
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

155 | P a g e

www.ijacsa.thesai.org

Cross Site Scripting: Detection Approaches in Web

Application

Abdalla Wasef Marashdih and Zarul Fitri Zaaba

School of Computer Sciences,

Universiti Sains Malaysia, 11800 Minden,

Pulau Pinang, Malaysia

Abstract—Web applications have become one of the standard

platforms for service releases and representing information and

data over the World Wide Web. Thus, security vulnerabilities

headed to various type of attacks in web applications. Amongst

those is Cross Site Scripting also known as XSS. XSS can be

considered as one of the most popular type of threat in web

security application. XSS occurs by injecting the malicious

scripts into web application, and it can lead to significant

violations at the site or for the user. This paper highlights the

issues (i.e. security and vulnerability) in web application

specifically in regards to XSS. In addition, the future direction of

research within this domain is highlighted.

Keywords—Web Application Security; Security; Software

Security; Security Vulnerability; Cross Site Scripting; XSS; Genetic

Algorithm; GA

I. INTRODUCTION

Web applications are becoming more important and
growing in number as indicated by web browsers being used
by almost everyone. Web applications have entered all areas,
either for leisure or work, to manage sensitive personal and
financial information [1]. These web applications are always
available from anywhere with an Internet connection, and they
enable us to communicate and collaborate at a speed that was
unthinkable just a few decades ago. However, the presence of
security vulnerabilities of web application can steal private
information (e.g., cookies and session) and perform other
malicious operations, and thus limit the use of applications [2].

XSS vulnerability is among the top web application
vulnerability according to OWASP top 10 vulnerabilities [4].
The vulnerabilities can lead to significant violations at the site
or for the user by injecting malicious scripts to be accepted
later by the user. However, if there is no validation on the input
of the application, then the malicious code can steal sessions,
cookies, or inject and show private data for the user [5,6].

XSS vulnerability is among the top web application
vulnerability according to OWASP top 10 vulnerabilities [4].
The vulnerabilities can lead to significant violations at the site
or for the user by injecting malicious

The focal point of the study is to investigate the problems,
challenges, and approaches to detect XSS vulnerabilities. This
paper summarizes the XSS vulnerability on web application.
Section II discusses the concept of web application. Section III
further explains web application security. Section IV describes
web application vulnerability. Section V and VI narrow the

discussion in regards to XSS and the detection approaches.
Section VII highlights the related work that have been
gathered. Section VIII is a discussion of related work and
finally ending with conclusion and future works.

II. WEB APPLICATION

A web application utilizes web and browser technologies to
perform tasks over a network using a web browser [7]. The
web applications are stored on the web servers, where all their
data are stored. Thus, users do not need to spend extra time on
hard drives for installation. Some of the popular technologies
that help software developers create dynamically generated
web pages are PHP, ASP.NET, and Java server pages (JSP)
[8].

PHP is easy to use for learning and for building websites,
whereas PERL syntax is difficult for beginners to handle.
ASP.NET is a product of Microsoft, is only possible in a
Windows machine, and is not free. By contrast, PHP is
completely free and is an open source. JSP is slower than PHP
because JSP libraries are often written for “correctness” and
readability but not for performance. Python hosting is hard to
find and expensive, while cheap PHP hosting is everywhere.
While PHP can mix with HTML in their source code, Python
cannot be mixed with HTML (because it needs a template
library). Therefore, PHP is the most popular scripting language
and is the most commonly used in web applications.

Fig. 1. Usage Statistics of Web Technologies [8]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

156 | P a g e

www.ijacsa.thesai.org

Fig. 1 shows that PHP is used by more than 28,782,925
websites, thus making it the most used language. PHP is
followed by ASP.NET. Statistics show that these two
languages dominate all other languages. The number of PHP
websites is greater than that of other websites using other web
technologies. The user chooses the type of technology to build
the website depending on his/her knowledge and the
requirements of the facilities offered by the technologies.
However, the lack of security of PHP web applications is
caused by many programmers’, because they do not have
enough experience in securing their codes, which makes the
applications flawed.

III. WEB APPLICATION SECURITY

Web application security is the practice of safeguarding
confidential information stowed online from unlawful access
and alteration. It is accomplished by imposing strict policies
and practices [12]. In the software domain, security
susceptibility is a flaw which could empower an attacker to
compromise the veracity, accessibility, or confidentiality of a
product. Several web applications set up on the Internet are
subjected to security vulnerabilities. According to [13], more
than 80% of the websites had experienced at least one grave of
vulnerability. Web application security is expected to possess
the security properties mentioned below:

 Input Authenticity: The user input should be
authenticated before its use by the web application.

 State Integrity: The application state should be
maintained unconstrained.

 Logic Exactness: The application logic should be
implemented properly, as conceived by the developers.

A web application can be safeguarded through multiple
means – for example, administering secure configuration,
deploying a secure coding practice, conducting vulnerability
evaluation, and employing a web application firewall.
However, the total safeguard of the application is not possible.
Web applications entail a defence-in-depth tactic to evade and
alleviate security vulnerabilities. According to [14], the
following is the threat model:

 The application is nonthreatening and hosted on a
reliable and hardened infrastructure, i.e. the trusted
computing base.

 The attacker hold the potential to regulate or influence
the contents or the order of web requests directed
towards the web application.

Sometimes, a web application might fail to hold the input
validity property. In such a case, the attacker could initiate an
XSS attack to thieve the session cookie of the victim, thereby
causing an abuse of state integrity property. However, as
mentioned earlier, an exhaustive safeguard of the application is
impossible. The emphasis of this paper is on vulnerabilities in
input validation, considering that input validity has been noted
as the top security vulnerability for web applications (for
example, XSS and SQL injection) [16]. In the next section, few
of the major vulnerabilities of web applications are outlined.

IV. WEB APPLICATION VULNERABILITY

Application susceptibility is described as a system
imperfection or weakness which could be manipulated to
compromise the application’s security. Attackers are able to
abuse the application susceptibility to trigger a cybercrime
once they have noted a weakness or vulnerability which can be
overpowered [16]. OWASP is a security community which
emphasises on enhancing software security. In 2010, it came
up with its annual report that noted the topmost threats and
vulnerabilities in web application development; the report was
updated in 2013 [4]. Here are the 10 key vulnerabilities
identified by OWASP: injection, broken authentication and
session management, XSS, insecure direct object references,
security misconfiguration, sensitive data exposure, missing
function level access control, cross-site request forgery
(CSRF), use of components with known vulnerabilities, and
invalidated redirects and forwards.

XSS is the most susceptible security threat according to the
list [2,4]. The latest report was released in 2013 (Fig. 2), and
there has been no new report after that. Veracode, an
application security enterprise, has released its state of software
security from 2013 until 2015. The report gives information
about the number of vulnerabilities for every web technology
[17]. A study covering the entire web applications noted that
XSS accounts for 25 percent of the vulnerabilities [18].

Fig. 2. 2011 vs 2012 vs 2013 Web Application Trends [18]

XSS offers an opening to the invader or hacker to enter the
webserver database, mutilate websites, seize the web browser
of a user remotely, and compel him/her to take an unfamiliar
route [18]. Veracode’s state of software security report
emphasised on application development and scrutinised over
200,000 individual applications from the period October 2013
to March 2015 [16].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

157 | P a g e

www.ijacsa.thesai.org

Fig. 3. Comparison of Critical Vulnerability Types [16]

As can be seen in Fig. 3, around 86 percent of PHP and
ColdFusion applications comprised at least one XSS
susceptibility. SQLi is a precarious and easy-to-abuse web
application susceptibility. It comprises 62 percent of
ColdFusion and 56 percent of PHP applications. ColdFusion is
feeble when it comes to supporting OOP, and hence it might
jeopardise input validity. Around 58 percent of PHP
applications face issues with credentials management, whereas
73 percent of PHP applications involve cryptographic
problems. According to [18], XSS vulnerability is the foremost
susceptibility among the existing web applications. It is termed
as the foremost vulnerability as it offers the basis for other
kinds of attacks, including CSRF and session hijacking [19].
Moreover, XSS can inflict damage on website users as well as
owners. It easily manipulates and is tough to alleviate. The next
section deliberates and elucidates XSS susceptibility.

V. CROSS SITE SCRIPTING (XSS)

XSS is termed as a key threat to web application security.
Research is in progress to detect an effectual and convenient
mode of analysing the source code of web applications and
eliminating the threat. XSS is triggered by inserting spiteful
scripts into the application, causing substantial abuses for the
user or at the site. The malicious scripts are inserted at a place
where an application admits user input; in case the input is not
authenticated, the malicious code can thieve cookies or user
accounts, or transfer private information [5,6]. These
contaminated data might comprise portions of HTML code (for
example, JavaScript) which may run into the page being
attacked.

According to [19], there are four classes of XSS attacks: (i)
stored (persistent); (ii) reflected (non-persistent); (iii) induced-
XSS; and (iv) Dom-based XSS. The former two are the most
commonplace, while the latter two are lesser known XSS
attacks.

A. Stored (persistent) XSS

This susceptibility is triggered when the infused malicious
code is forever stored on the victim servers. First, the attacker
attempts to detect susceptibility in the web application so that
he/she can inject the malicious script. Next, the attacker robs

the confidential information of the users or inflicts other kinds
of damages or risks [19].

The threat is more pronounced when this malicious script is
forever stored on the server. The malicious script is affected
when a user accesses the information by means of the web
application, thus allowing the attacker access to it. According
to [20], the persistent XSS is more menacing and devastating
compared to other types of XSS vulnerabilities. Pure statistical
analysis gives a false positive rate that is on the higher side.

B. Reflected (non-persistent) XSS

There is a difference between reflected XSS attacks and
stored XSS attacks. Reflected XSS attacks manipulate website
elements which reverberate clients’ supplied data, including
forms. The injected code is not located on the server. The
attacker creates a crafted URL that involves a malicious script
code, enticing the victim to believe that the URL is reliable
[21]. The malicious links are delivered to victims through an
email or by embedding the link into a web page which is
located on some other server. The injected code is despatched
to the web server of the attacker once the user clicks on the
link, and the attack is then launched on the target browser.

C. DOM-based XSS

A Dom-based XSS attack is triggered on the client side
[19]. DOM allows dynamic scripts, including JavaScript, to
reference the document’s components – for example, a session
cookie or a form field. Such susceptibility could be triggered
when an active content (for example, a JavaScript function) is
altered by a specially created request, allowing a DOM element
to be manipulated by an attacker.

D. Induced XSS

In an induced XSS attack when a web server has an HTTP
response splitting susceptibility [7]. The attacker is able to
abuse the HTTP header of the server’s response in this case.
Both Dom-based XSS and induced XSS attacks are uncommon
but still mentioned here to ensure the classification is
exhaustive.

In contemporary web applications, XSS is a security issue
that is exploited the most often [16,17]. Persistent and non-
persistent vulnerability can be observed on either server side or
client side codes. However, DOM XSS is only noted in the
client side [19]. Much research has concentrated on detecting
XSS vulnerability [23,24,25,26,27]. However, research is still
on to determine an effectual and suitable mode of analysing the
source code and identifying the XSS susceptibility in web
applications.

VI. DETECTION OF XSS VULNERABILITY

Detecting susceptibility is a process of locating the
weaknesses stated in the application’s source code. Several
web applications utilise the values furnished by users directly
in the HTML exhibited in the browser [22]. This input can be
fashioned to alter the contents of the web page that the victim
can see, thus vesting the control with the attacker. The most
standard approaches to spot vulnerabilities are categorised into
dynamic analysis, static analysis, and hybrid analysis [15].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

158 | P a g e

www.ijacsa.thesai.org

A. Static Analysis

Static analysis establishes the fundamental reason behind
the security issue. It can detect errors in the initial stages of
development and before the program is executed for the first
time. The code coverage in static analysis is better compared to
dynamic analysis. However, it is not much accurate as it is
unable to access runtime information for the evaluated program
[15]. Considering the nature of static analysis, approximations
are carried out, which might lead to several false positives, i.e.
reported vulnerabilities which are not truly vulnerabilities. [11]
made a comparison of the different static analysis methods
deployed to find out the various kinds of vulnerabilities from
the program source code (lexical analysis, data flow analysis,
symbolic execution, type inference, and constraint analysis).
The data flow analysis approach is deployed to gather dynamic
data from the source code. Static taint analysis is a special case
of such type of analysis.

B. Dynamic Analysis

Dynamic analysis takes place when a security tool
dynamically strikes the running application on the basis of
thousands of identified vulnerabilities and attack designs [15].
In spite of utilising static analysis to locate vulnerabilities in
different domains, this method is still ineffective as it has a
tendency to come up with false positive and false negative
outcomes. Dynamic analysis exposes vulnerabilities by
examining the information attained during program
implementation.

C. Hybrid Analysis

The hybrid approach combines static and dynamic analysis,
wherein the dynamic analysis methods build up on the false
alarms of the static analysis methods and offer accurate results.
A technique to assist with security auditing and testing offers
probabilistic alarms on possibly susceptible code statements.

[10] made a comparison of malware detection approaches
on the basis of the dynamic, static, and hybrid analyses. The
outcomes of the rates of detection were compared over a
considerable number of malware families (Zbot, Security
Shield, Smart HDD, Winwebsec, ZeroAccess, Harebot) [10].
The fully static approach is almost effectual in the majority of
the circumstances based on API calls. The outcomes of the
experiment suggest that a forthright hybrid approach might not
be better than a fully dynamic detection or a fully static
detection. Conversely, a static/dynamic methodology does not
provide a steady improvement.

D. Genetic Algorithm

A genetic algorithm is a search heuristic which simulates
the natural selection process. This heuristic (sometimes known
as a metaheuristic) is usually used to come up with suitable
solutions that can address search and optimisation-related
issues. Genetic algorithms are founded on the evolutionary
notions of natural selection and genetics. Thus, they signify an
intelligent manipulation of a random search deployed to
address optimisation issues [9]. The elementary genetic
algorithm steps are converted into a pseudocode (Fig. 4).

Fig. 4. Genetic Algorithm Pseudocode [27]

1) Initial population: The most customary kind of

encoding or representing chromosomes in genetic algorithms

is the binary format. The genetic algorithm population is a

suite of likely solutions for a problem.

2) Fitness function: This is the assessment of

chromosomes as to how effective they are at addressing the

issue. The closer the chromosome is to address the issue, the

higher is its fitness value.

3) Selection: This stage intends to choose the fittest

chromosome to reproduce as per certain selection techniques.

A chromosome is chosen as per the fitness value to carry on in

the next generation.

4) Crossover and mutation: This is an offspring produced

by perturbing the chosen candidates using genetic operators –

for example, mutation rate and crossover rate. The crossover

operation combined two chromosomes to reproduce a new

solution with better traits. On the other hand and according to

specific mutation probability, the mutation operation occurs

by altering the chromosome values.
The primary individual population is generated by the high-

quality GA of the individuals. A solution is represented by
each individual for the problem [3]. Table (1) presents a review
of the approaches, areas of focus, and limitations of detecting
XSS vulnerability.

TABLE I. REVIEW APPROACHES AND THEIR FACILITIES IN DETECTION

XSS VULNERABILITIES

Article Approach Area on focus Limitation

Shar and
Tan [23]

Static
Analysis
(JAVA)

Detection of SQL
Injection and XSS
vulnerabilities.

High false positive
rate in their
detection results.

Toma and
Islam [24]

Dynamic
Analysis
(Javascript)

Detection XSS
vulnerability and
applied it during the
run.

They focused on
some types of XSS
vulnerability, and
their results still not
accurate.

Shar, et al.
[25]

Hybrid
Analysis
(PHP)

Detection SQL
injection and XSS
vulnerabilities.

It is not accurate as
full dynamic or
static approach.

Avancini
and
Ceccato
[26]

Genetic
Algorithm +
Static
Analysis
(PHP)

Detection XSS
vulnerability in PHP
Web applications.

They detect
reflected XSS only.

Hydara et
Genetic
Algorithm +

Detection XSS
vulnerability in

The other language
is still out side of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

159 | P a g e

www.ijacsa.thesai.org

al. [27] Static
Analysis
(JAVA)

JAVA. their area.

As shown in Table 1, [23] use of static analysis still
generates false negative and false positive results; and this
finding is the main limitation of static analysis while it is
executed before the run.

Hybrid analysis combines static and dynamic analyses as a
better approach, but the combined approach was focused on to
benefit from the two types of analyses (static and dynamic)
[25]; nevertheless, it still has some problems in terms of the
accuracy of its result, such as the training data.

In PHP, [26] detected one type of reflected XSS
vulnerability. On the other hand, [27] proposed an approach
based on static analysis with GA on Java web applications.
Their approach combines the detection approach from [26] and
the removal approach from [25]. [27] approach detects XSS
vulnerabilities with significant results as compared with the
approach of [25]. However, their approach is only available for
Java web application.

VII. RELATED WORK

While there are many approaches used to detect XSS
vulnerability in the source code [23,24,25,26,27]. However,
research is still on to determine an effectual and suitable mode
of analysing the source code and identifying the XSS
susceptibility in web applications. [23] proposed an approach
to detect XSS vulnerability by using static analysis in Java web
application. However, their approach still generates false
negative and false positive results; and this finding is the main
limitation of static analysis while it is executed before the run.
On the other hand, [24] construct the JavaScript’s call graph by
using dynamic analysis, in a way to secure the client side of
web application. Dynamic analysis used to find the limitations
of the graphs art. Then, they evaluated their approach in
regards of accuracy, and the results shown that their approach
is acceptable.

[25] proposed attributes to check the input validation from
SQL injection and XSS vulnerabilities based on hybrid
analysis. They adopted static analysis to classify the nodes and
dynamic analysis to find the vulnerable nodes. However, the
static analysis still imprecise in classification of such nodes.
The authors performed the experiments in six PHP web
applications, and their results seems to be promised in the
future. [26] presented an approach based on taint analysis with
GAs as a method to improve taint analysis. They used taint
analysis to find the vulnerable paths from the control flow of
the program execution. Then, genetic algorithm defines
security test cases by re-sorting the paths that enable the
execution flow to traverse target paths. They employed the
Pixy tool to report the control flow paths from the source code;
these paths represent the target paths for genetic search. As
their approach is only for detecting the reflected XSS
vulnerability in the PHP web application.

[27] used static analysis with genetic algorithm, in a way to
minimize the false positives rate in static analysis results. Their
results minimize the false positive after embed genetic
algorithm with static analysis, and they detect all

vulnerabilities in JAVA web applications. Furthermore, the
detection of vulnerabilities before run the program for the first
time will minimize the threats on applications, rather than
dynamic analysis which requires the actual run of the program,
and that may leads to security vulnerabilities if they do not
detect it quickly.

VIII. DISCUSSION

We discussed the general approaches used to detect XSS
vulnerabilities and differentiate their methods in detecting XSS
vulnerabilities in Table 1. [26,27] used genetic algorithm with
static analysis in a way to decrease the false positive rate in
their results. [26] detected one type of reflected XSS
vulnerability in PHP web applications using static analysis and
GA. However, their approach will be argued because some
paths in the source code cannot be executed. To detect XSS
vulnerabilities without any false positive results, they need to
remove the infeasible paths from the control flow graph. Once
they remove the infeasible paths, they will detect the actual
XSS vulnerability from the source code without any false
positive in their results. [27] detected the three types of XSS
vulnerability. While they detected all XSS vulnerabilities in
Java source code, their approach still reveals false positive
results. Therefore, the removal of the infeasible paths help to
minimize the false positive results, because when the GA
generator runs only on the feasible paths, it will be more fast
and accurate to find the results. Therefore, to complete the
approach of using GA with static analysis, the researchers
should remove the infeasible paths from the control flow
graph, in a way to minimize the false positive rate in their
results.

IX. CONCLUSION

Web applications have been deployed to the public with
unexpected security holes. The reason for these security holes
is mainly the short time frame of this program’s development.
Although research on security programs is modern, effective
solutions are highly demanded because of the importance of
creating programs that are secure and less vulnerable to attacks.
Cross-Site Scripting (XSS) vulnerability is one of the most
common security problems in web applications. It can lead to
the stealing of cookies and user accounts and to the transferring
of private data if the input is not validated. While there are
many studies have been conducted to address problems related
to XSS vulnerability, but their results seems to be not efficient
to address the problem as well. Static analysis still contains
many false positive and the dynamic analysis still need to
improve the accurateness of the results. However, the hybrid
approach is not efficient as the fully static or dynamic
approaches. On the other hand, genetic algorithm used to detect
XSS vulnerability. Genetic algorithm successes to detect all
XSS vulnerability in JAVA web application without any false
positive results. However, when the researchers implement it in
PHP, their results still contain many false positive results,
because they did not remove the infeasible paths from the
Control Flow Graph.

The future work should involve the removal stage of the
infeasible paths from the control flow graph that will lead to
minimize the false positive rate in their results and to detect all
XSS vulnerability from the source code as well. Since GA has

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

160 | P a g e

www.ijacsa.thesai.org

proven to be effective in detection of XSS vulnerabilities, it
can used for other web security vulnerabilities, such as (SQL
Injection, insecure direct object references and cross-site
request forgery).

REFERENCES

[1] Zhao, J. and Gong, R. “A New Framework of Security Vulnerabilities
Detection in PHP Web Application,” Proc. Int. Conf. on Innovative
Mobile and Internet Services in Ubiquitous Computing (Munich), pp
271-276, 2015.

[2] Gupta, M. Govil, M. and Singh, G. “Predicting Cross-Site Scripting
(XSS) Security Vulnerabilities in Web Applications,” Proc. Int. Joint
Conf. on Computer Science and Software Engineering (JCSSE), pp 162-
167, 2015.

[3] Gupta, P. and Shinde, S. K. “Genetic algorithm technique used to detect
intrusion detection,” Advances in Computing and Information
Technology Anonymous Springer, vol. 198, pp 122-131, 2011.

[4] OWASP 2013 Top-10 threats for web application security –2013
[Online] Available: https://www.owaspp.org/index.php/Top_10_2013-
T10. [Accessed : 23/2/2016]

[5] Guo, X. Jin, S. and Zhang, Y. “XSS Vulnerability Detection Using
Optimized Attack Vector Repertory,” Proc. Int. Conf. on Cyber-Enabled
Distributed Computing and Knowledge, pp 29-36, 2015.

[6] Dong, G. Zhang, Y. Wang, X. Wang, P. and Liu, L. “Detecting Cross
Site Scripting Vulnerabilities Introduced by HTML5,” Proc. Int. Joint
Conf. on Computer Science and Software Engineering (JCSSE), pp 319-
323, 2014.

[7] Sadana, S. J. and Selam, N. “Analysis of Cross Site Scripting Attack,”
Proc. International Journal of Engineering Research and Applications
(IJERA), vol. 1, no 4, pp 1764-1773, 2011.

[8] Mishra, A. “Critical Comparison Of PHP And ASP.NET For Web
Development ‐ ASP.NET & PHP,” Proc. International Journal of
Scientific & Technology Research, pp 331-333, 2014.

[9] Duchene, F. Groz, R. Rawat, S. and Richier, J. “XSS Vulnerability
Detection Using Model Inference Assisted Evolutionary Fuzzing,”
IEEE Fifth Int. Conf. on Software Testing, Verification and Validation,
pp 815-817, 2012.

[10] Damodaran, A. Troia, F. D. Corrado, V. A. Austin, T. H. and Stamp, M.
“A Comparison of Static, Dynamic, and Hybrid Analysis for Malware
Detection,” Journal of Computer Virology and Hacking Techniques, pp
1-12, 2015.

[11] Bingchang, L. Shi, L. and Cai, Z. “Software Vulnerability Discovery
Techniques: A Survey,” Fourth Int. Conf. on Multimedia Information
Networking and Security, pp 152-156, 2012.

[12] Kumar, R. “Mitigating the authentication vulnerabilities in Web
applications through security requirements,” Information and
Communication Technologies (WICT), vol. 60, pp 651–663, 2011.

[13] Thankachan, A. Ramakrishnan, R. and Kalaiarasi, M. “Web application
security vulnerabilities detection approaches: A systematic mapping

study,” Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), pp 1-6, 2015.

[14] Thankachan, A. Ramakrishnan, R. and Kalaiarasi, M. “A Survey and
Vital Analysis of Various State of the Art Solutions for Web
Application,” Security Information Communication and Embedded
Systems, pp 1-9, 2014.

[15] Gupta, M. K. Govil, M. C. and Singh, G. “Static Analysis Approaches to
Detect SQL Injection and Cross Site Scripting Vulnerabilities in Web
Applications: A Survey,” IEEE Int. Conf. on Recent Advances and
Innovations in Engineering (ICRAIE-2014), pp 1-5, 2014.

[16] Veracode 2015b Application Security Vulnerability: Code Flaws,
Insecure Code [Online] Available:
http://www.veracode.com/security/application-vulnerability. [Accessed :
13/4/2016]

[17] Shanmugasundaram, G. “A study on removal techniques of Cross-Site
Scripting from web applications,” Proc. Int. Conf. on Computation of
Power, Energy, Information and Communication, pp 0436-0442, 2015.

[18] Gupta, B. “Cross-Site Scripting (XSS) attacks and defense mechanisms:
classification and state-of-the-art,” National Institute of Technology
Kurukshetra (Kurukshetra, India), pp 1-19, 2015.

[19] Malviya, V. K. Saurav, S. and Gupta, A. “On Security Issues in Web
Applications through Cross Site Scripting (XSS),” Asia-Pacific Software
Engineering Conf., pp 583-588, 2013.

[20] Li, Y. Wang, Z. and Guo, T. “Program Slicing Stored XSS Bugs in Web
Application,” Fifth IEEE Int. Conf. on Theoretical Aspects of Software
Engineering, pp 191-194, 2011.

[21] Li, Y. Wang, Z. and Guo, T. “Reflected XSS Vulnerability Analysis,”
International Research Journal of Computer Science and Information
Systems (IRJCSIS),vol. 2, pp 25-33, 2013.

[22] Fonseca, J. and Vieira, M. “A Practical Experience on the Impact of
Plugins in Web Security,” IEEE 33rd Int. Symposium on Reliable
Distributed Systems, pp 21-30, 2014.

[23] Shar, L. K. and Tan, H. B. K. “Automated removal of cross site scripting
vulnerabilities in web applications,” Inf. Softw. Technol., vol. 54, pp
467–478, 2012.

[24] Toma, T. R. and Islam, Md. S. “An Efficient Mechanism of Generating
Call Graph for JavaScript using Dynamic Analysis in Web Application,”
3rd Int. Conf. on Informatics, Electronics & Vison, pp 1-6, 2014.

[25] Shar, L. S. Tan, H. B. K. and Briand, L. C. “Mining SQL injection and
cross site scripting vulnerabilities using hybrid program analysis,” Proc.
of Int. Conf. on Software Engineering (ICSE '13) IEEE Press, pp 642-
651, 2013.

[26] Avancini, A. and Ceccato, M. “Towards Security Testing with Taint
Analysis and Genetic Algorithms,” ICSE Workshop on Software
Engineering for Secure Systems, vol. 5, pp. 65–71, 2010.

[27] Hydara, A. I. Sultan, Md. Zulzalil, H. and Admodisastro, N. “An
Approach for Cross-Site Scripting Detection and Removal Based on
Genetic Algorithms,” Ninth Int. Conf. on Software Engineering
Advances, pp 227–232, 2014.

