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Abstract—Medical Image Fusion (MIF) can improve the 

performance of medical diagnosis, treatment planning and 

image-guided surgery significantly through providing high-

quality and rich-information medical images. Traditional MIF 

techniques suffer from common drawbacks such as: contrast 

reduction, edge blurring and image degradation. Pulse-coupled 

Neural Network (PCNN) based MIF techniques outperform the 

traditional methods in providing high-quality fused images due 

to its global coupling and pulse synchronization property; 

however, the selection of significant features that motivate the 

PCNN is still an open problem and plays a major role in 

measuring the contribution of each source image into the fused 

image. In this paper, a medical image fusion algorithm is 

proposed based on the Non-subsampled Contourlet Transform 

(NSCT) and the Pulse-Coupled Neural Network (PCNN) to fuse 

images from different modalities. Local Average Energy is used 

to motivate the PCNN due to its ability to capture salient features 

of the image such as edges, contours and textures. The proposed 

approach produces a high quality fused image with high contrast 

and improved content in comparison with other image fusion 

techniques without loss of significant details on both levels: the 

visual and the quantitative. 

Keywords—Medical image fusion; pulse-coupled neural 

network; local average energy; non-subsampled contourlet 
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I. INTRODUCTION 

A numerous imaging modalities such as Computed 
Tomography (CT), Magnetic Resonance Imaging (MRI), 
Ultrasound, Positron Emission Tomography (PET), and Single 
Photon Emission Computed Tomography (SPECT) reflect 
information about the human body from different views. For 
example, CT can reflect the anatomical structure of bone 
tissues clearly, while the MRI can reflect the anatomical 
structure of the soft tissues, organs and blood vessels. The 
nature of clinical diagnosis and treatment requires a composite 

view of two or more modalities, since using a single source of 
information may not be sufficient to localize lesions and 
abnormalities during the diagnosis process [1]. Thus, a way is 
needed to extract and combine information from different 
modalities to produce clear and rich-information images to 
provide more reliable and accurate diagnosis. Combining such 
information manually is time consuming, subject to human 
error and based on radiologist's experience which may produce 
misleading results. 

The art of combining complementary information 
automatically from different medical source images for the 
same organ/tissue being imaged is known as medical image 
fusion. A major prerequisite should be fulfilled for the fusion 
process to perform correctly; it is the registration/alignment of 
the medical source images to be fused. Any fusion scheme 
should fulfill some generic requirements: First, all the salient 
features and significant information in the source images 
should be present in the fused result. Second, no artifacts or 
unwanted degradations should be introduced by the fusion 
process. Third, irrelevant features and noise should be 
discarded and minimized [2]. 

The core problem of medical image fusion is how to find 
an efficient way of measuring the contribution of each source 
image into the resultant fused image which turns the medical 
image fusion problem into an analysis problem [3]. Medical 
image fusion can be decomposed into two major steps: 
measurement of activity level and applying a suitable fusion 
rule. Activity level refers to the local energy or the amount of 
information present in an image pixel or coefficient [4]. It can 
be measured for a single pixel value or by taking into 
consideration the surrounding neighbors of the pixel. On the 
other hand, fusion rules should be selected carefully depending 
on the nature of the source images to be fused. The most 
common fusion rules are Min, Max and Average.
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Fig. 1. Medical image fusion methods categorization 

PCNN is an artificial neuron model inspired from the visual 
cortex of the cat. It is characterized by the global coupling and 
pulse synchronization of neurons, this means that the neurons 
corresponding to pixels with similar significance tend to fire 
synchronously. These characteristics of the PCNN make it 
appropriate for activity level measurement. NSCT is a 
modified version of the original contourlet transform; it 
overcomes the Pseudo-Gibbs phenomena because of its shift-
invariant characteristic. This characteristic fulfills two major 
generic requirements of image fusion process:  (a) no artifacts 
or inconsistencies should be introduced in the fused result and 
(b) the fusion process should be shift invariant. 

A variety of medical image methods has evolved across the 
recent years. Fig. 1 shows the major categories by which 
medical image methods can be classified. Pixel-level spatial 
domain techniques such as simple averaging, knowledge based 
image fusion [5, 6] usually lead to contrast reduction and edge 
blurring. Pyramidal fusion methods including the laplacian 
pyramid [7], gradient pyramid [8], ratio-of-low-pass pyramid 
and the morphological pyramid [9] fail to capture the spatial 
orientation in the decomposition process; hence cause blocking 
effects [10]. Mathematical methods including principal 
component analysis[11, 12], intensity-hue saturation [13, 14] 
and the Brovey transform [15] offer better results, but suffer 
from spectral degradation [16]. 

Several Image Fusion (IF) and Medical Image Fusion 
(MIF) techniques based on PCNN have been proposed by 
researchers [15-20]. The majority of the MIF techniques based 

on PCNN use the normalized single value of the pixel in the 
spatial domain or the coefficient in the transform domain as the 
feeding input to the PCNN which leads to contrast reduction 
and loss of directional information respectively [19, 21-24]. 
Moreover, using a single pixel/coefficient value as stimuli for a 
PCNN neuron is not effective, since the human visual system is 
more sensitive to the variations in images such as edges, 
contours and directional features. 

Das and Kundu [17] employed a Neuro-fuzzy approach 
which combines a reduced pulse coupled neural network with 
fuzzy logic in order to produce fused image with higher 
contrast, more clarity and more useful subtle detailed 
information. Kavitha  and  Chellamuthu [18] enhanced the 
input before feeding it into the PCNN using the ant colony 
optimization (ACO) technique. Das and Kundu [16] proposed 
a modified spatial frequency motivated PCNN to fuse the high 
frequency sub-bands and max selection fusion rule to fuse the 
low frequency sub-bands. Xiao-Bo et al. [20] proposed a 
spatial frequency motivated pulse coupled neural network to 
fuse low and high frequency sub-bands. It works well for 
multi-focus IF and visible/infrared IF, but the absence of 
directional information in SF and using the same fusion rule 
for both the sub-bands cause contrast reduction and loss of 
image details [16]. Wang and Ma [19] proposed an image 
fusion technique based on a modified model of the pulse-
coupled neural network; it is called the m-PCNN where m is 
the number of external input channels. Data fusion happens in 
the internal activity of the neuron. The process of fusion is 
completely carried out by the PCNN and the number of 
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channels can be extended dynamically to fuse more than two 
images; however, using the normalized gray value of the input 
image as an input to the PCNN will lead to contrast reduction 
and edge blurring. 

In this paper, a NSCT-based MIF algorithm using local 
average energy as a feeding input to motivate the PCNN 
neurons is proposed. Input source images to be fused are 
assumed to be well-aligned. Rest of the paper is organized as 
follows: NSCT, simplified model of the PCNN and the 
proposed MIF scheme are described in the Methodology. 
Experimental results and discussion are described in Results 
and discussion section. Finally, conclusions and future work 
are summarized in Conclusion section. 

II. METHODOLOGY 

A. Non-Subsampled Contourlet Transform 

NSCT is a shift-invariant version of the original contourlet 
transform proposed by Da Cunha et al. [25] to overcome the 
contourlet transform limitations. The original contourlet 
transform lacks shift-invariant characteristic due to down-
samplers and up-samplers introduced in both the Laplacian 
Pyramid (LP) and the Directional Filter Bank (DFB). The 
absence of shift invariance in the contourlet transform causes 
pseudo Gibbs phenomena around singularities [20]. In the 
original contourlet [26], the Laplacian pyramid is firstly 
applied to capture the point discontinuities and then is followed 
by a directional filter bank to connect point discontinuities into 
linear structures [20]. The NSCT is mainly divided into two 
building blocks: the shift-invariant pyramid filter bank and 
shift-invariant directional filter bank as shown in Fig.1(a). The 

decomposition of an input image into frequency sub-bands 
using the NSCT is illustrated in Fig.1(b). 

The shift-invariant pyramid filter bank is responsible for 
the sub-bands decomposition. It maintains the multiscale 
property of the NSCT by using two-channel, non-subsampled 
filter banks applied iteratively to obtain the multiscale 
decomposition. The Non-subsampled directional filter bank is 
used to achieve the multi-direction property of the NSCT. Up-
samplers and down-samplers are used to a minimum extent in 
the Directional Filter Bank by switching them off in every two-
channel filter bank in the DFB tree structure and up-sampling 
the filters accordingly [25]. 

In our proposed scheme, the decomposition parameters are 
set to levels = [1, 2, 4]. The pyramidal filter is set to ‘pyrexc’ 
and the directional filter is set to ‘vk’ in the NCST 
configuration. The frequency sub-bands obtained after 
applying the NSCT size are equivalent to the size of the 
original source images which means that each frequency 
coefficient corresponds to the pixel of same location in the 
spatial domain; this characteristic guides the selection of a 
suitable fusion rule for each sub-band. 

B. Simplified Pulse –Coupled Neural Network 

PCNN is a 2D single layer, laterally connected network of 
pulse-coupled neurons, with a 1:1 correspondence between the 
image pixels and network neurons [27]. No training is required 
for the PCNN. The three main components of the PCNN are: 
the receptive field, modulation field and pulse generator as 
shown in Fig.3. 

 
Fig. 2. (a) NSCT structure which consists of bank of filters to split the 2-D frequency plane into frequency and directional subbands. (b) Approximation of the 

ideal frequency partitioning obtained by NSCT 

The output of each neuron is one of two states: firing or 
non-firing. A firing map is then generated by accumulating 
each neuron firing times. Firing times of each neuron can be 
used as an activity level measurement, where the neuron of 
larger firing times indicates the significance of the 

corresponding coefficient. PCNN has several parameters with 
complex structures and an optimal setting of these parameters 
is a major limitation to automation and generalization of PCNN 
[17], that's why a reduced model of the pulse coupled neural 
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network is used instead. The equations of the reduced PCNN 
model are described below through Eq.(1) to Eq.(6). 

             (1)

        ∑                      (2)

               β        (3)

         {
                   

           
 (4)

                                   (5)

                             (6)

The indices i and j refer to the pixel/coefficient location in 
the image/sub-band, k and l refer to the displacement of the 
symmetric weights kernel around the image pixel and n refers 
to the current iteration.     and      are the feeding and linking 

input respectively.          is the kernel weights and      is the 

external stimulus that motivates the neuron.         is the 

internal activity of the neuron and β is the linking strength 
parameter. Yi,j[n] is the output of the neuron after applying the 

threshold to the internal activity.      is the dynamic threshold, 

where    and    are normalized constant and time constant 
respectively. 

C. Proposed Approach 

Local average energy reflects information about the 
presence of image variations such as edges, contours and 
textures, that’s why it would be more expressive if the local 
average energy is used in place of the single pixel/coefficient 
value as a motivation to the PCNN. Our transform-based 
approach employs the local average energy to motivate the 
PCNN in order to measure the contribution of each source 
image into the fused result. The shift-invariant NSCT is 
employed to decompose the source images into frequency sub-
bands. It is mainly divided into two major steps:  high-
frequency sub-bands fusion and low frequency sub-bands 
fusion. The block diagram of our proposed approach is shown 
in Fig.4. 

1) Low frequency sub-bands fusion: Max selection fusion 

rule is applied directly to the absolute value of the LFSs 

coefficients. The coefficient with higher absolute value is 

selected as the fused image coefficient. 

   
 (   )  {

  
 (   ) |  

 (   )|  |  
 (   )|

  
 (   )          

 (7)


Fig. 3. PCNN’s neuron structure

  
 (   ) indicates the low frequency coefficient of image A 

at location i, j in subband S and the same applies for   
 (   ) 

and   
 (   ). 

2) High frequency sub-bands fusion: Since the human 

visual system is sensitive to image variations such as edges, 

contours and textures, choosing the absolute value of the 

coefficient as input to the PCNN may not be the wise choice. 

Using features rather than raw data or single values, whether 

pixel values or frequency coefficients as an input to motivate 

the PCNN neurons, will be more accurate. Furthermore, it will 

act as an indicator of the significance of each source image. 

Local average energy is used as the image features that will 

motivate the neurons. PCNN is employed as an activity level 

measurement. For each high frequency sub-band, the local 

average energy is calculated as follows: 

        
 

     
∑ ∑  (   )  

   
 
    (8) 
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Fig. 4. Block diagram of the proposed MIF Technique 

where C is the coefficient value at location m, n in any 
frequency sub-band.        is then used as input to the PCNN. 

After running the PCNN for several iterations, firing times for 
each neuron is calculated. The generated firing maps are used 
to select which coefficient will contribute to the fused result. 

3) The proposed MIF algorithm steps: 

a) Decompose the pre-registered source images into 

low/high frequency sub-bands using NSCT, each sub-band 

size is equivalent to the size of the source images. 

b) Apply max selection rule to the Low-Frequency Sub-

bands (LFSs) as described by Eq.(7). 

c) Calculate the local average energy for each High-

Frequency Sub-band (HFS) as described by Eq.(8) using a 

slipping window over each HFS coefficients. 

d) Motivate the PCNN using the local average energy 

calculated for every HFS, then calculate the output of each 

neuron using Eqs.(1) to (5) and generate the firing maps 

        by Eq.(6). 

e) Apply the high frequency fusion rule based on the 

neurons firing maps. Coefficients that correspond to the 

neurons with higher firing times are selected to contribute in 

the resultant fused image as illustrated by Eq. (9). 

   
 (   )  {

  
 (   )     

           
      

  
 (   )           

 (9)

f) Apply the inverse NSCT to obtain the fused image. 

III. RESULTS AND DISCUSSION 

The proposed algorithm was implemented using 
MATLAB. Source images are of size 256 x 256. The PCNN 
parameters were configured to k x l = 3 x 3, W = [0.707 1 
0.707; 1 0 1; 0.707 1 0.707], β = 0.2, and the sliding window of 
the local average energy = 3 x 3. To evaluate the quality of the 
output fused images, the following quality metrics are used: 

A. Entropy 

Entropy is a measure of the information content present in 
an image. It is described by the equation: 

     ∑  (  )     (  )
   
    (10)

B. Standard Deviation (STD) 

Standard deviation is used to measure the image contrast, 
where a higher standard deviation value indicates better 
contrast. 

C. Mutual Information (MI) 

A measure of how much information is mutual between 
two images. Given image A and B, the mutual information 
preserved by the fused image F is computed by the sum of the 
mutual information between F and A represented by     and 
the mutual information between F and B represented by     as 
illustrated by Eq. (11): 

             (11)

     ∑    (   )   
   (   )

  ( )  ( )    (12)

Larger value of MI indicates that the fused image preserves 
a significant amount of information from both input images. 

D. Edge Association (     ) 

An objective performance measure for image fusion was 
proposed by Xydeas and Petrović [28]. It measures how much 
of the edge information present in the source images is 
transferred to the fused image: 

        
∑ ∑ (   (   )  (   )     (   )  (   )) 

   
 
   

∑ ∑ (  (   )    (   )) 
   

 
   

  

E. Universal Image Quality Index (  ) 

It is a universal objective image quality index proposed by 
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Wang and Bovik [29]. It is a combination of three elements: 
loss of correlation, luminance distortion and contrast distortion. 
Loss of correlation measures how much image A and F are 
correlated, luminance distortion measures how close the mean 
luminance is to images A and B and the contrast distortion 
measures the degree of similarity between the contrast of 
images A and F. It is calculated for each source image and the 
fusion result. 

  (   )   
           ̅ ̅

(  
    

  )  ( ̅   ̅ )                                      (14) 

 
Fig. 5. Three pairs of source medical images (left two images) with the 

corresponding fusion result of each pair (last column) 

Fig. 5 shows three sets of source medical images [30] 
captured from different modalities used in evaluating the 
proposed approach. Each set is a pair of two source images, 
and the corresponding fusion visual result is shown beside each 
pair. In 'Set1' the CT image in Fig. 5(a1) shows the 
calcification, while the MR image in Fig. 5(b1) captures 
several focal lesions. In 'set2' the MR images in Fig. 5(a2) and 
Fig. 5(b2) reveal a lesion in the frontal lobe. In 'set3' the CT 
image in Fig. 5(a3) indicates a medical left occipital infarct 
involving the left side of the splenium of the corpus callosum 
and the MR image in Fig. 5(b3) reveals only mild narrowing of 
the left posterior cerebral artery. 

For the three sets of medical source images in Fig. 5, a 

detailed quantitative evaluation using the previously mentioned 
quality metrics is presented in Table 1. The best results 
obtained are formatted in bold in tables 1 and 2. 

Table 2 compares the performance of our proposed 
technique against other existing MIF techniques using the 
images of Set3 as the source images to be fused. Fig. 6 shows 
the visual fusion results produced by the compared MIF 
methods. 

TABLE I. PERFORMANCE EVALUATION OF THE PROPOSED MIF 

ALGORITHM USING SET1, SET2 AND SET3 

STD Entropy MI STD Entropy Set 

77.2127 4.8045 2.9453 
79.2907 3.3019 a1 

1 
61.7932 3.4385 b1 

7495.67 8036.4 7977.4 
77.1245 3.3046 a2 

2 
52.6946 3.2856 b2 

4.09338 808384 .91.7 
79.8634 2.9001 a3 

3 
61.9829 3.6014 b3 

The fused images obtained from the three sets combine the 
information from both corresponding source images as shown 
in Fig. 4(f1)(f2) and (f3). The fused image of Set1 combines 
the bone structure of the CT image (a1) with the soft tissues of 
the MR image (b2). In Set2, the lesion that appears as a black 
hole in the MR image (b2) is apparent in the fused image. 
Similarly, the fused image of Set3 combines both the bone 
structure of the CT image (a3) and the anatomical structure of 
the soft tissues of the MR image (b3). In Table 1 the quality of 
the fusion result is compared respect to the quality of the 
corresponding pair of source images. Columns 3 and 4 show 
the entropy and the standard deviation for each pair of the 
source images respectively. While the rest of the columns show 
the performance evaluation of the fusion results for each set 
through different quality metrics. Apparently, the higher 
entropy values of the fusion results indicate better information 
content than the source images that participated in the fusion. 
Similarly, the higher standard deviation value of the fusion 
result of Set3 shows better contrast and clarity. 

TABLE II. PERFORMANCE COMPARISONS WITH OTHER MIF ALGORITHMS 

USING SET3 

         STD Entropy MI Method 

.04893 895... 4608.68 69.465 .985.. 
NSCT+MSF-PCNN 
[16] 

0.7626 0.3163 55.6347 4.2015 796651 
NSCT+SF-PCNN 

[20] 

0.8578 0.4958 55.1152 4.1933 3.1076 m-PCNN [19] 

89.757 896664 7.95.55 69..88 79477. DWT+LAE-PCNN 

89.774 .083.4 .89.445 808384 60848. Proposed Scheme 
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               (a)                                         (b)                                           (c)                                         (d)                                          (e) 

Fig. 6. Resultant fused images on set3 for example: (a) m-PCNN [19], (b) NSCT+SF-PCNN [20], (c) NSCT+MSF-PCNN [16], (d) Proposed Scheme, and (e) 

DWT+LAE-PCNN 

Table 2 shows that the proposed MIF algorithm has the 
highest entropy, MI and Q

AB/F
. NSCT-MSF-PCNN method 

[16] has the highest STD and    values. The higher values of 
entropy and MI indicate that the fused image produced in this 
paper preserves more information from the source images and 
it has higher information content. The visual fused image 
obtained by NSCT-MSF-PCNN method [16] is very similar to 
the fused image produced by our proposed approach; however, 
the quantitative analysis shows that the proposed algorithm 
provided higher EN, MI and Q

AB/F
 than NSCT-MSF-PCNN 

method [16]. m-PCNN method [19] in Fig. 5(a) suffers from 
the contrast reduction problem because of using the normalized 
value of the coefficient as an input to the PCNN. A close look 
at Fig. 5(b) shows that NSCT-SF-PCNN method [20] lost large 
amount of image details. In Fig. 5(e), when NSCT was 
replaced with the DWT, the fused result revealed unwanted 
image degradation unlike the proposed method fused result. 
Careful investigation of the proposed approach in Fig. 5 (d) 
reveals that it displays very fine details not apparent in the 
visual result of NSCT-MSF-PCNN [16] in Fig. 5(c). 

IV. CONCLUSION 

Medical images obtained from different modalities are 
fused to support a radiologist’s task in treatment and diagnosis. 
Since fusing medical images manually is time consuming and 
subject to human error, this paper presents an MIF approach 
based on NSCT and local average energy-motivated PCNN to 
fuse the medical images. The results show that it overcomes 
the common drawbacks in the conventional methods such as 
contrast reduction, edge blurring and unwanted degradations. 
Using the local average energy as a stimulus to the PCNN is a 
promising choice, since it doesn’t only use the single value of 
one pixel/coefficient but it also takes into consideration the 
values of the neighboring pixels. Local average energy extracts 
features like edges, contours and textures; the human visual 
system is more sensitive to these features. Selecting the NSCT 
to transform source images into the frequency domain is a 
good choice because of its shift-invariant characteristic that 
overcomes the Pseudo-Gibbs phenomena. Although local 
average energy showed promising results, we cannot tell that it 
is the best stimuli for the PCNN to measure the contribution or 
significance of the source images. Other measurements of 
activity level instead of the local average energy could be used 
as a motivation for the PCNN.As a future work, the proposed 
method in this paper can be extended to fuse multi-focus 
images, infrared and visible images and remote sensing 
images. Moreover, the behavior of the algorithm will be tested 
on noisy modalities images to see how it performs in the 
presence of noise. 
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