition, MongoDB offers
a wide range of commands to be used to manage servers and
databases.

MongoDB handles replication using a master-slave
strategy. Users define a replica set, which is composed of a
primary server and many secondary servers. The primary
server gets the requests from applications and users, and
secondary servers store copies of the data contained in the
primary server. This way, if the primary server becomes
unavailable, one of the secondary servers is chosen by its peers
to replace it. MongoDB also offers an interesting feature, slave
delay, which sets a secondary server to lag by a predefined
number of seconds to allow retrieving an earlier version of
damaged data.

Scalability in MongoDB is ensured by autosharding.
Mongos, MongoDB’s routing service, is used to keep track of
the location of data in the different shards. Applications
connect to Mongos and send their queries the way they’d do
with a stand-alone MongoDB instance, as shown in Fig. 15.
This allows MongoDB to handle higher throughput in read and
write operations than what a stand-alone instance can handle
[64].

Fig. 15. Access by applications to sharded data in MongoDB

MongoDB’s design makes it suitable for storing large
volumes of heterogeneous, evolving collections of data.

F. Morpheus

Morpheus is a fully managed, highly-available DBaaS that
provides access to SQL (MySQL), NoSQL (MongoDB), and
cache (Redis) databases. It also offers a fully managed access
to Elasticsearch, a full-text search engine.

As mentioned above, Morpheus offers a fully managed
access to four databases. MongoDB and MySQL have been
presented in previous chapters. We will present Elasticsearch
and Redis.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

168 | P a g e

www.ijacsa.thesai.org

Fig. 16. Available databases in Morpheus41

Elasticsearch is an open source distributed, scalable,
highly-available full-text search engine. It is built on Apache
Lucene, an open source library for data retrieval.

Redis is an open source key-value cache and store that
keeps data in memory for faster treatment, handling over
100 000 read/write operations per second [65]. Redis can also
store data on hard disk asynchronously using snapshots or
append-only logs.

Morpheus allows users to easily select one of the available
databases and create an instance with a size ranging from 1 to
200 GB, as shown in Fig. 17. It supports many versions of each
database and gives users the possibility to select one. Users can
create many instances using disparate databases.

Fig. 17. Available instance sizes on Morpheus and their cost41

Morpheus uses Solid State Drives (SSD) for data storage,
which improves the speed of data access. It also uses
Amazon’s datacenters. Replication is done using a master-
slave strategy to ensure availability and fault-tolerance.
Scalability is achieved using autosharding.

Use cases show that Morpheus allows creating up to 2000
instances, with a total data size of 400 TB [66]. This, along
with its scalability and high availability, makes Morpheus
suitable for Big Data uses.

G. Postgres Plus Cloud Database

Postgres Plus Cloud Database (PPCD) [67] is a fully-
managed, highly-performant, highly-available, scalable access
to PostgreSQL, an object-relational database management
system. It supports relational databases ACID transactions, as
well as NoSQL databases features.

The architecture of PPCD is composed of one server, and
clusters, as shown in Fig. 18.

Fig. 18. The architecture of PPCD [67]

This architecture is for each cloud region. Users in a cloud
region connect to a centralized console, the PPCD Console, to
create clusters. The PPCD server deploys these clusters to the
instances hosted by a Cloud provider (Amazon’s EC2 [67],
Amazon’s VPC [68], etc) and connects to the cloud using
JCloud APIs. The console uses jgroups, a toolkit for nodes
messaging, to communicate with the various Cloud
environments where clusters are deployed.

PPCD ensures reliability and availability using master-
slave replication. The first database deployed by the console is
designed as the master database, the other replicas are slaves
and used for read-only operations. So PPCD clusters consist of
a master and one or more replicas. They have built-in load
balancers that receive incoming requests from applications and
distribute them through the nodes.

The PPCD server manages the instances in the clusters
using the Cloud Cluster Management (CCM). In case of
failure, the CCM initiates automatic failover.

Automatic failover is implemented in two ways, as shown
in Fig. 19. One way is to switch to a replica, which minimizes
downtime, another is to migrate data from the failed master to
a new one, which minimizes data loss.

PPCD offers, as a service, PostgreSQL databases that are
hosted in the cloud, especially using Amazon’s WS. This lets
PPCD benefit from Amazon’s powerful resources and makes it
suitable for Big Data applications.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

169 | P a g e

www.ijacsa.thesai.org

Fig. 19. Automatic failover scenario [67]

H. SimpleDB

SimpleDB is a highly available, scalable, schemaless non-
relational document database that is part of Amazon’s Web
Services. It provides many of the functionalities provided by
relational databases as a service in the cloud. SimpleDB is
designed to run on other web services provided by Amazon.
Developers that use SimpleDB can run their applications using
Amazon’s Elastic Compute Cloud (EC2) and store their data in
Simple Storage Service (S3).

Data is structured in domains, which are the equivalent of
tables in relational databases. Each domain is composed of
attributes and items, and each attribute has one or more values
for a given item, as shown in Fig. 20. Currently, users can store
up to 10 GB of data per domain, and can create up to 250
domains [69]. However, they can request to create additional
domains if needed.

Fig. 20. Example of a domain in SimpleDB

SimpleDB provides a group of API calls to build
applications [69], such as CreateDomain for creating domains,
DeleteDomain for deleting domains, PutAttributes for adding,
modifying, and removing data in domains, etc. Querying
domains is done using an SQL-like Select query, but multi-
domain querying is not supported.

SimpleDB implements automatic data indexing for a better
performance. To ensure high-availability, asynchronous
replication is implemented, and multiple copies of the domain
are done after a successful write. Two consistency options are
supported for read operations, namely strong consistency and
eventual consistency. Strong consistency requires a majority of
replicas to commit writes and acknowledge reads. Eventual

consistency asynchronously propagates writes through the
nodes, and any replica can acknowledge reads. Automatic data
sharding is not supported, so users have to manually partition
their data across multiple domains for better scaling. SimpleDB
is optimized for parallel-queries.

SimpleDB is designed for fast reading and is a simple way
to store data in a schema-free database offered as a DBaaS.
However, it has many drawbacks, such as the storage limit of
10 GB per domain, the maximum attribute values of 256 per
item, the limit response size of 1 MB per query [70], the
performance setback due to the automatic indexing of all
attributes, etc. For all these reasons, Amazon built upon
SimpleDB to develop DynamoDB, which can be considered an
improved version of SimpleDB that is more adapted to Big
Data applications.

I. DynamoDB

Amazon’s DynamoDB is a fully-managed, highly-
available, highly-scalable, distributed NoSQL database. It is an
answer to Amazon’s need of a performant, reliable, efficient
database able to scale up to meet the ever growing load on their
servers, which simultaneously serve, at peak times, more than
tens of millions of customers [71], with all the economical
issues at stake. DynamoDB is fast and flexible, and supports
document and key-value data models.

Since strong consistency and high availability are
complementary (according to the CAP theorem), and one must
be sacrificed in order to achieve the other in distributed
environments, Amazon chose to privilege high availability.
Thus DynamoDB supports eventual consistency, which is
achieved by asynchronously propagating updates, and
considering each update to be a new version of data. This
versioning is done by using vector clocks [72]. DynamoDB
uses sloppy quorum, a quorum-based technique, and hinted
handoff, a decentralized replica synchronization protocol, to
achieve consistency among replicas while ensuring availability
in case of server failures [71].

Conflicts during updates needed to be addressed too. The
classical approach is to resolve these conflicts during writes,
committing them only when the majority of replicas can be
reached. To be more suitable for Amazon’s services, where
rejecting a write can be prejudicial from the customer’s
perspective, DynamoDB opts for resolving conflicts during
reads. However, DynamoDB leaves it up to developers to
implement their own conflict resolution strategy at the
application level. By default, DynamoDB uses ―the last write
wins‖ strategy [71].

DynamoDB scalability is designed using a variant of
consistent hashing in order to partition data and scale
incrementally [71]. This variant dynamically partitions data
over all the nodes in the clusters, knowing that each node
communicates with its immediate neighbours. Some of these
nodes are used as coordinators to replicate data on many nodes.
DynamoDB optimizes throughput and latency at any scale by
using automatic partitioning and Solid State Drive (SSD).

As for querying and manipulating stored data, it is done
using two functions: get(key) to retrieve all the versions of the
object associated with the key ―key‖ along with their context,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

170 | P a g e

www.ijacsa.thesai.org

and put(key, context, object) to determine where to store the
replicas of the object ―object‖ and to write them to the disk.
Data is stored as binary objects, or blobs.

Fig. 21. A list of techniques used by DynamoDB as a response to some

encountered problems and their advantages [71]

In DynamoDB, each node shares the routing table with the
other nodes in the cluster in order to know what data is stored
by which node. In the case of large clusters composed of
thousands of nodes, the size of the routing table is significantly
large. An improvement is suggested in [71] by using
hierarchical extensions.

DynamoDB is Amazon’s NoSQL solution for Big Data
storage. It has been used by Amazon’s services and given good
performance, especially regarding availability and data loss. It
is well-suited for many Big Data applications, from gaming to
the Internet of Things.

J. Azure SQL Database

Azure SQL Database is a highly-available, scalable,
relational database built on Microsoft SQL Server and hosted
in Microsoft’s cloud. It offers the main features of traditional
relational databases (tables, views, indexes, procedures,
complex queries, full-text search, etc.) as a service in the cloud.
It also supports Transact-SQL, ADO.net, and ODBC. Azure
SQL Database supports Microsoft SQL Server only, though it
is not completely compatible with it. However, a recent version
offers a near total compatibility [73].

Azure SQL Database is a TDS [74] proxy endpoint that
routes the requests of client applications to the SQL server
node that contains the primary replica of data. It has a four-
layer architecture, as shown in Fig. 22. First, the infrastructure
layer, which is Microsoft Azure datacenter, provides powerful
computing and storage resources on which the other layers are
built. Then there’s the platform layer that contains at least three

nodes of SQL server running in the infrastructure layer. Then
there’s the services layer that controls Azure SQL Database in
terms of partitioning, billing, and connection routing. Last
there’s the client layer that contains various tools to allow
client applications to connect to Azure SQL Database.

Fig. 22. Microsoft Azure SQL Database architecture [75]

Azure SQL Database organizes data in table groups, which
are the equivalent of databases in SQL Server. A table group
can be keyless or keyed. All tables in a keyed table group must
have a common column called partitioning key. Rows that
have the same partitioning key are grouped into row groups.
However, Azure SQL Database doesn’t support executing
transactions on more than one table group and, if the table
group is keyed, on more than one row group.

Azure SQL Database performs automatic scalability when
the table groups are keyed. Each table group is partitioned
based on its partitioning key in a way that each row group is
contained in one partition. To ensure availability, partitions are
replicated using a Paxos-based algorithm, and each partition is
stored on a server.

As for consistency, it is ensured by taking snapshots of the
table group to verify that committed transactions are reflected
in the table group, and uncommitted ones aren’t.

Azure SQL Database is used by many companies,
including Xerox, Siemens, and Associated Press. However, it
suffers from many limitations that render it unsuitable for Big
Data applications. For example, the maximum database size
supported is 500 GB, and the maximum database number

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

171 | P a g e

www.ijacsa.thesai.org

supported by a server is 150. So for Big Data applications,
Microsoft’s more adopted solution is DocumentDB.

DocumentDB is a fully-managed, scalable, NoSQL
document database offered as a service. It supports SQL
querying of JSON stored documents, which are all indexed by
default to optimize query performance. Users can also query
databases using JavaScript.

DocumentDB supports four levels of consistency,
configurable by users. In addition to strong and eventual
consistencies, there is session consistency, which is the default
mode, and bounded staleness consistency. Session consistency
asynchronously propagates writes, and sends read requests to
the one replica that contains the requested version. Bounded
staleness consistency asynchronously propagates writes, while
reads are acknowledged by a majority of nodes, but may be
lagged by a certain number of time or operations.

DocumentDB is still at its early stages and lacks many
important features, such as backups and replication. Another
solution developed by Microsoft and adapted to Big Data is
SQL Server in Azure VM, which is not a DBaaS, but an IaaS
to run SQL Server databases on virtual machines in the cloud.

K. Amazon RDS

Amazon Relational Database Service (RDS) offers a
highly-available access to five distributed relational database
management systems (MySQL, Oracle, Microsoft SQL Server,
PostgreSQL, and Amazon Aurora) as a service in Amazon’s
Cloud. RDS aims to make setting up, running, and scaling
relational databases simpler and easier, and to automate
administrative tasks such as backups, point-in-time recoveries,
and patching.

Scalability in RDS is achieved horizontally and vertically.
RDS relies on sharding and read replicas to achieve horizontal
scalability. As for vertical scalability, users can perform it by
using command line tools, APIs, or AWS Management
Console.

RDS supports automated backups. These backups can be
used as point-in-time recoveries. In addition, users can
program backups in the form of snapshots and that can be
manually restored afterwards.

RDS replicates data synchronously using the Multi-AZ
deployment [76] feature, where data is replicated between a
primary instance and a standby instance, as shown in Fig. 23.
Each one of these instances is stored in a different Availability
Zone (AZ) to minimize downtime. If the primary instance fails,
RDS performs an automatic failover to the standby instance.

RDS is most adapted to applications that already use one of
the five supported database systems, or new applications that
work with structured data and need relational features not
supported by NoSQL databases, such as join operations [78]. It
is also optimized for databases that support heavy I/O
workloads. The size of databases stored in RDS can reach up to
3 TB and 30 000 IOPS [79], which makes it suitable for Big
Data applications.

Fig. 23. Example of replication in RDS [77]

L. Other DBaaS solutions

There are various other DBaaS solutions, such as ClearDB,
Clustrix, CumuLogic, Heroku, Percona, etc. They are meant
for relatively small cloud deployment projects, not Big Data
applications. Two prominent DBaaS solutions are HP Cloud
Relational Database and Rackspace Cloud Database, two fully-
managed, highly-available databases. Both support MySQL,
with Rackspace Cloud Database supporting Percona Server,
MariaDB also.

HP Cloud Relational Database is provided by HP and
hosted in HP Helion Public Cloud. It is still in its early
development stages, available in a beta version only for the
users of HP Helion Public Cloud. Rackspace Cloud Database is
provided by Rackspace. Both databases use OpenStack, an
open source cloud computing platform. Users can manage their
databases via the native OpenStack command-line interface
tools, or APIs. HP Cloud Relational Database supports
automated backup/restore operations to enhance fault-
tolerance. Both databases offer the possibility for users to
initiate backups. Availability is ensured by implementing
snapshots and keeping replicas in different availability zones.
Both databases are not suitable for Big Data applications,
especially regarding data volume, HP Cloud Relational
Database having a limiting size of 480 GB per database
instance, and Rackspace Cloud SQL supporting a maximum
size of 150 GB per database instance.

Rackspace acquired another DBaaS solution, Objectrocket,
which is a fully-managed, highly scalable database that
supports MongoDB and Redis. It offers the possibility of
having instances of multiple TB. Another prominent DBaaS is
Salesforce’s Database.com, a fully-managed, highly-scalable
relational database. It was first used as part of Salesforce’s
PaaS, force.com, before being available in a stand-alone
version.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

172 | P a g e

www.ijacsa.thesai.org

Database.com uses one large Oracle instance as the main
data storage system. It arguably stores data in one wide table
composed of hundreds of flex columns, which are columns
storing various data types [80]. Salesforce doesn’t disclose
much of the technical details of Database.com’s functionalities
and architecture. For example, there are no resources detailing

how Database.com handles scalability, replication, or
consistency. The maximum supported data size isn’t specified
either.

We present, in tables IV, V, and VI hereafter, a summary of
the databases as a service reviewed in this section.

TABLE IV. COMPARISON BETWEEN THE REVIEWED DATABASES (PART 1)

Name Provider Data Model Supported databases Data Storage Type Querying

Cloud Bigtable Google Column database N/A Tables and Tablets HBase Shell

Azure SQL Database Microsoft Relational Microsoft SQL Server Tables SQL

Cloud Datastore Google NoSQL N/A
Kinds (equivalent of

relational tables)
API

HP Cloud Relational
Database

HP Relational MySQL Tables
OpenStack CLI
API

Cloud SQL Google Relational MySQL Tables SQL

Cloudant IBM
Document

datastore
N/A JSON documents API

DynamoDB Amazon Key-value store N/A Key-Value objects API

MongoLab MongoDB
Document

datastore
MongoDB BSON documents

MongoDB driver

API

Morpheus Morpheus
Relational or

NoSQL

MySQL
MongoDB

Redis

Elasticsearch

Tables

JSON documents
Key-Value objects

API

Postgres Plus Cloud

Database
EnterpriseDB Relational PostgreSQL Tables API

Rackspace Cloud Database Rackspace Relational

MySQL

Percona Server
MariaDB

Tables
CLI

API

RDS Amazon Relational

MySQL

Oracle

Microsoft SQL Server

PostgreSQL

Amazon Aurora

Tables SQL

SimpleDB Amazon Key-value store N/A Key-Value objects API

Database.com Salesforce Relational N/A

Organizations

(equivalent of

relational tables)

SOQL
SOSL

Objectrocket Rackspace
Document and
Key-value store

MongoDB
Redis

Key-Value objects
BSON

API

N/A: NOT APPLICABLE X: NOT AVAILABL

TABLE V. COMPARISON BETWEEN THE REVIEWED DATABASES (PART 2)

Name Consistency Replication Scalability
Deployment

Model
Clusters Tenancy

Interoperability with

other cloud platforms

Geographical

region choice

Cloud Bigtable
Strong Row

Consistency
X Horizontal Cloud Multi-tenancy No Yes

Azure SQL

Database
Strong Asynchronous Horizontal Cloud Multi-tenancy No Yes

Cloud Datastore
Strong

Eventual
Asynchronous

Vertical

Horizontal
Cloud Multi-tenancy No Yes

HP Cloud
Relational

Database

X X
Vertical

Horizontal
Cloud Multi-tenancy No Yes

Cloud SQL X
Synchronous

Asynchronous
Vertical Cloud Multi-tenancy No Yes

Cloudant Eventual Synchronous Horizontal

Cloud

On-premise

Hybrid

Single-tenancy
Multi-tenancy

Rackspace

Microsoft Azure

SoftLayer

Depending on the
provider

DynamoDB Eventual Asynchronous
Vertical
Horizontal

Cloud
Single-tenancy
Multi-tenancy

No Yes

MongoLab Eventual Asynchronous Horizontal Cloud
Single-tenancy

Multi-tenancy

Amazon Web Services

Google Cloud Platform
Windows Azure

Rackspace

Joyent

Depending on the

provider

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

173 | P a g e

www.ijacsa.thesai.org

Name Consistency Replication Scalability
Deployment

Model
Clusters Tenancy

Interoperability with

other cloud platforms

Geographical

region choice

Morpheus X Asynchronous Horizontal

Cloud

On-premise

Hybrid

Single-tenancy
Multi-tenancy

Yes (through Morpheus
Virtual Appliance)

No

Postgres Plus
Cloud Database

Eventual Asynchronous
Vertical
Horizontal

Cloud
On-premise

Single-tenancy
Multi-tenancy

Amazon Web Services
HP Cloud

Yes

Rackspace Cloud

Database
Eventual Asynchronous Vertical

Cloud

On-premise

Single-tenancy

Multi-tenancy
No X

RDS Strong
Synchronous
Asynchronous

Vertical
Horizontal

Cloud
Single-tenancy
Multi-tenancy

No Yes

SimpleDB
Strong

Eventual
Asynchronous

Vertical

Horizontal
Cloud

Single-tenancy

Multi-tenancy
No Yes

Database.com X X X Cloud Multi-tenancy No X

Objectrocket Eventual Asynchronous Horizontal
Cloud

On-premise

Single-tenancy

Multi-tenancy
No Yes

N/A: NOT APPLICABLE X: NOT AVAILABLE

TABLE VI. COMPARISON BETWEEN THE REVIEWED DATABASES (PART 3)

Name Client libraries License billing
SLA

commitment

Initial release

date

Big Data

compatible
Used by

Cloud Bigtable HBase Client Commercial Per hour Yes 2015 Yes Google

Azure SQL Database

PHP

ODBC/JDBC
.NET

SQL Server

Tools
WCF Data

Services

TDS

Commercial Per hour Yes 2009 Yes
Samsung

easyJet

Cloud Datastore

Java

JavaScript

PHP

Python

.NET

Objective-C

Commercial Per hour Yes 2013 Yes
Ubisoft

GenieConnect

HP Cloud Relational
Database

RESTful API Commercial Per hour No
2012 (beta
version)

No X

Cloud SQL

Java

JavaScript
PHP

Python

.NET
Objective-C

Commercial
Package

Per hour
Yes 2013 No

BeDataDriven

CodeFutures

Cloudant
Java

Node.js
Commercial Per month Yes 2008 Yes

Adobe

DHL

DynamoDB

Java
PHP

.NET

Ruby

Commercial Per month Yes 2012 Yes

Elsevier

Amazon Cloud

Drive

MongoLab

Java

PHP

Python
Ruby

Note.js

Commercial Per month Yes 2011 Yes
Toyota

Lyft

Morpheus Not Available Commercial On estimate No 2014 Yes
Spireon

Rowmark

Postgres Plus Cloud

Database

Java

.Net
Commercial

Per hour

Per month

One Year
subscription

Yes 2012 Yes
Bouygues Telecom

Los Angeles Times

Rackspace Cloud

Database

Java

PHP

.Net

RESTful API

Commercial Per hour Yes 2012 No InferMed

RDS

Java

PHP
.Net

Commercial Per month Yes 2009 Yes
Airbnb

Unilever

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

174 | P a g e

www.ijacsa.thesai.org

Name Client libraries License billing
SLA

commitment

Initial release

date

Big Data

compatible
Used by

SimpleDB

Java

PHP

Python
Ruby

.NET

Commercial Per hour Yes 2007 Yes
MyMiniLife.com

Issuu

Database.com
RESTful API

SOAP API
Commercial On estimate Yes 2010 X Cirrus Computing

Objectrocket

Java

PHP

Python
Node.js

cURL

Commercial On estimate Yes 2012 Yes
SponsorHub

SumAll

N/A: NOT APPLICABLE X: NOT AVAILABLE

V. DISCUSSION

As presented in the previous section, there are various
databases offered as a service by many Cloud providers. This
model of use, namely DBaaS, offers many advantages both to
users and providers. Users find themselves exempt from up-
front investments and relieved from the burden of installing,
running and administrating their databases. As for providers,
the costs of providing their service are optimized, especially in
the case of multi-tenancy.

However, there are several points to take into consideration
when selecting a DBaaS, few of which we discuss hereafter.

A. Provider’s reputation

Within the last decade, Cloud Computing has positioned
itself as a primordial technology with an ever growing market,
although big IT names still have a dominating position. In the
first quarter of 2015 [81], Amazon held 29% of the market
share, followed by Microsoft (10%), IBM (7%), Google (5%),
Salesforce (4%), and Rackspace (3%). Every one of these
providers has a DBaaS solution that benefit from their
established Cloud platforms, whether relational (Amazon’s
RDS and SimpleDB, Microsoft’s Azure SQL Database,
Google’s Cloud SQL, and Rackspace’s Cloud SQL) or NoSQL
(Amazon’s DynamoDB and SimpleDB, IBM’s Cloudant, and
Google’s Cloud Datastore).

In addition to these providers, other ones have positioned
themselves quite successfully in the DBaaS market, such as
Mongo inc. (MongoLab), Morpheus, and EnterpriseDB
(Postgres Plus Cloud Database).

Users may be more confident confiding their data to well-
established Cloud ―pioneers‖, or choose to rely on other users’
feedback, which every provider has on their website in the
form of use cases.

B. Deployment

Users who are looking for a DBaaS should consider the
deployment model to know whether their data will be stored
on-premise or off-premise. For example, some users would
choose to keep their data on-premise, for security concerns.
Many providers don’t offer the choice, as their databases are
hosted in the Cloud only. This is the case for Amazon, Google,
Microsoft, MongoDB, and Salesforce. Other providers give the
possibility to choose between using their database as a hosted
service in their Cloud or on-premise. This is the case of
EnterpriseDB, HP, IBM, Morpheus, and Rackspace.

Another point regarding deployment is the interoperability
of the DBaaS with other Cloud providers’ solutions. In many
cases, users’ applications are already deployed, whether
internally or in the Cloud. Thus, it would be more convenient
when a DBaaS provider enables users to select the cloud
platform they want to use, even if it is provided by another
Cloud provider. This is not the case for providers like Amazon,
Google, Microsoft, HP, Rackspace, and Salesforce, who
compel customers to use their specific Cloud platforms, as
their databases can’t be used elsewhere.

Tenancy mode is also a point to consider when selecting a
DBaaS. Customers desiring to optimize their database
performance may want to opt for single-tenancy, where they
get dedicated clusters and don’t share resources with other
customers. Not all DBaaS have this option. Database.com, for
example, was specifically designed to be multitenant. Providers
like Microsoft, Google, and HP don’t offer this possibility
either.

C. Database model

Providers who support many database systems give users
the possibility to select a database to use from available
databases. This way, customers can choose the database to
which they are used or that they are most comfortable with.
This can be particularly interesting for users who already have
their applications deployed and running, because when a
DBaaS offers access to a traditional database (MySQL or
PostgreSQL for example), the codes that were designed to
work with these databases can work seamlessly in the cloud,
exempting users from rewriting their code.

Another point to study before choosing a DBaaS is the data
model. Customers must have a clear idea of how they project
to use their database, and especially the type of data they deal
with. Although developers may benefit from the flexibility of
NoSQL databases, due to their being schema free, they will
have to explicitly manage data coherence in the application
layer (relationships between data, for example, as there are no
defined foreign keys in the database). Thus, if data is variably
structured and can’t be represented using the relational schema,
then NoSQL databases will be more adapted. If not, then some
relational DBaaS can offer good performance for Big Data
applications, like Amazon RDS or Microsoft Azure SQL
database.

D. Law and regulations

Data collection and storage are increasingly subject to
regulations, whether directly, such as the ―Data Protection

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

175 | P a g e

www.ijacsa.thesai.org

Directive‖ (DPD) [82] in the European Union, or indirectly,
such as the ―USA Patriot Act‖ in the United States of America.
Such legislation affects the storage of data. The DPD, for
example, requires personal data to be stored inside the EU, or
only in countries outside the EU that ensure a certain level of
data protection.

DBaaS physically store data in various datacenters in
different locations. Moreover, to ensure availability, data is
replicated across geographically distributed datacenters. Users
in some cases may need to choose the geographical location
where their data will be stored. This possibility is offered by
the majority of the reviewed providers (except Morpheus), who
have datacenters mainly in the USA and the EU. Other
providers, like Salesforce and Rackspace, don’t give details
about the location of their datacenters. Another possibility is to
opt for keeping data on-premise, which is possible for DBaaS
like Cloudant, Postgres Plus Cloud Database, Rackspace Cloud
Database, and Objectrocket.

E. Payment mode

One of the main characteristics of Cloud Computing is the
concept of pay-as-you-go, where users strictly pay for the
resources they consume. DBaaS users pay for the volume of
data they store, according to several purchasing options. The
majority of providers adopt a billing by the hour plan, where
users pay for the volume of data stored during one hour.
Examples include Google and Microsoft. Amazon, IBM, and
MongoDB enlarge the time period to a month, while other
providers like Morpheus, Salesforce, and Rackspace tailor their
payment to customers, on a case-by-case basis.

F. Data volume

Choosing a DBaaS for Big Data applications implies to
carefully consider the maximum supported size in order to
ensure that it can scale to handle terabytes of data. While most
reviewed DBaaS verify this condition, HP Cloud Relational
Database, Cloud SQL, and Rackspace Cloud Database only
offer a maximum instance size of 500 GB. Salesforce doesn’t
disclose information about Database.com maximum storage
size.

G. Data consistency

Consistency, availability, and partition tolerance being
complementary (as stated by the CAP theorem), most reviewed
DBaaS chose to relax consistency in order to achieve high-
availability in distributed environments. This is the case for
Cloudant, DynamoDB, MongoLab, Postgres Plus Cloud
Database, Rackspace Cloud Database, and Objectrocket. For
applications that can’t relax consistency, strong consistency is
offered by DBaaS like Azure SQL Database, SimpleDB, and
Cloud Datastore. The two latter ones implement both strong
and eventual consistency, allowing users to choose the most
adapted mode.

H. Scalability

Scalability allows adjusting computing resources and
storage space to meet the increasing needs of applications. It is
one of the inherent characteristics of cloud computing and one
of the necessary requirements for Big Data applications.

Most reviewed databases scale horizontally to meet the
levels required by Big Data applications. Databases like Cloud
Datastore, DynamoDB, Postgres Plus Cloud Database,
Amazon RDS and SimpleDB implement both vertical and
horizontal scalability. Cloud SQL and Rackspace Cloud
Database scale only vertically, which, added to their size
limitations, makes them further unsuitable for Big Data
applications. As for Salesforce’s Database.com, there is no
information on how it handles scalability.

I. SLA

A Service-Level Agreement (SLA) is a contractual
document that governs the client’s use of the provider’s
services.

SLAs help providers manage the services contracted and
maintain the overall level of quality agreed on with their
customers. The providers of the reviewed databases use SLAs,
except for HP and Morpheus, who don’t disclose their SLA
policy. They all guarantee high availability, with an uptime of
99.9% at least.

J. Security and Privacy

One of the main concerns that keep organizations and
individuals from moving their data to the cloud is the security
and privacy aspects. Recent leaks and hacks (iCloud and Sony,
to name but a few) only reinforced their reluctance to entrust
data to the Cloud [83, 84].

The concern of security and privacy in cloud environments
is enhanced by the large volume of datasets managed by Big
Data. And just like DBaaS removes the burden of database
installation and management, it also ensures the security of
data. DBaaS providers implement different levels of security,
starting from identity and access management, to data
encryption, all through assuring the physical security and
monitoring of datacenters. In addition to securing data while
being stored in datacenters, it is crucial to ensure its transfer to
and from client applications, which can be implemented using
cryptographic protocols like TLS or SSL.

Providers like Amazon, Google, Microsoft, IBM, and
Rackspace have achieved the ISO/IEC 27001 certification for
their cloud platforms.

VI. CONCLUSION

Big Data has emerged as one of the most important
technological trends for the current decade. It challenges the
traditional approach to computing, especially regarding data
storage. Traditional clustered relational database environments
prove to be complex to scale and distribute to adapt to Big
Data applications and new solutions are continually being
developed.

One of the most adapted answers to Big Data storage
requirements is Cloud Computing, and more specifically
Database as a Service, which allows storing and managing
tremendous volume of variable data seamlessly, without need
to make large investments in infrastructure, platform, software,
and human resources. In this context, our article presents a
benchmark of the main database solutions that are offered by
providers as DataBase as a Service (DBaaS). We studied the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

176 | P a g e

www.ijacsa.thesai.org

features of each solution and its adaptability to Big Data
applications.

Cloud Computing and Big Data are entwined, with Big
Data relying on Cloud Computing’s computational and storage
resources, and Cloud Computing pushing the limits of these
resources. New extensions of Cloud Computing are emerging
to further enhance Big Data, especially Fog Computing and
Bare-Metal Cloud. Fog Computing uses edge devices and end
devices, such as routers, switches, and access points to host
services, which minimizes latency. This proximity to end-
users, along with its wide geographical distribution and support
for mobility makes Fog Computing ideal for Big Data and the
Internet of Things applications [85]. As for Bare-Metal Cloud,
it aims to optimize performance for applications with high
workloads by eliminating the virtualization layer and
delivering ―bare‖ servers without hypervisors installed. This
way, there won’t be too many virtual machines competing for
physical resources and impeding the overall performance.

REFERENCES

[1] J. Gantz and D. Reinsel, ―IDC: The Digital Universe in 2020: Big Data.
Bigger Digital Shadows, and Biggest Growth in the Far East‖, 2012

[2] S. Radicati and Q. Hoang, ―Email statistics report, 2012-2016‖, The
Radicati Group, Inc., London, 2012

[3] ―2015 State of the Cloud Report‖, RightScale, Inc., Retrieved from
http://www.rightscale.com/lp/2015-state-of-the-cloud-report

[4] L. Kleinrock, ―A vision for the Internet‖, ST Journal of Research,
Volume 2, Issue 1, 2005

[5] J. McCarthy, MIT Centennial Speech of 1961 cited in ―Architects of the
Information Society: Thirty-five Years of the Laboratory for Computer
Science at MIT‖, SL Garfinkel Ed, 1999

[6] D. Parkhill, ―The Challenge of the Computer Utility‖, Addison-Wesley
Publishing Company, 1966

[7] A. Idrissi and M. Abourezq, ―Skyline in Cloud Computing‖, Journal of
Theoretical and Applied Information Technology, Vol. 60, No. 3,
February 2014

[8] M. Abourezq and A. Idrissi, ―Introduction of an outranking method in
the Cloud computing research and Selection System based on the
Skyline‖, Proceedings of the International Conference on Research
Challenges in Information Science (RCIS), May 2014

[9] P. Mell and T. Grance, ―The NIST definition of cloud computing‖,
National Institute of Standards and Technology, Issue 6, 2009

[10] S. Radack, ―Cloud Computing: A Review of Features, Benefits, and
Risks, and Recommendations for Secure, Efficient Implementations‖,
NIST, ITL Bulletin, June 2012

[11] Cisco Global Cloud Networking Survey, 2012, Retrieved from
http://www.cisco.com/c/en/us/solutions/enterprise-
networks/global_cloud_survey.html

[12] YouTube statistics, Retrieved from
http://www.youtube.com/yt/press/statistics.html

[13] P. Vagata and K. Wilfong, ―Scaling the Facebook data warehouse to
300 PB‖, April 10, 2014, Retrieved from
https://code.facebook.com/posts/229861827208629/scaling-the-
facebook-data-warehouse-to-300-pb

[14] L. Tay, ―Inside eBay’s 90PB data warehouse‖, May 10, 2013,
http://www.itnews.com.au/News/342615,inside-ebay8217s-90pb-data-
warehouse.aspx

[15] J. Lin and D. Ryaboy, ―Scaling big data mining infrastructure: the
twitter experience‖, ACM SIGKDD Explorations Newsletter, Volume
14, Issue 2, 2013

[16] M. Cox and D. Ellsworth, ―Managing big data for scientific
visualization‖, ACM Siggraph, Volume 97, 1997

[17] P. Zikopoulos and C. Eaton, ―Understanding big data: Analytics for
enterprise class hadoop and streaming data‖, McGraw-Hill Osborne
Media, 2011

[18] C. Min, S. Mao, Y. Zhang, and V. Leung, ―Big data: related
technologies, challenges and future prospects‖, Springer, 2014

[19] D. Boyd and K. Crawford, ―Critical questions for big data: Provocations
for a cultural, technological, and scholarly phenomenon‖, Information,
communication & society, Volume 15, Issue 5, 2012

[20] I. Abaker, T. Hashem, I. Yaqoob, N. Badrul Anuar, S. Mokhtar, A.
Gani, and S. Ullah Khan, ―The rise of ―big data‖ on cloud computing:
Review and open research issues‖, Information Systems, Volume 47,
January 2015

[21] A. Cuzzocrea, I. Song, and K. C. Davis, ―Analytics over large-scale
multidimensional data: the big data revolution‖, In Proceedings of the
ACM 14th international workshop on Data Warehousing and OLAP, pp.
101-104. ACM, 2011

[22] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A.
H. Byers, and McKinsey Global Institute, ―Big data: The next frontier
for innovation, competition, and productivity‖, 2011

[23] H. Landrock, O. Schonschek, and A. Gadatsch, ―Big Data Vendor
Benchmark 2015 - A Comparison of Big Data Solution Providers‖,
Experton Group AG, 2015

[24] S. Connolly, ―7 Key Drivers for the Big Data Market‖, May 14, 2012,
Retrieved from http://hortonworks.com/blog/7-key-drivers-for-the-big-
data-market

[25] Big Data definition in the Gartner IT Glossary, Retrieved from
http://www.gartner.com/it-glossary/big-data

[26] ―What is big data?‖, Retrieved from http://www-
01.ibm.com/software/data/bigdata/what-is-big-data.html

[27] Geoinformatics, Department of Civil Engineering, IIT Kanpur,
Retrieved from http://gi.iitk.ac.in/gi/geoinformatics

[28] A. Banafa, ―The Future of Big Data and Analytics‖, School of Business
and Information Technology, March 2014, Retrieved from
http://www.kaplanuniversity.edu/information-technology/articles/future-
of-big-data-analytics.aspx

[29] S. Abiteboul, ―Querying semi-structured data‖, Springer Berlin
Heidelberg, 1997

[30] H. U. Buhl, M. Röglinger, F. Moser, and J. Heidemann, ―Big Data: A
Fashionable Topic with(out) Sustainable Relevance for Research and
Practice?‖, Business & Information Systems Engineering, Volume 5,
Issue 2, 2013

[31] M. Walker, ―Data Veracity‖, Data Science Central, November 28, 2012,
Retrieved from http://www.datasciencecentral.com/profiles/blogs/data-
veracity

[32] S. B. Siewert, ―Big data in the cloud: Data velocity, volume, variety,
veracity‖, IBM, July 9, 2013

[33] J. Gantz and D. Reinsel, ―Extracting value from chaos‖, IDC iview
1142, 2011

[34] ―Draft NIST Big Data Interoperability Framework: Volume 1,
Definitions‖, NIST Special Publication 1500-1, April 6, 2015

[35] K. Fanning and E. Drogt, ―Big Data: New Opportunities for M&A‖,
Journal of Corporate Accounting & Finance, Volume 25, Issue 2, 2014

[36] D. Boyd and K. Crawford, ―Critical questions for big data‖,
Information, Communication & Society, Volume 15, Issue 5, 2012

[37] A. McAfee and E. Brynjolfsson, ―Big data: the management
revolution‖, Harvard Business Review, Volume 90, October 2012

[38] S. Madden, ―From databases to big data‖, IEEE Internet Computing,
Volume 16, Issue 3, 2012

[39] ―HGST Unveils Intelligent, Dynamic Storage Solutions To Transform
The Data Center‖, Retrieved from http://www.hgst.com/press-
room/press-releases/HGST-unveils-intelligent-dynamic-storage-
solutions-to-transform-the-data-center

[40] ―Twitter Usage Statistics‖, Retrieved from
http://www.internetlivestats.com/twitter-statistics/

[41] R. Krikorian, ―New Tweets per second record, and how‖, August 16,
2013, Retrieved from https://blog.twitter.com/2013/new-tweets-per-
second-record-and-how

[42] G. Paterno, ―NoSQL Tutorial: A comprehensive look at the NoSQL
database‖, Linux Journal, Volume23, Issue 67, 1999

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

177 | P a g e

www.ijacsa.thesai.org

[43] F. Chang et al., ―Bigtable: A distributed storage system for structured
data‖, In Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation, 2006

[44] CL. Chen and C. Zhang, ―Data-intensive applications, challenges,
techniques and technologies: A survey on Big Data‖, Information
Sciences, Volume 275, 2014

[45] E. A. Brewer, ―Towards robust distributed systems‖, In ACM
Symposium on Principles of Distributed Computing, Volume 7, 2000

[46] D. Pritchett, ―Base: An ACID alternative‖, ACM Queue, Volume 6,
Issue 3, 2008

[47] R. Cattell, ―Scalable SQL and NoSQL data stores‖, ACM SIGMOD,
Volume 39, Issue 4, 2011

[48] A. Moniruzzaman, ―NewSQL: Towards Next-Generation Scalable
RDBMS for Online Transaction Processing (OLTP) for Big Data
Management‖, arXiv preprint arXiv:1411.7343, 2014

[49] S. Ghemawat, H. Gobioff, and ST. Leung, ―The Google file system‖, In
Proceedings of the nineteenth ACM symposium on Operating systems
principles (SOSP '03), 2003

[50] D. Borthakur, ―HDFS architecture guide‖, Hadoop Apache Project,
2008

[51] B. Antony, ―HDFS Storage Efficiency Using Tiered Storage‖, January
12, 2015, Retrieved from
http://www.ebaytechblog.com/2015/01/12/hdfs-storage-efficiency-
using-tiered-storage/

[52] ―NoSQL, NewSQL and Beyond: The drivers and use cases for database
alternatives‖, April 15, 2011, 451 Research, Retrieved from
https://451research.com/report-long?icid=1651

[53] D. Agrawal, A. El Abbadi, F. Emekci, and A. Metwally, ―Database
management as a service: Challenges and opportunities‖, In IEEE 25th
International Conference on Data Engineering, 2009

[54] W. Lehner and KU. Sattler ―Database as a service (DBaaS)‖, In IEEE
26th International Conference on Data Engineering, 2010

[55] ―Google Launches Bigtable, A Big Managed Database In The Cloud‖,
Forbes, May 6, 2015, Retrieved from
http://www.forbes.com/sites/paulmiller/2015/05/06/google-launches-
bigtable-a-big-managed-database-in-the-cloud

[56] M. Burrows, ―The Chubby lock service for loosely-coupled distributed
systems‖, In Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation, 2006

[57] J. Baker et al., ―Megastore: Providing Scalable, Highly Available
Storage for Interactive Services‖, In Conference on Innovative Data
Systems Research, Volume 11, 2011

[58] J. Corbett et al., ―Spanner: Google’s globally distributed database‖,
ACM Transactions on Computer Systems, Volume 31, Issue 3, 2013

[59] L. Lamport, ―Paxos made simple‖, ACM Sigact News, Volume 32,
Issue 4, 2001

[60] B. Lampson and D. Lomet, ―Distributed transaction processing using
two-phase commit protocol with presumed-commit without log force‖,
U.S. Patent 5,335,343, issued August 2, 1994

[61] ―SLA for availability‖, February 11, 2014, Retrieved from
http://googlecloudplatform.blogspot.com.es/2014/02/google-cloud-sql-
now-generally-available.html

[62] IBM white paper, ―Technical Overview: Anatomy of IBM Cloudant
DBaaS‖, Retrieved from http://www-
01.ibm.com/software/data/cloudant/

[63] IBM software White Paper, ―Build more and grow more with Cloudant
DBaaS‖, Retrieved from https://cloudant.com/resources/white-
papers/build-more-and-grow-more-with-cloudant-dbaas/

[64] P. Membrey, E. Plugge, and D. Hawkins, ―The definitive guide to
MongoDB: the NoSQL database for cloud and desktop computing‖,
Apress, 2010

[65] J. Han et al., ―Survey on NoSQL database‖, 6th IEEE international
conference on Pervasive Computing and Applications, 2011

[66] ―Award Winning Heterogeneous Database Provisioning & Management
Platform for Private, Public, & Hybrid Clouds‖, Retrieved from
http://www.gomorpheus.com/morpheus_appliance_datasheet.pdf

[67] ―Overview of Postgres Plus Cloud Database‖, Retrieved from
http://www.enterprisedb.com/Cloud

[68] J. Sullivan, ―EnterpriseDB's Postgres Plus Cloud DB Auto-Scales In
AWS‖, January 29, 2014, Retrieved from
http://www.tomsitpro.com/articles/enterprisedb-postgresql-cloud-
database-aws,1-1617.html

[69] ―Amazon’s SimpleDB Developer Guide‖, Retrieved from
http://aws.amazon.com/documentation/simpledb/

[70] S. Sakr and M. Gaber, ―Large Scale and Big Data: Processing and
Management‖, CRC Press, 2014

[71] G. DeCandia et al., ―Dynamo: Amazon's highly available key-value
store‖, In ACM SIGOPS Operating Systems Review, Volume 41, Issue
6, ACM, 2007

[72] L. Lamport, ―Time, clocks, and the ordering of events in a distributed
system‖, Communications of the ACM 21, Issue 7, 1978

[73] G. Milener, ―What's new in SQL Database V12‖, May 15, 2015,
Retrieved from http://azure.microsoft.com/en-
us/documentation/articles/sql-database-v12-whats-new/

[74] ―Tabular Data Stream Protocol‖, Retrieved from
https://msdn.microsoft.com/en-us/library/dd304523.aspx

[75] ―Windows Azure SQL Database: SQL Database Fundamentals‖,
Retrieved from http://channel9.msdn.com/Series/Windows-Azure-SQL-
Database

[76] ―Amazon RDS Multi-AZ Deployments‖, Retrieved from
http://aws.amazon.com/rds/details/multi-az/

[77] J. Barr, ―Amazon RDS – Multi-AZ Deployments For Enhanced
Availability & Reliability‖, May 17, 2010, Retrieved from
https://aws.amazon.com/blogs/aws/amazon-rds-multi-az-deployment/

[78] J. Baron and S. Kotecha, ―Storage Options in the AWS Cloud‖, October
2013, Retrieved from http://aws.amazon.com/whitepapers/

[79] ―Amazon RDS now supports 3TB and 30,000 Provisioned IOPS per
database instance‖, March 13, 2013, Retrieved from
http://aws.amazon.com/about-aws/whats-new/2013/03/13/amazon-rds-
3tb-30k-iops/

[80] ―The database architecture of salesforce.com, force.com, and
database.com‖, September 15, 2011, retrieved from
http://www.dbms2.com/2011/09/15/database-architecture-salesforce-
com-force-com-and-database/

[81] ―AWS Still Bigger than its Four Main Competitors Combined Despite
Surging Growth‖, Synergy Research Group, April 27, 2015, Retrieved
from https://www.srgresearch.com/articles/aws-still-bigger-its-four-
main-competitors-combined-despite-surging-growth

[82] « Protection of personal data », European Commission, Retrieved from
http://ec.europa.eu/justice/data-protection/

[83] G. Furukawa, ―Sony's Two Big Mistakes: No Encryption, and No
Backup‖, January 26, 2015, Retrieved from
http://java.dzone.com/articles/sonys-two-big-mistakes-no

[84] « Apple denies iCloud, Find My iPhone security breach: Only 'very
targeted attacks' », Tech Times, September 7, 2014, Retrieved from
http://www.techtimes.com/articles/14717/20140907/apple-denies-
icloud-find-my-iphone-security-breach-only-very-targeted-attacks.htm

[85] ―Fog Computing, Ecosystem, Architecture and Applications‖, Research
at CISCO, Retrieved from
http://www.cisco.com/web/about/ac50/ac207/crc_new/university/RFP/rf
p13078.html

[86] J. Corbett et al., ―Spanner: Google’s globally distributed database‖,
ACM Transactions on Computer Systems (TOCS), Volume 31, Issue 3,
2013

