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Abstract—Simulation is often based on some type of model of 

the evolved portion of the world being studied. The underlying 

model is a static description; the simulation itself is executed by 

generating events or dynamic aspects into the system. In this 

context, this paper focuses on conceptual modeling in simulation. 

It is considered the most important aspect in simulation 

modelling, at the same time it is thought the least understood The 

paper proposes a new diagrammatic language as a modeling 

representation in simulation and as a basis for a theoretical 

framework for associated notions such as events and flows. 

Specifically, operational semantics using events to define fine-

grained activities are assimilated into the representation, 

resulting in an integration of the static domain description and 

the dynamic chronology of events (so-called process level). The 

resulting unified specification facilitates understanding of the 

simulation procedure and enhances understanding of basic 

notions such as things (entities), events, and flows (activities). 
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I. INTRODUCTION 

Simulation, as employed in this paper, is a technique used 
to imitate a system or process, as in the case of studying 
concrete phenomena and their causal relations. It is often based 
on some type of model of the evolved portion of the world 
under study (the domain – the subject of the simulation study) 
[1]. Such underlying model is a static description of the 
domain; the simulation itself is conducted by generating events 
or dynamic aspects into the system. Accordingly, the execution 
of a model or part of it to reach certain conclusions about the 
system is known as simulation. 

This paper focuses on a conceptual model (in contrast to, 
say, a mathematical or computational model) as an abstract 
representation of a system intended to replicate some of its 
properties [2] and to use as a tool for communication between 
stakeholders. Methods for such representation include texts, 
diagrams, and logic flow charts [3]. According to Wagner [4], 
in simulation engineering, a system model consists of both an 
information model and a process model. “Conceptual 
modelling, one of the first stages in a simulation study, is about 
understanding the situation under study and deciding what and 
how to model” [5]. This phase is considered the most important 
aspect of simulation modeling [6]; at the same time it is 
thought to be the least understood [7]. 

This paper seeks to utilize a new diagrammatic language 
for conceptual modeling of simulations. Diagrams seem “the 

best approach to enhancing communication among a wide 
variety of specification audiences” [8; italics added]. 
According to Zeigler [9], communication is one of the most 
important and also least appreciated aspects of modeling. 

Here the purpose is not to introduce a complete technical 
solution, which would be outside the limited scope of a 
conference paper; rather, the aim is to develop an appreciation 
for the informality of the proposed approach, starting from 
defining flows and events and ending with a unified description 
of the system and its environment (simulation). A more 
ambitious aim is to propose a new approach to conceptual 
modeling in simulation and to develop a theoretical framework 
for its associated notions such as events and flows. 

A. Focus of study: Diagrammatic representation 

Over years of simulation research, many diagrammatic 
methodologies have been utilized in building models in 
simulation, e.g., activity cycle diagrams (state diagrams), event 
graphs, Petri nets, control flow graphs (see [10]), UML, and 
BPMN. To give an idea of the type of study examined in this 
paper, we consider a diagrammatic representation introduced in 
the form of activity cycle diagrams (ACDs) [11]. 

In the ACD-based approach, a simulation model is viewed 
as a collection of interacting entities. An active state usually 
involves the cooperation of different entities. To specify a 
model using ACDs, an activity cycle composed of queues and 
activities must be given for each class of entity in the model 
[10]. ACDs provide a means to recognize and prioritize 
simultaneous events at the specification level in simulation. 
“The strongest advantage of these diagrams is that they are 
simple to work with. However, to fully support the simulation 
process, these diagrams must be augmented” [10]. 

An ACD example is the English Pub, where the man entity 
either drinks or waits to drink. The barmaid either pours a drink 
or is idle. The glass is either used to drink from, empty, poured 
into by the barmaid, or full, waiting to be consumed (see Fig. 
1) [10]. 

 
Fig. 1. Activity Cycle Diagram (redrawn, partial from [10]) 
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B. Contribution: Alternative Diagrammatic representation in 

simulation 

This paper presents an alternative to the ACD 
representation and applies the completed diagram to 
simulation. Fig. 1 of the English Pub will be recast in the 
proposed new language of diagramming. The claim is that this 
methodology provides a more complete specification suitable 
for a static domain model and its dynamic aspects needed in 
simulation. 

For the sake of a self-contained paper, the next section 
briefly reviews the diagrammatic language, called the 
Flowthing Model (FM) that forms the foundation of the 
theoretical development of the paper, with the deer dominance 
example as a new contribution. With understanding of FM 
gained from this example, section 3 substantiates the claim that 
FM offers a more complete specification than the ACD graph 
of the English Pub discussed in the introduction. 

After FM is illustrated with an example and used to support 
some claims in the introduction, section 4 introduces our 
research topic of conceptual modeling in simulation by 
contrasting some notions in the simulation literature against 
their representation in FM. 

Section 5 contains the main contribution of the paper, an 
exploration of the FM representation in a wider organizational 
setting. Here we demonstrate that the FM representation 
embeds operational semantics that simplify the process of 
modeling a chronology of events. 

Section 6 suggests that FM can provide a unifying language 
for modeling in simulation. Section 7 discusses a specific case 
study of simulation and applies the FM representation to the 
case. 

II. A DIAGRAMMATIC LANGUAGE 

The approach utilized in the paper is called the Flowthing 
Model (FM), which has been used in a variety of applications 
(e.g., [12-16]). FM is a uniform method for representing things 
that “flow”; i.e., things that are created, processed, released, 
transferred, and received while retaining their individuality 
throughout the flow. They may queue in any of the flow stages. 
They flow within spheres, i.e., the relevant environment that 
encompasses the flow. A sphere may have subspheres. 

Things that flow in a flow system are referred to as 
flowthings or, as here, simply as things. The life cycle of a 
thing is defined in terms of six mutually exclusive stages: 
creation, release, transfer, arrival, acceptance, and process (in 
which its form may be changed, but no new thing is generated), 
as shown in  Fig. 2. The flow system shown in the figure is a 
generalization of the input-process-output model. The reflexive 
arrow in the figure indicates flow to the Transfer stage of 
another flow system. For simplicity, the stages Arrive and 
Accept can be combined and termed Receive. 

 
Fig. 2. Flow system 

The stages in the life cycle of a thing are mutually 
exclusive (i.e., a flowthing can be in one and only one stage at 
a time). All other states or conditions of flowthings are not 
mutually exclusive stages. For example, we can have stored 
created things, stored processed things, stored received things, 
etc.; thus stored is not an exclusive stage. Things can be 
released but not transferred (e.g., a channel is down), or arrive 
but not be accepted (wrong destination), and so on. 

The following example illustrates the FM diagrammatic 
language and its expressive power. 

Example: As shown in Fig. 3, Geva [17] provides a text 
description of behavior of red deer during breeding season, 
followed by a diagram showing the causal connections 
described in the text, as produced by a typical student who “has 
in his repertoire skill for identifying basic meaningful units” 
[17]. 

 
Fig. 3. Diagramming of descriptive text to identify causal relationships 

(partial, from [17]) 

Fig. 4 shows the FM representation of male dominance 
among deer during breeding season as interpreted from Fig. 3. 
The female flows to the male domain (circle 1 in the figure), 
where she is physically “processed” (2) in different ways. In 
one scenario she is under threat by the male (3). In case she 
disobeys (4), she is punished (5). (For simplicity, the flow of 
the female (1 and 2)  is not enclosed in a box.) 

The figure can be contrasted with the left side of Fig. 3 
where Dominance → Threatening →  Punishment. 
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Fig. 4. Deer dominance by males during the breeding season 

Similarly, Fig. 5 shows the FM representation of  
leadership by the older females who are out ahead of the group 
and determine its direction without the use of force. The 
process Leadership →  Directing  →  Reward of Fig. 3 is also 
taken into account. The older female (circle 1) issues a 
direction (2) that flows (3) to each (4) member of the group (5). 
Execution of the direction (6) triggers (7) the generation 
(creation, 8) of a reward that flows to the member. 

 

Fig. 5. Deer leadership by the older females who are out ahead of the group 

and determine its direction 

III. THE ENGLISH PUB IN FM 

Now, with this understanding of FM, we can substantiate 
our claim that the specification offered by FM, suitable for 
static domain modeling along with dynamic aspects needed in 
simulation, is more complete than the ACD graph of the 
English Pub discussed previously. Specifically, this section 
focuses on the static representation, leaving the event-oriented 
simulation to a later section. 

Returning to the example of an English pub discussed in 
the introduction, from the representational point of view, the 
diagram of Fig. 1 seems incomplete as a picture of the domain 
of the pub. The diagram is formed from three separate scenes: 

 The state of a Man changes between drinking and 
waiting 

 The state of a Glass changes between empty and full 

 The state of a Barmaid alternates between idle and 
pouring 

The resulting conceptual picture is formed by jumping from 
one state to the next. Thus we find, for example, that the glass 
is empty during the entire time of pouring, the state specified as 
(Man: Waiting, Glass: Empty?, Pouring: ON). Modeling of a 

domain is selective in its details; nevertheless, in the opinions 
of the present authors, the model should not “contradict” reality 
in the domain, e.g., the glass is not empty during the pouring 
process. 

The FM representation provides a “continuous” portrait of 
the system, as shown in Fig. 6. First, the man orders a drink 
(circle 1 in the figure) and the order flows to the barmaid (2) to 
trigger taking an empty glass (3) from storage that flows to  the 
barmaid (4). This triggers release of the liquor (5) to the 
barmaid, thus creating a filled glass (6) that flows to the man 
(7) to drink (8). 

As we see, inherent characteristics of the FM 
representation, based on the notion of flow, force the modeler 
to “connect the dots” and paint a complete chronology of 
events in the system. 

 

Fig. 6. FM representation 

IV. CONTRASTING SOME NOTIONS 

This section contrasts some notions used in the simulation 
literature with their representation in FM. The purpose is to 
highlight how the FM approach is different from current 
simulation methods, as an introduction to applying FM in the 
rest of the paper. Additionally, the discussion in this section 
shows how FM provides a unifying view of many notions in 
simulation, using the same diagrammatic language introduced 
in section 2. 

In simulation literature, an object is typically defined as 
anything with attributes [18]. Objects and attributes in FM are 
things as defined previously. The two concepts of time and 
state, fundamental in the context of simulation, are also things. 
Similarly, an event is a thing. According to Page [10], 

An event is a change in an object state, occurring at an 
instant, and initiates an activity precluded prior to that instant. 
A process is the succession of states of an object over a span 
(or the contiguous succession of one or more activities).” 
[Italics added]  

Page [10] illustrates the notions of event, activity, and 
process in simulation as shown in Fig. 7. 
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Fig. 7. An illustration of event, activity, and process 

(redrawn, partial from [10]) 

An event in FM is a thing since it can be created, 
processed, released, transferred, and received. It triggers the 
creation, release, processing, transfer and receipt (“activity” in 
the above quote) of other things. Process in the quote is the 
flow in FM, e.g., a thing is created, released, and transferred. 
Fig. 8 illustrates the flow, event, and “activities”, i.e., states in 
a flow system. 

 
Fig. 8. Illustration of event flow and “activities” 

In the figure, the product is modeled from a static 
description as a thing that is created, released, and transferred; 
however, such creation, releasing, and transferring occurs only 
as a result of events. The event is the trigger that activates each 
stage of flow. Such a distinction between a static description 
and dynamic activation of a system is a very important aspect 
in simulation; nevertheless, the two levels of specification 
(static and dynamic) can be modeled by the same diagrammatic 
language. 

For example, the event at circle 1 activates (causes creation 
of a product thing: instance). Process (1) in the figure refers to 
the event (creation) taking its course (e.g., duration). Event 
scheduling in the diagram could be accomplished through 
clock “jumps”; e.g., every hour, with each clock tick creating 
the next period or next new product, etc. 

V. APPLYING FM TO EVENTS 

This section explores the FM representation in a wider 
organizational setting. It demonstrates that the FM 
representation embeds operational semantics that simplify 
simulating the chronology of events in comparison with other 
diagrammatic representations such as UML sequence 
diagrams. The resultant operational semantics are conceived 
along the lines of UM causality model specification in which 
events are used to define fine-grained behaviors. First, let us 
explore the notion of event in various fields. 

According to McKee [19] in the context of English 

literature, “STRUCTURE is a selection of events … that is 
composed into a strategic sequence” [italics added]. Such a 
definition seems to imply that the structure of a literary piece is 
the structure of events. 

 
Fig. 9. Example of flows of events 

In this paper, structure is the conceptual description of 
where the flow “takes place.” It is the FM diagram. An event is 
a “happening” or “occurrence” in a point of the diagram (e.g., 
domain). It may be connected to earlier events (e.g., causal 
connections). Philosophically, in the context of a definition 
given by the French philosopher Jean-Luc Marion [20-21], 

An event is that which … changes the given order of 
things, and then disappears, leaving its mark without return. An 
event shows itself as much as it gives itself to be seen. An 
event, properly so-called, poses a problem for thought to think 
it in ways other than according to the measure of its visible 
appearance. [22] 

Additionally, an event inaugurates something new from 
within a given situation and a break or rupture in the current 
state of a situation. It is both situated in and supplementary to 
what the present authors call a structure. (Some of these 
expression are taken from Butchart [22] describing Badiou’s 
[23]  philosophy, but reinterpreted differently). 

This interpretation views the FM diagram as the structure: a 
static map of things and their flows. Events are things of 
happenings (occurrences), as shown in Fig. 9 for dominance by 
males described in Fig. 4. This latter figure of dominance by 
males is a static scenario of the dominance, while Fig. 9 shows 
actual events (occurrences) as things that can be created, 
processed, released, transferred, and received. 

All things flow in their streams in the basin of flow (the 
total FM diagram) which forms the structure of events, where 

1) The event in this structure of a specific (that) female 

transferred to the dominance of a specific (this) male. 

2) The event in which the female is received. 

3) The event in which the female is processed, etc. 

The scenario is like a scene in a movie being actualized, 
shot by shot (event by event). Each event “shows itself” and 
disappears, as in Butchart’s [22] quote: “event, event, event, … 
assimilated in a structure.” 

As an illustration of assimilation of events in the FM 
representation, consider the following computer program taken 
from  Podgurski and Clarke [24]. 
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input (X, Y>; 

1. if X > Y then 
2. Max := X; 
else 
3. Max := Y; 
4. endif; 
Fig. 10 shows a partial view of its FM representation (see 

[25]). The figure also shows different events in this execution. 

 
Fig. 10. Events when executing a program 

First, the event in which X and Y are created (generated) in 
the keyboard. The values are release and transfer to the input 
software (e.g., cin in C++). Then the events continue one after 
another. Note that we have two levels of representation: (a) the 
structure of the situation, a static FM diagram of the program, 
and (b) the events, an FM diagram of events at the dynamic 
level where the event “inaugurates something new from within 
a given situation” [22]. 

Accordingly, an operational semantics can be defined to 
describe how to schedule events in the FM representation, 
therefore specifying the thread of control of execution. 
Operational semantics can also uncover concurrency of threads 
of events that offer several options for executions or 
occurrences, which is required in such systems as distributed 
systems. 

For instance, consider the deer dominance scenario 
represented in Fig. 4. Two possible sequences of events 
(behavior – possible execution) are shown in Fig. 11, 

1) A female arrives and immediately disobeys; hence, it is 

punished (1, 2, 3, 4B–10B) 

2) A female arrives and immediately faces threats; hence, 

she immediately submits to the male without disobedience (1, 

2, 3, 4A–9A) 

Here, the male is assumed to exist prior to the arrival of the 
female. If we want to express this explicitly, we can add Create 
in the Male sphere to precede these two sequences of events. 

Note that the flow and triggering force a partial order on 
some events; thus, release is preceded either by create, 
process, or receive; a threat is preceded by being 
communicated by the male (released and transferred). By the 
nature of this triggering, punishment is caused by 
disobedience, hence the sequence 4B, 5B in Fig. 11, etc. 
Accordingly, alternative sequences of events are modeled at 
certain points such as circle 3 in Fig. 11 where the A and B 
threads of events are separated according to circumstances, 
e.g., actual occurrences or execution. 

Similarly, in the execution of the computer program of Fig. 
10, the left and right sequences of inputting X and Y can be 
executed in parallel along the two threads of flow; their arrival 
at the ALU would then have to be synchronized. 

 

Fig. 11. Two possible sequences of events following the arrival of a female 

VI. APPLICATION TO SIMULATION 

This section suggests that FM can provide a unifying 
language that supports modeling in simulation. 

According to Wagner [4], 

Due to their great expressivity and their wide adoption as 
modeling standards, UML Class Diagrams and BPMN seem to 
be the best choices for making information and process models 
in a model-driven simulation engineering approach. [4] 

Wagner [4] illustrates how to develop a simulation of the 
functions of a service desk with the help of UML class 
diagrams and BPMN diagrams. 

In the DES [Discrete Event Simulation] literature, it is 
often stated that DES is based on the concept of “entities 
flowing through the system”. However, the loose metaphor of a 
“flow” only applies to entities of certain types: events, 
messages, and certain material objects may, in some sense, 
flow, while many entities of other types, such as buildings or 
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organizations, do not flow in any sense. Also, subsuming these 
three different kinds of flows under one common term “entity 
flow” obscures their real meanings. It is therefore highly 
questionable to associate DES with a “flow of entities”. Rather, 
one may say that DES is based on a flow of events. [4; italics 
added] 

This view is different from the concept of flow in FM, 
where the conceptual flow is defined in terms of states of 
Create, Process, Release, Transfer, and Receive. In FM, 
buildings can flow conceptually. Suppose that a city zoning 
board decided to change the zoning for an area containing 
building 1234, where each zone has different regulations. The 
building in effect will “flow” to the sphere of a different zone, 
as shown in Fig. 12. In FM, events, entities, buildings, signals 
are all things that can flow. 

 
Fig. 12. The flow of a building 

According to Wagner [4], “Unfortunately, this [concept of 
DES as a flow of events] is often obscured by the standard 
definitions of DES that are repeatedly presented in simulation 
textbooks and tutorials.” Wagner [4] then describes Pegden’s 
[26] simulation modeling worldview which provides “a 
framework for defining a system in sufficient detail that it can 
be executed to simulate the behavior of the system.”  

Over the 50 year history of simulation there have been 
three distinct world views in use: event, process, and objects. 

Event worldview: The system is viewed as a series of 
instantaneous events that change the state of the system over 
time. This is the basis of the events flow systems in FM. 

Process worldview: The system is described as a process 
flow in which sets of passive entities flow through the system 
and are subject to a series of process steps (e.g. seize, delay, 
release) that model the state changes that take place in the 
system. 

Object worldview: The system is modeled by describing 
the objects that make up the system. The system behavior 
emerges from the interaction of these objects. [4] 

According to Pegden [26], agent based modeling is 
typically implemented with the object worldview. 

So, today’s DES landscape is largely based on the process 
worldview and object worldview, and the fundamental concept 
of events is hardly considered anywhere. All three worldviews, 
and especially the process and object worldviews, which 
dominate today’s simulation landscape, lack important 
conceptual elements. The event worldview does not support 
modeling objects with their (categorical and dispositional) 
properties. The process worldview does neither support 
modeling events nor objects. And the object worldview, while 
it supports modeling objects with their categorical properties, 
does not support modeling events. None of the three 
worldviews does support modeling the dispositional properties 
of objects with a full-fledged explicit concept of transition 
rules. [4] 

Clearly, a Process worldview (the stages of the flow 
system) and an Object worldview are integrated into the FM 
diagram, which also includes events as flowthings. The FM 
description unifies these worldviews through describing them 
in one language. The FM representation models the system 
(e.g., deer dominance by males) and models a particular 
realization of that system using events as things (e.g., arrival of 
a female with no disobedience), similar to a computer program 
and testing a path of execution in the program. 

Accordingly, we propose that FM can provide a unifying 
language that supports modeling in simulation. 

VII. EXAMPLE: APPLICATION OF FM TO SIMULATION 

This section discusses a specific case study of simulation 
and applies the FM representation to such a case. 

Wagner [4] views simulation engineering as a special case 
of software engineering, hence, applies model-driven 
development that includes conceptual, design, and 
implementation models. Wagner [4] uses an example that 
includes the entity types Person, Customer, and ServiceQueue, 
as classes in UM.  UML stereotypes are utilized to distinguish 
between object types and event types as two different 
categories of entity types and use them for categorizing classes. 

In the study case, an event involves exactly one customer 
who gets in line at exactly one service queue. The customers 
wait in a queue; when the queue is empty and the service desk 
is not busy, they are served. Four entity types can be extracted 
by analyzing the noun phrases of the description: ServiceDesk, 
ServiceQueue, Service clerk, and Customer. The last two are 
subclasses of Person. 

After modeling all relevant object types in the first step, 
Wagner [4] models the relevant event types in a second step, as 
shown in Fig. 13.  At this point, we reach the focus of our 
discussion in this paper: Methods of attaching events to the 
system description. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 10, 2016 

 

287 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 13. The complete information model includes event types (redrawn, 

partial from [4]) 

Wagner [4] then draws a completely new diagram for the 
control of the Queue shown partially in Fig. 14, using yet 
another diagrammatic language, BPMN. Additionally, Wagner 
[4] models randomness of events using event types. For 
example, CustomerArrival is drawn (not shown here) as an 
exogenous event type with the class-level attribute 
occurrenceTime having the value (1,8), denoting a random 
variable with uniform distribution with lower bound 1 and 
upper bound 8. 

 
Fig. 14. Queue control  (redrawn, partial from [4]) 

Wagner [4] then introduces a diagram (not shown here) for 
process design modeling using BPMN. 

In the process design model, we turn the causal laws 
defined in the conceptual process model into corresponding 
transition rules described as BPMN sub-processes with 

  a start/intermediate event for triggering the transition 
rule; 

  tasks expressed as statements that contain typed 
variables and have a clear computational meaning; 

  bindings of variables to entities. [4] 

The whole approach exemplified by the case study 
discussed in this and the previous section seems to lack a 
unified foundation. First, it is based on “entities flowing 
through the system,” as mentioned previously. Then it states 
that “flow” applies only to entities of certain types: events, 
messages, and certain material objects may, in some sense, 
flow, while many entities of other types, such as buildings or 
organizations, do not flow “in any sense” [4]. Finally, it is 
suggested that one could say that DES is based on a flow of 
events. Accordingly, as shown in the example, heterogeneous 
types of diagrammatic representations are used, ranging from 
UML and BPMN either in a mix of hierarchal structures with 
flowing events (Fig. 13) or as refinements of higher-level 
diagrams (Fig. 14). 

The next section introduces the FM representation of the 
same case study. 

VIII. UNIFIED SCHEMATA: ENTITIES, EVENTS, AND FLOWS 

To make this example more interesting, we assume two 
service clerks. Fig. 15 shows the FM representation of this 
case. Such an addition to the problem will allow us to 
distinguish between the system (the FM diagram) and its 
environment: in this case, simulation with events is performed 
on only one service desk while excluding the other service 
desk. In the figure, for simplicity, details of the second queue 
and service clerk are omitted. 

Accordingly, in the figure, the customer arrives (circle 1) 
and proceeds to either Service desk 1 (circle 2) or Service desk 
2 (circle 3). At desk 1, the customer is received into its queue 
(4) then proceeds to Clerk 1 (5) and leaves when finished (6). 

We assume that our aim is to simulate the system with only 
one service desk; thus events are activated only along Service 
desk 1: circles 1, 2, 4, 5, and 6. Fig. 16 shows the simulated 
part of the system, with bold boxes (red lines in the online 
version) indicating activity events (instead of creation and 
processing of an event). 
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Fig. 15. FM representation 

 
Fig. 16. Activating events of only Service Clerk 1 

 Active here refers to being in a state of liveliness and 
reactiveness, or in engineering terminology, in the ON state. 
An event is a thing that facilitates such active state by a 
“switching” or “firing” occurrence (Petri net terminology). A 
flow (create, process, …) begins with an event and may end 

with the beginning of another event. The event is what causes 
the flow of things. Note that Create is a type of flow. 

Thus, in the figure, a person passes through various active 
stages. Here we combine the descriptive (static) level and the 
events level by assuming that each stage is event-active: it 
performs its function as soon as the thing flows through it. In 
the queue, the person proceeds to the clerk (2) and this transfer 
“blocks” any additional flow (3). When the customer leaves the 
clerk (is released and transferred), the next transfer to the clerk 
is permitted (4). 

Fig. 17 shows the addition of generating random numbers 
of arrivals, between 1 and 8 (circle 1). The clerk’s processing 
time (circle 2) can be added in similar fashion. 

 
Fig. 17. Activating events of only Service Clerk 1 

IX. CONCLUSION 

As stated in the introduction, this paper proposes a new 
diagrammatic language for modeling representations in 
simulation and as a basis for a theoretical framework 
incorporating associated notions such as events and flows. 
Additionally, where events are used to define fine-grained 
activities, operational semantics are assimilated into the 
representation, resulting in an integration of the static domain 
description and the dynamic chronology of events. 

We have shown that this unified specification facilitates 
such goals; nevertheless, the paper is still a theoretical proposal 
waiting to be realized in an actual simulation project. It is an 
attempt to point a direction substantiated by examples and re-
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casting of work from the published literature. Furthermore, the 
paper seems to clarify some of the involved issues such as the 
two-level approach (domain description and events sequences) 
needed for simulation, and it also seems to enhance 
understanding of such notions as events and flows. 
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