
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

281 | P a g e

www.ijacsa.thesai.org

Conceptual Modeling in Simulation: A

Representation that Assimilates Events

Sabah Al-Fedaghi

Computer Engineering Department

Kuwait University

Kuwait

Abstract—Simulation is often based on some type of model of

the evolved portion of the world being studied. The underlying

model is a static description; the simulation itself is executed by

generating events or dynamic aspects into the system. In this

context, this paper focuses on conceptual modeling in simulation.

It is considered the most important aspect in simulation

modelling, at the same time it is thought the least understood The

paper proposes a new diagrammatic language as a modeling

representation in simulation and as a basis for a theoretical

framework for associated notions such as events and flows.

Specifically, operational semantics using events to define fine-

grained activities are assimilated into the representation,

resulting in an integration of the static domain description and

the dynamic chronology of events (so-called process level). The

resulting unified specification facilitates understanding of the

simulation procedure and enhances understanding of basic

notions such as things (entities), events, and flows (activities).

Keywords—events; flow; conceptual modeling; simulation;

diagrammatic language

I. INTRODUCTION

Simulation, as employed in this paper, is a technique used
to imitate a system or process, as in the case of studying
concrete phenomena and their causal relations. It is often based
on some type of model of the evolved portion of the world
under study (the domain – the subject of the simulation study)
[1]. Such underlying model is a static description of the
domain; the simulation itself is conducted by generating events
or dynamic aspects into the system. Accordingly, the execution
of a model or part of it to reach certain conclusions about the
system is known as simulation.

This paper focuses on a conceptual model (in contrast to,
say, a mathematical or computational model) as an abstract
representation of a system intended to replicate some of its
properties [2] and to use as a tool for communication between
stakeholders. Methods for such representation include texts,
diagrams, and logic flow charts [3]. According to Wagner [4],
in simulation engineering, a system model consists of both an
information model and a process model. “Conceptual
modelling, one of the first stages in a simulation study, is about
understanding the situation under study and deciding what and
how to model” [5]. This phase is considered the most important
aspect of simulation modeling [6]; at the same time it is
thought to be the least understood [7].

This paper seeks to utilize a new diagrammatic language
for conceptual modeling of simulations. Diagrams seem “the

best approach to enhancing communication among a wide
variety of specification audiences” [8; italics added].
According to Zeigler [9], communication is one of the most
important and also least appreciated aspects of modeling.

Here the purpose is not to introduce a complete technical
solution, which would be outside the limited scope of a
conference paper; rather, the aim is to develop an appreciation
for the informality of the proposed approach, starting from
defining flows and events and ending with a unified description
of the system and its environment (simulation). A more
ambitious aim is to propose a new approach to conceptual
modeling in simulation and to develop a theoretical framework
for its associated notions such as events and flows.

A. Focus of study: Diagrammatic representation

Over years of simulation research, many diagrammatic
methodologies have been utilized in building models in
simulation, e.g., activity cycle diagrams (state diagrams), event
graphs, Petri nets, control flow graphs (see [10]), UML, and
BPMN. To give an idea of the type of study examined in this
paper, we consider a diagrammatic representation introduced in
the form of activity cycle diagrams (ACDs) [11].

In the ACD-based approach, a simulation model is viewed
as a collection of interacting entities. An active state usually
involves the cooperation of different entities. To specify a
model using ACDs, an activity cycle composed of queues and
activities must be given for each class of entity in the model
[10]. ACDs provide a means to recognize and prioritize
simultaneous events at the specification level in simulation.
“The strongest advantage of these diagrams is that they are
simple to work with. However, to fully support the simulation
process, these diagrams must be augmented” [10].

An ACD example is the English Pub, where the man entity
either drinks or waits to drink. The barmaid either pours a drink
or is idle. The glass is either used to drink from, empty, poured
into by the barmaid, or full, waiting to be consumed (see Fig.
1) [10].

Fig. 1. Activity Cycle Diagram (redrawn, partial from [10])

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

282 | P a g e

www.ijacsa.thesai.org

B. Contribution: Alternative Diagrammatic representation in

simulation

This paper presents an alternative to the ACD
representation and applies the completed diagram to
simulation. Fig. 1 of the English Pub will be recast in the
proposed new language of diagramming. The claim is that this
methodology provides a more complete specification suitable
for a static domain model and its dynamic aspects needed in
simulation.

For the sake of a self-contained paper, the next section
briefly reviews the diagrammatic language, called the
Flowthing Model (FM) that forms the foundation of the
theoretical development of the paper, with the deer dominance
example as a new contribution. With understanding of FM
gained from this example, section 3 substantiates the claim that
FM offers a more complete specification than the ACD graph
of the English Pub discussed in the introduction.

After FM is illustrated with an example and used to support
some claims in the introduction, section 4 introduces our
research topic of conceptual modeling in simulation by
contrasting some notions in the simulation literature against
their representation in FM.

Section 5 contains the main contribution of the paper, an
exploration of the FM representation in a wider organizational
setting. Here we demonstrate that the FM representation
embeds operational semantics that simplify the process of
modeling a chronology of events.

Section 6 suggests that FM can provide a unifying language
for modeling in simulation. Section 7 discusses a specific case
study of simulation and applies the FM representation to the
case.

II. A DIAGRAMMATIC LANGUAGE

The approach utilized in the paper is called the Flowthing
Model (FM), which has been used in a variety of applications
(e.g., [12-16]). FM is a uniform method for representing things
that “flow”; i.e., things that are created, processed, released,
transferred, and received while retaining their individuality
throughout the flow. They may queue in any of the flow stages.
They flow within spheres, i.e., the relevant environment that
encompasses the flow. A sphere may have subspheres.

Things that flow in a flow system are referred to as
flowthings or, as here, simply as things. The life cycle of a
thing is defined in terms of six mutually exclusive stages:
creation, release, transfer, arrival, acceptance, and process (in
which its form may be changed, but no new thing is generated),
as shown in Fig. 2. The flow system shown in the figure is a
generalization of the input-process-output model. The reflexive
arrow in the figure indicates flow to the Transfer stage of
another flow system. For simplicity, the stages Arrive and
Accept can be combined and termed Receive.

Fig. 2. Flow system

The stages in the life cycle of a thing are mutually
exclusive (i.e., a flowthing can be in one and only one stage at
a time). All other states or conditions of flowthings are not
mutually exclusive stages. For example, we can have stored
created things, stored processed things, stored received things,
etc.; thus stored is not an exclusive stage. Things can be
released but not transferred (e.g., a channel is down), or arrive
but not be accepted (wrong destination), and so on.

The following example illustrates the FM diagrammatic
language and its expressive power.

Example: As shown in Fig. 3, Geva [17] provides a text
description of behavior of red deer during breeding season,
followed by a diagram showing the causal connections
described in the text, as produced by a typical student who “has
in his repertoire skill for identifying basic meaningful units”
[17].

Fig. 3. Diagramming of descriptive text to identify causal relationships

(partial, from [17])

Fig. 4 shows the FM representation of male dominance
among deer during breeding season as interpreted from Fig. 3.
The female flows to the male domain (circle 1 in the figure),
where she is physically “processed” (2) in different ways. In
one scenario she is under threat by the male (3). In case she
disobeys (4), she is punished (5). (For simplicity, the flow of
the female (1 and 2) is not enclosed in a box.)

The figure can be contrasted with the left side of Fig. 3
where Dominance → Threatening → Punishment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

283 | P a g e

www.ijacsa.thesai.org

Fig. 4. Deer dominance by males during the breeding season

Similarly, Fig. 5 shows the FM representation of
leadership by the older females who are out ahead of the group
and determine its direction without the use of force. The
process Leadership → Directing → Reward of Fig. 3 is also
taken into account. The older female (circle 1) issues a
direction (2) that flows (3) to each (4) member of the group (5).
Execution of the direction (6) triggers (7) the generation
(creation, 8) of a reward that flows to the member.

Fig. 5. Deer leadership by the older females who are out ahead of the group

and determine its direction

III. THE ENGLISH PUB IN FM

Now, with this understanding of FM, we can substantiate
our claim that the specification offered by FM, suitable for
static domain modeling along with dynamic aspects needed in
simulation, is more complete than the ACD graph of the
English Pub discussed previously. Specifically, this section
focuses on the static representation, leaving the event-oriented
simulation to a later section.

Returning to the example of an English pub discussed in
the introduction, from the representational point of view, the
diagram of Fig. 1 seems incomplete as a picture of the domain
of the pub. The diagram is formed from three separate scenes:

 The state of a Man changes between drinking and
waiting

 The state of a Glass changes between empty and full

 The state of a Barmaid alternates between idle and
pouring

The resulting conceptual picture is formed by jumping from
one state to the next. Thus we find, for example, that the glass
is empty during the entire time of pouring, the state specified as
(Man: Waiting, Glass: Empty?, Pouring: ON). Modeling of a

domain is selective in its details; nevertheless, in the opinions
of the present authors, the model should not “contradict” reality
in the domain, e.g., the glass is not empty during the pouring
process.

The FM representation provides a “continuous” portrait of
the system, as shown in Fig. 6. First, the man orders a drink
(circle 1 in the figure) and the order flows to the barmaid (2) to
trigger taking an empty glass (3) from storage that flows to the
barmaid (4). This triggers release of the liquor (5) to the
barmaid, thus creating a filled glass (6) that flows to the man
(7) to drink (8).

As we see, inherent characteristics of the FM
representation, based on the notion of flow, force the modeler
to “connect the dots” and paint a complete chronology of
events in the system.

Fig. 6. FM representation

IV. CONTRASTING SOME NOTIONS

This section contrasts some notions used in the simulation
literature with their representation in FM. The purpose is to
highlight how the FM approach is different from current
simulation methods, as an introduction to applying FM in the
rest of the paper. Additionally, the discussion in this section
shows how FM provides a unifying view of many notions in
simulation, using the same diagrammatic language introduced
in section 2.

In simulation literature, an object is typically defined as
anything with attributes [18]. Objects and attributes in FM are
things as defined previously. The two concepts of time and
state, fundamental in the context of simulation, are also things.
Similarly, an event is a thing. According to Page [10],

An event is a change in an object state, occurring at an
instant, and initiates an activity precluded prior to that instant.
A process is the succession of states of an object over a span
(or the contiguous succession of one or more activities).”
[Italics added]

Page [10] illustrates the notions of event, activity, and
process in simulation as shown in Fig. 7.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

284 | P a g e

www.ijacsa.thesai.org

Fig. 7. An illustration of event, activity, and process

(redrawn, partial from [10])

An event in FM is a thing since it can be created,
processed, released, transferred, and received. It triggers the
creation, release, processing, transfer and receipt (“activity” in
the above quote) of other things. Process in the quote is the
flow in FM, e.g., a thing is created, released, and transferred.
Fig. 8 illustrates the flow, event, and “activities”, i.e., states in
a flow system.

Fig. 8. Illustration of event flow and “activities”

In the figure, the product is modeled from a static
description as a thing that is created, released, and transferred;
however, such creation, releasing, and transferring occurs only
as a result of events. The event is the trigger that activates each
stage of flow. Such a distinction between a static description
and dynamic activation of a system is a very important aspect
in simulation; nevertheless, the two levels of specification
(static and dynamic) can be modeled by the same diagrammatic
language.

For example, the event at circle 1 activates (causes creation
of a product thing: instance). Process (1) in the figure refers to
the event (creation) taking its course (e.g., duration). Event
scheduling in the diagram could be accomplished through
clock “jumps”; e.g., every hour, with each clock tick creating
the next period or next new product, etc.

V. APPLYING FM TO EVENTS

This section explores the FM representation in a wider
organizational setting. It demonstrates that the FM
representation embeds operational semantics that simplify
simulating the chronology of events in comparison with other
diagrammatic representations such as UML sequence
diagrams. The resultant operational semantics are conceived
along the lines of UM causality model specification in which
events are used to define fine-grained behaviors. First, let us
explore the notion of event in various fields.

According to McKee [19] in the context of English

literature, “STRUCTURE is a selection of events … that is
composed into a strategic sequence” [italics added]. Such a
definition seems to imply that the structure of a literary piece is
the structure of events.

Fig. 9. Example of flows of events

In this paper, structure is the conceptual description of
where the flow “takes place.” It is the FM diagram. An event is
a “happening” or “occurrence” in a point of the diagram (e.g.,
domain). It may be connected to earlier events (e.g., causal
connections). Philosophically, in the context of a definition
given by the French philosopher Jean-Luc Marion [20-21],

An event is that which … changes the given order of
things, and then disappears, leaving its mark without return. An
event shows itself as much as it gives itself to be seen. An
event, properly so-called, poses a problem for thought to think
it in ways other than according to the measure of its visible
appearance. [22]

Additionally, an event inaugurates something new from
within a given situation and a break or rupture in the current
state of a situation. It is both situated in and supplementary to
what the present authors call a structure. (Some of these
expression are taken from Butchart [22] describing Badiou’s
[23] philosophy, but reinterpreted differently).

This interpretation views the FM diagram as the structure: a
static map of things and their flows. Events are things of
happenings (occurrences), as shown in Fig. 9 for dominance by
males described in Fig. 4. This latter figure of dominance by
males is a static scenario of the dominance, while Fig. 9 shows
actual events (occurrences) as things that can be created,
processed, released, transferred, and received.

All things flow in their streams in the basin of flow (the
total FM diagram) which forms the structure of events, where

1) The event in this structure of a specific (that) female

transferred to the dominance of a specific (this) male.

2) The event in which the female is received.

3) The event in which the female is processed, etc.

The scenario is like a scene in a movie being actualized,
shot by shot (event by event). Each event “shows itself” and
disappears, as in Butchart’s [22] quote: “event, event, event, …
assimilated in a structure.”

As an illustration of assimilation of events in the FM
representation, consider the following computer program taken
from Podgurski and Clarke [24].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

285 | P a g e

www.ijacsa.thesai.org

input (X, Y>;

1. if X > Y then
2. Max := X;
else
3. Max := Y;
4. endif;
Fig. 10 shows a partial view of its FM representation (see

[25]). The figure also shows different events in this execution.

Fig. 10. Events when executing a program

First, the event in which X and Y are created (generated) in
the keyboard. The values are release and transfer to the input
software (e.g., cin in C++). Then the events continue one after
another. Note that we have two levels of representation: (a) the
structure of the situation, a static FM diagram of the program,
and (b) the events, an FM diagram of events at the dynamic
level where the event “inaugurates something new from within
a given situation” [22].

Accordingly, an operational semantics can be defined to
describe how to schedule events in the FM representation,
therefore specifying the thread of control of execution.
Operational semantics can also uncover concurrency of threads
of events that offer several options for executions or
occurrences, which is required in such systems as distributed
systems.

For instance, consider the deer dominance scenario
represented in Fig. 4. Two possible sequences of events
(behavior – possible execution) are shown in Fig. 11,

1) A female arrives and immediately disobeys; hence, it is

punished (1, 2, 3, 4B–10B)

2) A female arrives and immediately faces threats; hence,

she immediately submits to the male without disobedience (1,

2, 3, 4A–9A)

Here, the male is assumed to exist prior to the arrival of the
female. If we want to express this explicitly, we can add Create
in the Male sphere to precede these two sequences of events.

Note that the flow and triggering force a partial order on
some events; thus, release is preceded either by create,
process, or receive; a threat is preceded by being
communicated by the male (released and transferred). By the
nature of this triggering, punishment is caused by
disobedience, hence the sequence 4B, 5B in Fig. 11, etc.
Accordingly, alternative sequences of events are modeled at
certain points such as circle 3 in Fig. 11 where the A and B
threads of events are separated according to circumstances,
e.g., actual occurrences or execution.

Similarly, in the execution of the computer program of Fig.
10, the left and right sequences of inputting X and Y can be
executed in parallel along the two threads of flow; their arrival
at the ALU would then have to be synchronized.

Fig. 11. Two possible sequences of events following the arrival of a female

VI. APPLICATION TO SIMULATION

This section suggests that FM can provide a unifying
language that supports modeling in simulation.

According to Wagner [4],

Due to their great expressivity and their wide adoption as
modeling standards, UML Class Diagrams and BPMN seem to
be the best choices for making information and process models
in a model-driven simulation engineering approach. [4]

Wagner [4] illustrates how to develop a simulation of the
functions of a service desk with the help of UML class
diagrams and BPMN diagrams.

In the DES [Discrete Event Simulation] literature, it is
often stated that DES is based on the concept of “entities
flowing through the system”. However, the loose metaphor of a
“flow” only applies to entities of certain types: events,
messages, and certain material objects may, in some sense,
flow, while many entities of other types, such as buildings or

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

286 | P a g e

www.ijacsa.thesai.org

organizations, do not flow in any sense. Also, subsuming these
three different kinds of flows under one common term “entity
flow” obscures their real meanings. It is therefore highly
questionable to associate DES with a “flow of entities”. Rather,
one may say that DES is based on a flow of events. [4; italics
added]

This view is different from the concept of flow in FM,
where the conceptual flow is defined in terms of states of
Create, Process, Release, Transfer, and Receive. In FM,
buildings can flow conceptually. Suppose that a city zoning
board decided to change the zoning for an area containing
building 1234, where each zone has different regulations. The
building in effect will “flow” to the sphere of a different zone,
as shown in Fig. 12. In FM, events, entities, buildings, signals
are all things that can flow.

Fig. 12. The flow of a building

According to Wagner [4], “Unfortunately, this [concept of
DES as a flow of events] is often obscured by the standard
definitions of DES that are repeatedly presented in simulation
textbooks and tutorials.” Wagner [4] then describes Pegden’s
[26] simulation modeling worldview which provides “a
framework for defining a system in sufficient detail that it can
be executed to simulate the behavior of the system.”

Over the 50 year history of simulation there have been
three distinct world views in use: event, process, and objects.

Event worldview: The system is viewed as a series of
instantaneous events that change the state of the system over
time. This is the basis of the events flow systems in FM.

Process worldview: The system is described as a process
flow in which sets of passive entities flow through the system
and are subject to a series of process steps (e.g. seize, delay,
release) that model the state changes that take place in the
system.

Object worldview: The system is modeled by describing
the objects that make up the system. The system behavior
emerges from the interaction of these objects. [4]

According to Pegden [26], agent based modeling is
typically implemented with the object worldview.

So, today’s DES landscape is largely based on the process
worldview and object worldview, and the fundamental concept
of events is hardly considered anywhere. All three worldviews,
and especially the process and object worldviews, which
dominate today’s simulation landscape, lack important
conceptual elements. The event worldview does not support
modeling objects with their (categorical and dispositional)
properties. The process worldview does neither support
modeling events nor objects. And the object worldview, while
it supports modeling objects with their categorical properties,
does not support modeling events. None of the three
worldviews does support modeling the dispositional properties
of objects with a full-fledged explicit concept of transition
rules. [4]

Clearly, a Process worldview (the stages of the flow
system) and an Object worldview are integrated into the FM
diagram, which also includes events as flowthings. The FM
description unifies these worldviews through describing them
in one language. The FM representation models the system
(e.g., deer dominance by males) and models a particular
realization of that system using events as things (e.g., arrival of
a female with no disobedience), similar to a computer program
and testing a path of execution in the program.

Accordingly, we propose that FM can provide a unifying
language that supports modeling in simulation.

VII. EXAMPLE: APPLICATION OF FM TO SIMULATION

This section discusses a specific case study of simulation
and applies the FM representation to such a case.

Wagner [4] views simulation engineering as a special case
of software engineering, hence, applies model-driven
development that includes conceptual, design, and
implementation models. Wagner [4] uses an example that
includes the entity types Person, Customer, and ServiceQueue,
as classes in UM. UML stereotypes are utilized to distinguish
between object types and event types as two different
categories of entity types and use them for categorizing classes.

In the study case, an event involves exactly one customer
who gets in line at exactly one service queue. The customers
wait in a queue; when the queue is empty and the service desk
is not busy, they are served. Four entity types can be extracted
by analyzing the noun phrases of the description: ServiceDesk,
ServiceQueue, Service clerk, and Customer. The last two are
subclasses of Person.

After modeling all relevant object types in the first step,
Wagner [4] models the relevant event types in a second step, as
shown in Fig. 13. At this point, we reach the focus of our
discussion in this paper: Methods of attaching events to the
system description.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

287 | P a g e

www.ijacsa.thesai.org

Fig. 13. The complete information model includes event types (redrawn,

partial from [4])

Wagner [4] then draws a completely new diagram for the
control of the Queue shown partially in Fig. 14, using yet
another diagrammatic language, BPMN. Additionally, Wagner
[4] models randomness of events using event types. For
example, CustomerArrival is drawn (not shown here) as an
exogenous event type with the class-level attribute
occurrenceTime having the value (1,8), denoting a random
variable with uniform distribution with lower bound 1 and
upper bound 8.

Fig. 14. Queue control (redrawn, partial from [4])

Wagner [4] then introduces a diagram (not shown here) for
process design modeling using BPMN.

In the process design model, we turn the causal laws
defined in the conceptual process model into corresponding
transition rules described as BPMN sub-processes with

 a start/intermediate event for triggering the transition
rule;

 tasks expressed as statements that contain typed
variables and have a clear computational meaning;

 bindings of variables to entities. [4]

The whole approach exemplified by the case study
discussed in this and the previous section seems to lack a
unified foundation. First, it is based on “entities flowing
through the system,” as mentioned previously. Then it states
that “flow” applies only to entities of certain types: events,
messages, and certain material objects may, in some sense,
flow, while many entities of other types, such as buildings or
organizations, do not flow “in any sense” [4]. Finally, it is
suggested that one could say that DES is based on a flow of
events. Accordingly, as shown in the example, heterogeneous
types of diagrammatic representations are used, ranging from
UML and BPMN either in a mix of hierarchal structures with
flowing events (Fig. 13) or as refinements of higher-level
diagrams (Fig. 14).

The next section introduces the FM representation of the
same case study.

VIII. UNIFIED SCHEMATA: ENTITIES, EVENTS, AND FLOWS

To make this example more interesting, we assume two
service clerks. Fig. 15 shows the FM representation of this
case. Such an addition to the problem will allow us to
distinguish between the system (the FM diagram) and its
environment: in this case, simulation with events is performed
on only one service desk while excluding the other service
desk. In the figure, for simplicity, details of the second queue
and service clerk are omitted.

Accordingly, in the figure, the customer arrives (circle 1)
and proceeds to either Service desk 1 (circle 2) or Service desk
2 (circle 3). At desk 1, the customer is received into its queue
(4) then proceeds to Clerk 1 (5) and leaves when finished (6).

We assume that our aim is to simulate the system with only
one service desk; thus events are activated only along Service
desk 1: circles 1, 2, 4, 5, and 6. Fig. 16 shows the simulated
part of the system, with bold boxes (red lines in the online
version) indicating activity events (instead of creation and
processing of an event).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

288 | P a g e

www.ijacsa.thesai.org

Fig. 15. FM representation

Fig. 16. Activating events of only Service Clerk 1

 Active here refers to being in a state of liveliness and
reactiveness, or in engineering terminology, in the ON state.
An event is a thing that facilitates such active state by a
“switching” or “firing” occurrence (Petri net terminology). A
flow (create, process, …) begins with an event and may end

with the beginning of another event. The event is what causes
the flow of things. Note that Create is a type of flow.

Thus, in the figure, a person passes through various active
stages. Here we combine the descriptive (static) level and the
events level by assuming that each stage is event-active: it
performs its function as soon as the thing flows through it. In
the queue, the person proceeds to the clerk (2) and this transfer
“blocks” any additional flow (3). When the customer leaves the
clerk (is released and transferred), the next transfer to the clerk
is permitted (4).

Fig. 17 shows the addition of generating random numbers
of arrivals, between 1 and 8 (circle 1). The clerk’s processing
time (circle 2) can be added in similar fashion.

Fig. 17. Activating events of only Service Clerk 1

IX. CONCLUSION

As stated in the introduction, this paper proposes a new
diagrammatic language for modeling representations in
simulation and as a basis for a theoretical framework
incorporating associated notions such as events and flows.
Additionally, where events are used to define fine-grained
activities, operational semantics are assimilated into the
representation, resulting in an integration of the static domain
description and the dynamic chronology of events.

We have shown that this unified specification facilitates
such goals; nevertheless, the paper is still a theoretical proposal
waiting to be realized in an actual simulation project. It is an
attempt to point a direction substantiated by examples and re-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

289 | P a g e

www.ijacsa.thesai.org

casting of work from the published literature. Furthermore, the
paper seems to clarify some of the involved issues such as the
two-level approach (domain description and events sequences)
needed for simulation, and it also seems to enhance
understanding of such notions as events and flows.

REFERENCES

[1] T. Grüne-Yanoff and P. Weirich, “The philosophy and epistemology of
simulation: a review,” Simulation & Gaming, vol. 41, no. 1, pp. 20–50,
2010.

[2] C. M. Overstreet, (1982). “Model Specification and Analysis for
Discrete Event Simulation,” PhD Dissertation, Department of Computer
Science, Virginia Tech, Blacksburg, VA, December.

[3] W. Wang and R. Brooks, 2007. Empirical Investigations of Conceptual
Modeling and the Modeling Process. In Proceedings of the 2007 Winter
Simulation Conference, ed. S.G. Henderson, B. Biller, M.-H. Hsieh, et
al., 762-770. Piscataway, NJ: IEEE Computer Society Press.

[4] G. Wagner, Information and Process Modeling for Simulation, Toturial,
Jan 2015 · Proceedings - Winter Simulation Conference.

[5] A. A. Tako, K. Kotiadis, and C. Vasilakis, “A participative modeling
framework for developing conceptual models in healthcare simulation
studies,” In Proceedings of Winter Simulation Conference, Baltimore
(MD), USA, B. Johansson, S. Jain, J. Montoya-Torres, et al., Eds. 2010,
pp. 500−512. http://www.informs-sim.org/wsc10papers/045.pdf

[6] A. M. Law, Simulation Modeling and Analysis. Boston: McGraw-Hill,
2007.

[7] S. Robinson, S. “Conceptual modeling for simulation: issues and
research requirements,” in Proceedings of the 2006 Winter Simulation
Conference, L. F. Perrone, F. P. Wieland, J. Liuet, et al., Eds. Monterey,
CA: Institute of Electrical and Electronic Engineers, 2006

[8] J. W. Brackett, “Formal specification languages: a marketplace failure; a
position paper,” in Proceedings of the 1988 IEEE International
Conference on Computer Languages, Miami, FL, p. 161, October 9-13,
1988.

[9] B. P. Zeigler, (1976). Theory of Modelling and Simulation. New York:
John Wiley and Sons, 1976.

[10] E. H. Page Jr., Simulation Modeling Methodology: Principles and
Etiology of Decision Support. Ph.D. Dissertation, Virginia Polytechnic
Institute and State University, Blacksburg, September 1994.

[11] R. J. Paul, “Activity cycle diagrams and the three phase approach,” in
Proceedings of the 1993 Winter Simulation Conference, pp. 123–131,
Los Angeles, CA, December 12-15, 1993.

[12] S. Al-Fedaghi and A. Alrashed, “Threat risk modeling,” paper presented

at International Conference on Communication Software and Networks
(ICCSN 2010), Singapore, February 26–28, 2010.

[13] S. Al-Fedaghi, “Toward flow-based semantics of activities,” Int. J.
Softw. Eng. Appl., vol. 7, no. 2, pp. 171-182, 2013.

[14] S. Al-Fedaghi and B. Al-Babtain, “Modeling the forensics process,” Int.
J. Secur. Appl., vol. 6, no. 4, 2012.

[15] S. Al-Fedaghi, “Awareness of context and privacy,” Am. Soc. Inform.
Sci. Tech. (ASIS&T) Bull., vol. 38, no. 2, 2011.

[16] S. Al-Fedaghi, “Typification-based ethics for artificial agents,” paper
presented at Second IEEE International Conference on Digital
Ecosystems and Technologies (IEEE-DEST 2008), Phitsanulok ,
Thailand, February 26–29, 2008.

[17] E. Geva, Facilating Reading Comprehension through Flowcharting.
University of Illinois, Urbana-Champain, July 1981.
https://www.google.com.kw/url?sa=t&rct=j&q=&esrc=s&source=web&
cd=1&cad=rja&uact=8&ved=0ahUKEwjM5ea5jM7OAhUHlxQKHeyi
BewQFggfMAA&url=https%3A%2F%2Fwww.ideals.illinois.edu%2Fbi
tstream%2Fhandle%2F2142%2F18065%2Fctrstreadtechrepv01981i002
11_opt.pdf%3Fsequence%3D1&usg=AFQjCNEXx3Z9X8TVvl4G_v4G
lbct3AL0Fg&bvm=bv.129759880,d.d24

[18] R. E. Nance, “The time and state relationships in simulation modeling,”
Comm. ACM, vol. 24, no. 4, pp.173- 179, 1981.

[19] R. McKee, Story: Substance, Structure, Style, and the Principles of
Screen Writing. ReganBooks, 1997. ISBN: o-o6-o39168-5.

[20] J.-L. Marion, Being Given: Toward a Phenomenology of Givenness,
Jeffrey L. Koskey (trans.). Stanford, CA: Stanford University Press,
2002.

[21] J.-L. Marion, Reduction and Givenness: Investigations of Husserl,
Heidegger, and Phenomenology, Thomas A. Carlson (trans.). Evanston,
IL: Northeastern University Press, 1998.

[22] G. C. Butchart, “An excess of signification: or, what is an event?”
Semiotica, vol. 187, no. 1/4, pp. 291–307, 2011.

[23] A. Badiou, Ethics: An Essay on the Understanding of Evil, Peter
Hallward (trans.). London: Verso, 2001.

[24] A. Podgurski and L. A. Clarke, “The implications of program
dependences for software testing, debugging, and maintenance,” ACM
SIGSOFT Softw. Eng. Notes, vol. 14, no. 8, pp. 168-178, December
1989. DOI: 10.1145/75309.75328

[25] S. Al-Fedaghi, “Conceptual understanding of computer program
execution: application to C++,” Int. J. Comp. Sci., vol. 10, no. 2, March
2013.

[26] C. D. Pegden, “Advanced tutorial: overview of simulation world views,”
in Proceedings of Winter Simulation Conference, Baltimore (MD),
USA, B. Johansson, S. Jain, J. Montoya-Torres, et al., Eds., pp.
643−651, 2010.

http://www.informs-sim.org/wsc10papers/045.pdf
https://www.google.com.kw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjM5ea5jM7OAhUHlxQKHeyiBewQFggfMAA&url=https%3A%2F%2Fwww.ideals.illinois.edu%2Fbitstream%2Fhandle%2F2142%2F18065%2Fctrstreadtechrepv01981i00211_opt.pdf%3Fsequence%3D1&usg=AFQjCNEXx3Z9X8TVvl4G_v4Glbct3AL0Fg&bvm=bv.129759880,d.d24
https://www.google.com.kw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjM5ea5jM7OAhUHlxQKHeyiBewQFggfMAA&url=https%3A%2F%2Fwww.ideals.illinois.edu%2Fbitstream%2Fhandle%2F2142%2F18065%2Fctrstreadtechrepv01981i00211_opt.pdf%3Fsequence%3D1&usg=AFQjCNEXx3Z9X8TVvl4G_v4Glbct3AL0Fg&bvm=bv.129759880,d.d24
https://www.google.com.kw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjM5ea5jM7OAhUHlxQKHeyiBewQFggfMAA&url=https%3A%2F%2Fwww.ideals.illinois.edu%2Fbitstream%2Fhandle%2F2142%2F18065%2Fctrstreadtechrepv01981i00211_opt.pdf%3Fsequence%3D1&usg=AFQjCNEXx3Z9X8TVvl4G_v4Glbct3AL0Fg&bvm=bv.129759880,d.d24
https://www.google.com.kw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjM5ea5jM7OAhUHlxQKHeyiBewQFggfMAA&url=https%3A%2F%2Fwww.ideals.illinois.edu%2Fbitstream%2Fhandle%2F2142%2F18065%2Fctrstreadtechrepv01981i00211_opt.pdf%3Fsequence%3D1&usg=AFQjCNEXx3Z9X8TVvl4G_v4Glbct3AL0Fg&bvm=bv.129759880,d.d24
https://www.google.com.kw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjM5ea5jM7OAhUHlxQKHeyiBewQFggfMAA&url=https%3A%2F%2Fwww.ideals.illinois.edu%2Fbitstream%2Fhandle%2F2142%2F18065%2Fctrstreadtechrepv01981i00211_opt.pdf%3Fsequence%3D1&usg=AFQjCNEXx3Z9X8TVvl4G_v4Glbct3AL0Fg&bvm=bv.129759880,d.d24
https://www.google.com.kw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjM5ea5jM7OAhUHlxQKHeyiBewQFggfMAA&url=https%3A%2F%2Fwww.ideals.illinois.edu%2Fbitstream%2Fhandle%2F2142%2F18065%2Fctrstreadtechrepv01981i00211_opt.pdf%3Fsequence%3D1&usg=AFQjCNEXx3Z9X8TVvl4G_v4Glbct3AL0Fg&bvm=bv.129759880,d.d24

