
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

495 | P a g e

www.ijacsa.thesai.org

Adaptive Lockable Units to Improve Data

Availability in a Distributed Database System

Khaled Maabreh

Faculty of Information Technology, Zarqa University, Jordan

Abstract—Distributed database systems have become a

phenomenon and have been considered a crucial source of

information for numerous users. Users with different jobs are

using such systems locally or via the Internet to meet their

professional requirements. Distributed database systems consist

of a number of sites connected over a computer network. Each

site deals with its own database and interacts with other sites as

needed. Data replication in these systems is considered a key

factor in improving data availability. However, it may affect

system performance when most of the transactions that access

the data contain write or a mix of read and write operations

because of exclusive locks and update propagation. This research

proposes a new adaptive approach for increasing the availability

of data contained in a distributed database system. The proposed

approach suggests a new lockable unit by increasing the database

hierarchy tree by one level to include attributes as lockable units

instead of the entire row. This technique may allow several

transactions to access the database row simultaneously by

utilizing some attributes and keeping others available for other

transactions. Data in a distributed database system can be

accessed locally or remotely by a distributed transaction, with

each distributed transaction decomposed into several sub-

transactions called participants or agents. These agents access

the data at multiple sites and must guarantee that any changes to

the data must be committed in order to complete the main

transaction. The experimental results show that using attribute-

level locking will increase data availability, reliability, and

throughput, as well as enhance overall system performance.

Moreover, it will increase the overhead of managing such a large

number of locks, which will be managed according to the

qualification of the query.

Keywords—Granularity hierarchy tree; Lockable unit; Locks;

Attribute level; Concurrency control; Data availability; Replication

I. INTRODUCTION

Distributed database system (DDBS) may be defined as a
collection of multiple, logically interrelated databases
distributed over a computer network [12]. This system stores a
huge amount of data that have been accessed by a large and
increasingly growing number of users. Distributed database
system is a crucial source of information for numerous users
who access the database locally or via the Internet for different
tasks. To meet the professional requirements of users, data
must be available at all times, because data availability plays a
major role in the success of information systems.

Data can be accessed by a local transaction when it does
not require other sites, or by a distributed transaction in which
two or more database sites are involved [12]. Each site has a
local transaction manager responsible for coordinating

transactions across one or more database resources [1, 2].
During transaction execution, the lock manager locks the
required database items by sending a message to the central
site (in case a central lock manager location is used). If the
requested lock is granted, then the lock manager sends a
message to the requested site; otherwise, it waits. In case of a
write operation, the lock manager must lock all copies of the
requested database item in all sites where it exists, but in a
read operation, the transaction is executed at a local copy that
exists or at any copy at any available site [4,13,16].

In the study of locking techniques, the size of the lockable
units clearly has a major effect on the concurrency control and
the availability of data, because while the database unit is
locked, it will be unavailable for a time. Thus, if the locked
unit is a table, then no other transaction can access that table
in a conflict mode until the lock is released. According to this
problem, the study on the means to reduce database units,
which in turn increases the database resources, became
necessary.

The present research proposes a new approach for
increasing the data availability by suggesting the attribute as a
new lockable database unit. This technique may be
implemented by increasing the database hierarchy tree by one
more level down to include the attributes as lockable units
instead of the entire row. The proposed approach may allow
several transactions to access the same database row
simultaneously, which may increase the degree of concurrency
and the availability of data. This research uses three-phase
locking instead of two-phase locking protocol. Three-phase
locking protocol has a pre-commit phase to prevent the
blocking state. To simplify the implementation, a central
locking approach is considered, which means there is one site
that has a lock manager and must coordinate with other sites
in the system. Locking can be granted on some attributes of a
row, including the key of that row if no conflicts among
transactions could occur as the compatibility matrix adheres
[4,12,13], as shown in Table I.

TABLE I. COMPATIBILITY MATRIX

 IS IX S SIX X

IS T T T T F

IX T T F F F

S T F T F F

SIX T F F F F

X F F F F F

This research is funded by the Deanship of the Research and Graduate
Studies in Zarqa University /Jordan

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

496 | P a g e

www.ijacsa.thesai.org

TABLE II. SYSTEM PARAMETERS

The remainder of this paper is organized as follows.
Section 2 presents the background and literature review.
Section 3 presents the proposed approach. Section 4 discusses
the experiments and the produced results. Section 5 contains
the conclusion.

II. BACKGROUND

The problem of data availability and the degree of
concurrent transactions have been discussed by several
researchers [2, 3, 8, 10] who concentrated on a strategy of
dividing the database into variable size units. The size of such
units is dynamically managed by the lock manager based on
user needs and competition. This competition increases more
in a distributed database system than in a centralized one
because of the higher number of users.

A proposed simulator for a distributed object-oriented
database to evaluate the concurrency control and performance
of the system is presented by Norvag et al. [7]. Their
simulation results show the comparison of performance and
response times for two concurrency control algorithms,
namely, timestamp ordering and two-phase locking. Their
results show that two-phase locking outperforms timestamp
ordering, specially in long transaction workload, because of
the very high abortion rate in timestamp ordering. Defining
new lock types and their compatibility matrix in DDBS is
presented by Zhangbing et al. [17]. These types are produced
to overcome the disadvantages of the traditional locking
mechanism in a DDBS. Their experimental results show the
enhancement of control and flexibility of locks with improved
2PL protocol and multi-granularity locking. Their improved
protocol effectively ensures the serializability of scheduling
transactions and decreases the communication costs while
locking. It also obtains better transaction concurrency than the
traditional mechanism.

Sorapak et al. [15] studied the evaluation of distributed
database system performance by using MySQL cluster. Eight
nodes are used to test their system. The results of their
research showed the relations between query processing time
and number of system nodes, which indicates that the
processing time is improved when the number of system
nodes is increased.

A Distributed Database Performance Tradeoff among
fairness, isolation, and throughput features is studied by Jose
and Daniel [6]. Their study showed that only two of the three
features can be fulfilled simultaneously. Fairness means the
received transactions are processed immediately without
delay, isolation means a transaction cannot block or abort
another transaction, and throughput means that the system will
run a transaction without interference among them because of
synchronization independence. Maabreh and Al-Hamami [14]
implemented a study on the approach to increase the database
hierarchy tree. Their study was based on a two-phase locking
protocol with three sites, which represent a limited number of
sites in terms of the possibility of producing insufficient
results.

III. PROPOSED APPROACH

A. Data Set

To investigate the proposed idea of decreasing the size of a
lockable unit, a homogeneous distributed database system
consisting of m equivalent sites will be implemented. Each
site has its own database, which can be accessed locally or
remotely. The number of sites is extended to m instead of
three as we studied in [14], and the numbers of database
objects and concurrent transactions are increased to obtain
more significant results and conclusions. In case of update
operations, one copy of each object will be selected as a
master copy and will be located at a specific site. The sample
tables in this study have to be replicated over the system as 1-
D partial replication (some objects to all sites) [10]. These
tables are randomly filled with 10,000 rows as a sample of
virtual data and distributed across the system. Each table has
one master copy placed at one site, while the other copies are
considered as replicas. To simplify the analysis of the
produced results, an example of 40 sites is chosen for study.
Transactions with different operation modes are also randomly
generated. Table II shows the details of the system parameters
that will be used in the simulation program.

B. Approach Methodology

Fig. 1 shows a sample of a multiple granularity tree, which
represents the organization of data within a database.
Granularity is a dynamic size of the database item, which may
be locked by a transaction. Multiple granularity locking will
allow several transactions to be executed at different sizes,
ranging from whole database to a specific row, because
transactions often do not need to lock at the higher granularity
and therefore, free up objects that would otherwise still be
locked. This research presents an attribute as a new granule
size, because whenever the granule is being as small as
possible, then more transactions could be executed
simultaneously, which increases concurrency in the system.

Before building the simulation program, three essential
components were implemented: the transaction manager, the
lock manager, and a tree to represent the database objects. The
transaction manager is responsible for keeping track of the
executed transactions from the start state to the terminated
state, whether its commit or abort. The lock manager is
responsible for acquiring the locks needed by the transaction
and ensuring that no conflict may occur among transactions by

Parameter Description Values

Num-of-sites Number of sites in the system M

Num-of-DB Number of databases in each site 1

Rep-degree Degree of replication 0.2–0.8

Num-of-tables Number of tables in a database 50

Num-of-trans Number of transactions in the system 5000

Min-trans-size Minimum number of operations 1

Max-trans-size Maximum number of operations 20

OP-Mode Operation mode R, RW, W

Queue-Length Maximum queue length 30

CheckT Mean time to check a lock 1 ms

SetT Mean time to set a lock 1 ms

RelT Mean time to release a lock 1 ms

Ex-Time Mean time to process a data object 20–150 ms

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

497 | P a g e

www.ijacsa.thesai.org

adhering to the compatibility matrix (Table I). The lock
manager uses the three-phase locking protocol by assuming
that one site could fail in the system, because multiple site
failures could cause a problem as proved in [11]. Three-phase
locking protocol is a nonblocking protocol because it includes
a pre-commit phase. This phase is reached if all transaction
participants have voted to commit; in this case, the transaction
is committed unless a site fails as a timeout period may
indicate. Otherwise, and if this state is not reached, the
participant will be aborted and the blocked resources will be
released. Finally, a hierarchy tree representing the multiple
granularity of the database objects (Fig. 1) is implemented by
using NetBeans IDE 8. Deadlock can be detected by using a
predefined timeout. Data used in this approach are virtual, so
the total execution time for a database object can be guessed
in advance according to the system parameters shown in Table
II and by using the following formula:

Total-processing-time= CheckT + SetT + RelT + Max
(Ex-Time). Given that the timeout is considered a time limit
on how long a transaction may be active, when a transaction
exceeds this time, the transaction has a deadlock.

As an example, the maximum total execution time for a
specific database object could be 153 ms (i.e., 1+1+1+150) by
assuming that the object has a maximum processing time.
Thus, if the waiting time for the database object that has been
locked by a transaction exceeds 153 ms, then the system has a
deadlock and must be solved. A drawback of this deadlock
detection approach is the long time taken to detect a deadlock.

C. Approach Description

This research aims to include the attributes that would be
the new lockable units for allowing several transactions to
access the same database row concurrently. This approach
may increase the database resources, which would increase the
concurrency and throughput in the system and decrease
deadlock occurrences. In contrast, the overhead may be
increased, but it will be managed as will be explained in a
later part of the research. Fig. 1 shows the suggested attributes
as new lockable units; the attributes may be locked
individually when a transaction requires only some attributes
of the database row. This ―locking‖ can be performed as
explained in [9] and as follows.

1) The database row is locked in an intent exclusive mode

(IX).

2) The key of that row is locked in a shared mode (S).

3) The required attributes can be locked by the requested

transaction in read or write.

4) Consistency constraints between attributes are

considered. For example: if A=B+C is a constraint among the

attributes A, B, and C, then when any transaction needs any of

those attributes, the lock manager locks all of them to satisfy

that constraint.
The following example may illustrate the importance of

the idea.

Let R (A1, A2, A3, A4, ... , An) be a database relation
(table). A1, A2, ..., An are the attributes of R, A1 is the key, and
let t=<v1, v2, v3, v4, ..., vn) be any tuple in R. Furthermore,

consider the following three transactions T1, T2, and T3, which
need to access the same database row according to the
following scenarios:

T1: Update R Set A2= A2+N, where A1=v1;

T2: Update R Set A4= A4+M, where A1=v1; and

T3: Select An from R, where A1=v1;

where v1 is the value of the attribute A1 in the same row,
and N and M are some values. In the current situation of a
database, these transactions cannot be executed
simultaneously because the database row is considered as one
block and can be locked by only one transaction; the other
transactions will be waiting until the locked row is released. In
this example, T2 has to wait for T1 to finish (because the data
requested by T2 are not yet available), and T3 has to wait for
both T1 and T2 to finish for the same reason of T2. This
scenario is an example of increasing the average waiting time
and reducing the data availability.

When the proposed idea is implemented, all the three
transactions in this example will be executed at the same row
simultaneously. T1, T2, and T3 will lock the database row in an
intent exclusive mode (IX), and thus the key of that row will
be locked as a shared (S), T1 will lock A2 as an exclusive (X),
T2 will lock A4 as an exclusive (X), and T3 will lock An as
shared (S). This technique may reduce the waiting time and
increase the average response time and data availability.

To implement the suggested approach, an event-driven
simulation program was built by using Java Netbean IDE
version 8.1. The simulator contains the necessary components
for a distributed database system, as shown in Fig. 2.
Transactions are treated as threads to be executed concurrently
and managed by the transaction manager. The lock manager is
responsible for locking and releasing the database items as the
transaction need arises, as well as communicates with the
transaction manager and with the database through a network.
For simplicity of analysis, the network model is assumed to be
LAN of 5 ms inter-processing time based on Gray and Reuter
measurement [5].The database is implemented as a hierarchy
tree representing the granules. Transactions are then requested
by the granule size as needed.

Fig. 1. Sample of Multiple Granularity

DB

T1

B1

R1

A1

R2
Rn

B2 Bm

Tk T2

A2 A3 AL

Database

Relations

Blocks

Tuple
s

Attributes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

498 | P a g e

www.ijacsa.thesai.org

Fig. 2. Simulation Program Architecture

IV. DISCUSSION

This section demonstrates the results of the series of
experiments conducted to evaluate the effectiveness of the
proposed approach. Five hundred transactions are generated
randomly as a sample run with different operation modes.
Experiments are repeated several times with different random
numbers of transactions under different degrees of replication
to observe and evaluate the system behavior. The simulation
program is running in both cases: one when the database row
has the lowest granule, and the other when allowing the
transaction to access specific attribute(s) of the row. Then, the
results concerned with average execution time, average
waiting time, and the overhead are collected and analyzed.

Fig. 3 shows the average execution time of the system. The
average execution time of the proposed approach is less than
the average execution time of the current lock mechanism,
which means that the transaction almost does not need much
time to acquire its requested operation because of the attribute

sharing among transactions. The locks are incrementally and
dynamically acquired, so the transaction may request an
attribute of the row while the other attributes may be available
or acquired by another transaction. This finding means that the
transactions access the needed attributes without delay, which
reduces the average execution time.

The average waiting time of the proposed approach is also
less than that of the current lock mechanism (Fig. 4) for the
same reason. The overhead that occurs because of attribute-
level locking is managed by locking the database row when
the transaction requires numerous attributes of the same row.
Fig. 5 shows the increasing overhead and the management of
locks at the row level instead of the locking of many
attributes. An investigation of Figures 3 to 5 reveals that the
system performance of 270, 280 and 290 transactions as a
workload seems to be the same in terms of average execution
time, average waiting time, and overhead (i.e., The two lock
mechanisms operate the same, which is the lock manager's
decision). This outcome is attributed to the numerous
attributes of the same row a transaction requires, causing the
lock manager to return one level up on the tree and attempt to
lock the row. This finding is the same result as the one that
occurred when a transaction needs multiple rows of the same
table; in this case, the lock manager locks the whole table in
order to reduce the overhead.

Reducing the average execution time and average waiting
time increased data availability because the times to lock and
access the data are decreased. Transactions in this case may
obtain the data immediately or by less waiting time as much as
possible. For example, by using the company schema, Fig. 9.2
in Elmasri and Navathe (2015) [4], the following two
transactions will be processed together at the same database
row.

T1: Update Employee Set Salary=Salary+N, where
SSN=M;

T2: Update Employee Set Super-ssn=new Super-ssn,
where SSN=M; where M is the same employee number. This
example shows that the lock manager locks SSN because both
transactions are shared, and then the salary is locked
exclusively for T1 and the super-ssn as an exclusive for T2.
This result means that, both transactions T1 and T2 will be
executed concurrently because the data are available.

Centralized Transaction Manager

Centralized Lock Manager using 3PL

Site 1 Site 2 Site 3 Site N

DB1 DB2 DB3 DBN

Transaction 1 Transaction 2 Transaction M

Network

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

499 | P a g e

www.ijacsa.thesai.org

Fig. 3. Average Execution Time

Fig. 4. Average Waiting Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

A
v
er

ag
e

E
x
ec

u
ti

o
n

 T
im

e

Number of Transactions

The Proposed Approch The Current Lock Mechanism

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0
1
2

0
1
3

0

1
4

0
1
5

0
1
6

0
1
7

0

1
8

0
1
9

0
2
0

0

2
1

0
2
2

0
2
3

0
2
4

0

2
5

0
2
6

0
2
7

0

2
8

0
2
9

0
3
0

0

3
1

0
3
2

0
3
3

0
3
4

0

3
5

0
3
6

0
3
7

0

3
8

0
3
9

0
4
0

0
4
1

0

4
2

0
4
3

0
4
4

0

4
5

0
4
6

0
4
7

0

4
8

0
4
9

0
5
0

0

A
v
er

ag
e

W
ai

ti
n

g
 T

im
e

Number of Transactions

The Proposed Approch The Current Lock Mechanism

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

500 | P a g e

www.ijacsa.thesai.org

Fig. 5. System Overhead

V. CONCLUSIONS AND FUTURE WORK

Distributed database systems are considered crucial
sources of information. Therefore, data contained in such
systems must be available at all times as much as possible to
satisfy the user's professional needs. To increase the data
availability, this paper proposes a new adaptive approach to
increase the database items by reducing the size of the
lockable units. This reduction can be carried out by locking
the attributes instead of the database row, which remains as
the other attributes become available for other transactions.
The experimental results showed that using attribute-level
locking increases the degree of concurrency by increasing the
data availability. The overall system performance is also
improved because the average waiting time is decreased. The
increasing overhead is managed by returning the lock at the
row level when a transaction requires many attributes of the
same row. The proposed approach is suitable with short
transactions of mixed read and writes operations, especially
when the degree of replication is less than 50%.

Further work for studying the proposed approach could be
implemented by having more sites, larger data set and a higher
workload, as well as more practical examples, experiments
and comparison with other technologies will also be studied as
a future work to improve the quality of the research.

REFERENCES

[1] Bernstein P. and Newcomer E., ―Principles of Transaction Processing
for the Systems Professional‖, 2nd ed. Morgan Kaufmann Publisher,
2009.

[2] Chandy K., Misra J. and Hass L., ―Distributed Deadlock detection‖,
ACM Transactions on Computer Systems, Vol. 1, No. 2, 1983.

[3] Croker, A. ―Improvements in Database Concurrency Control with
Locking‖, Journal of Management Information Systems; Vol. 4 Issue 2,
2001.

[4] Elmasri R. and Navathe S. ―Fundamentals of Database Systems‖,
Pearson Addison Wesley, 7th edition, 2015.

[5] Gray J. and Reuter A., ―Transaction Processing: Concepts and
Techniques‖, San Francisco, Calif.:Kaufmann, 2011.

[6] Jose M. Faleiro and Daniel J. Abadi. ―FIT: A Distributed Database
Performance Tradeoff‖, IEEE Data Engineering Bulletin, 38(1): 10-17,
2015.

[7] Kjetil Norvag, Olav Sandsta, and Kjell Bratbergsengen, ―Concurrency
Control in Distributed Object-Oriented Database Systems‖, Advances
in Databases and Information Systems, 1997.

[8] Maabreh K. and Hamami A., ―Increasing database concurrency control
based on attribute level locking‖, on the proceedings of International
Conference on Electronic Design, ICED, IEEE, pp1-4, Issue 1-3,
Malaysia, Penang. Dec. 2008.

[9] Maabreh K. and Hamami A., ―Implementing New Approach for
Enhancing Performance and Throughput in a Distributed Database‖,
The International Arab Journal of Information Technology, Vol. 10, No.
3, May 2013.

[10] Matthias N. and Matthias J., ―Performance Modeling of Distributed and
Replicated Databases‖, IEEE transactions on knowledge data
engineering, Vol.12 No.4, pp 645-672, July 2000.

[11] Muhammad Atif, ―Analysis and Verification of Two-Phase Commit
&Three-Phase Commit Protocols‖, International Conference on
Emerging Technologies (ICET), pp:326-331, Islamabad,19-20 Oct.
2009.

[12] Ozsu T. and Valduriez P., ―Principles of distributed database systems‖,
Springer science and business, 3rd edition, New York, 2011.

[13] Silberschatz A., Korth H. and Sudarshan S. ―Database System
Concepts‖, McGraw-Hill, New York, 6th edition, 2010.

[14] Sinha M. ― Constraints: consistency and integrity‖, ACM SIGMOD, Vol.
13, Issue 2, New York, 1983.

[15] Sorapak Pukdesree, Vitalwonhyo Lacharoj and Parinya Sirisang,
―Performance Evaluation of Distributed Database on PC Cluster
Computers using MySQL Cluster‖, Proceedings of the World Congress
on Engineering and Computer Science Vol. I WCECS San Francisco,
USA. 2010.

[16] Weikum G. and Vossen G., ―Transactional Information Systems,
Theory, Algorithms and the Practice of Concurrency Control and
recovery‖, Morgan Kaufman Publishers, 2002.

[17] Zhangbing Li, Zilan Zhu and Shaobo Zhang, ―Locking Mechanism for
Distributed Database Systems‖, Journal of Networks, Vol. 9, No. 8,
2014.

0

10

20

30

40

50

60

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0
1
1

0
1
2

0
1
3

0
1
4

0
1
5

0
1
6

0
1
7

0
1
8

0
1
9

0
2
0

0
2
1

0
2
2

0
2
3

0
2
4

0
2
5

0
2
6

0
2
7

0
2
8

0
2
9

0
3
0

0
3
1

0
3
2

0
3
3

0
3
4

0
3
5

0
3
6

0
3
7

0
3
8

0
3
9

0
4
0

0
4
1

0
4
2

0
4
3

0
4
4

0
4
5

0
4
6

0
4
7

0
4
8

0
4
9

0
5
0

0

M
ea

n
 N

u
m

b
er

 o
f

L
o
ck

s

Number of Transactions

The Proposed Approch The Current Lock Mechanism

