
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

Recovering and Tracing Links between Software
Codes and Test Codes of the Open Source Projects

Amir Hossein Rasekh
Computer Science and Engineering Department

Shiraz University
Shiraz, Iran

Seyed Mostafa Fakhrahmad*
Computer Science and Engineering Department

Shiraz University
Shiraz, Iran

Amir Hossein Arshia
Computer Science and Engineering Department

Shiraz University
Shiraz, Iran

Mohammad Hadi Sadreddini
Computer Science and Engineering Department

Shiraz University
Shiraz, Iran

Abstract—One of the most important controversial issues in
the design and implementation of software is the functionality of
the designed system. With impressive efforts of different software
teams in the field of the system, the primary concern of the
developers is its proper and error free functioning of the whole
system. Therefore, various tests are defined and designed to
help software teams to produce error free software or software
with minimum error rate. It is difficult but important to find
a proper link between written test class and the class under
the test. Discovering these links is useful for programmers to
perform the Regression Test more efficiently. In this paper, we
are trying to propose a model for the recovery of traceable links
between test classes and the classes under the test. The presented
model comprises four sections. Firstly, we retrieve the name of
similar classes between the test class and source class. Afterward,
we extract the complexity, Cyclomatic and design metrics from
the source codes and the test classes. Finally, after creating a
train set, we implement the data mining algorithms to find the
potential relationship between unit tests and the classes under
the test. One of the advantages of this method is its language
independence; furthermore, the preliminary results show that
the proposed method has a good performance.

Keywords—Unit Testing; Source Code; Similarity; Software
Engineering; Open Source; Data Mining

I. INTRODUCTION

Designing software without observing software engineering
principles is like building a house without a standard and
engineered plan. Unfortunately, many producing software com-
panies do not follow the principles of engineering or remove
some of the stages, especially the test phase of the software
development cycle. This reduces the cost of production of
software but multiplies the cost of its support and maintenance.
This multiplication of the cost of support and maintenance
happens due to most of the problems of the program are
resolved in the test phase.

Software test is the software evaluation process to ensure
the proper functioning of the various events. In other words,
software test is finding the possible errors of software during
its use to have software which performs correctly, properly
and optimally. The more software could work with different
events the better the application performs. A good test refers

to the test that in which there is more probability of finding
undetected errors by the evaluation process. A successful test
is a test which can find at least one undetected error. The
test just shows the existence of error not the non-existence of
error. Finding no error in the test doesn’t mean that it is not
an error-free program. The software testability criteria are as
follows:

• Operability: The software can be better assessed when
it operates in more environments.

• Observability: having the capacity of observing the
results of the evaluation.

• Controllability: having the ability to manage the au-
tomated tests, such as the capacity to operate the unit
tests with JUnit in Java language automatically.

• Decomposability: assessment could be more purpose-
ful.

• Simplicity: reducing the architectural complexity and
application logic.

• Stability: for evaluation needs little changes.

• Understandability: having the capacity of understand-
ing the design and correlations between the compo-
nents.

Coding and testing are two activities that are entirely
integrated with the agile method of software development.
These two activities require that the programmer frequently
swaps between software source code and test codes.

Unfortunately, the links between software codes and test
codes are implicit and hidden; therefore, for developers dis-
covering these links to find connections between test cases
and corresponding software codes is very time-consuming.

A. The Beginning Time of the Test

During the Software Development Life Cycle that is called
SDLC, test starts and it lasts until the establishment of the
software. However, all these tests depend on the model of the
development that the company would operate. For example, in

www.ijacsa.thesai.org 319 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

the waterfall model the test is run in the software production
phase, but in the incremental model the test is repeated at the
end of each increase or change. In every stage of the SDLC,
the analysis and approvals required for the test are considered.
Reviewing of the design in the design phase to the aim of
design improvement in the area of test is also considered. After
the completion of the test by a developer, the test is classified
as a unit test.
Testing during the SDLC has the following advantages:

• Reducing the production time

• Reducing the costs

• Reducing the reworking

• Reducing the software errors

• Increasing productivity

• Increasing software quality

• On time delivery to the taskmaster

• Improving the customer satisfaction

B. Unit Test

Unit Test is a technique used to test small units of software
source code and also ensures they are working properly. In
this technique, the integrity of each piece of software source
code, which is called ”unit”, is evaluated using another code
written by programmers. In object-oriented languages, this is
usually done using a separate class, although it can also be
done using only one method. Ideally, each test is independent
of the others tests. Unit tests are usually handled by software
developers. Method of Unit Test can vary from the evaluation
of the result on paper to automatically run multiple tests and
analysis of the result by the program itself.

C. The Importance and Benefits of Unit Test

• The compilation of the code does not indicate its
correct performance. There need to be methods to test
the system. You are not only paid to write code, but
you are paid to create executable code.

• In a long time, writing unit tests will result in produc-
ing high quality codes. For instance, suppose you’ve
developed a system. Today, an employer asked you to
add new functionality to the application. To apply the
changes, for example, it is required to modify a portion
of the existing code, as well as to add new classes
and methods to the program. After the request, you
must ensure that the prior parts of the system worked
until a few moments ago, now working as before.
The volume of written code is high. Manual testing
of individual cases may not be possible in terms of
time and cost. A unit test is a way to ensure that the
delivery of work to taskmaster would happen with no
error. In this case, refactoring of the existing code will
be done properly, because previous tests can be run
immediately; moreover, we can assure that the system
performs correctly.

• The procedures of the conducted experiments in the
future would become an important reference to under-
stand how different parts of the system perform. How

are they calling, how should they be given value, and
so on.

• Using the unit tests, we can consider and assess the
possible worst-case scenarios before the outbreak.

• Writing unit tests during operation can make the
developer break the parts into smaller units that are
capable of independent study. For example, suppose
you have developed a method that after three different
operations on a string provides a specific output.

• These tests are considered as an ideal part of the
process of software development because of their
automatic execution.

D. Regression Test

The regression test is a method to test the software. The
purpose of regression test is to find new software problems
or regressions. The purpose of regression test is to assure
that new changes such as changes mentioned will not cause a
defect or new error in the software. One of the main reasons
for doing regression test is to determine if a change in one
part of the system can also affect other parts of the system
or not. Among the most common technique of performing
regression tests is to apply those tests which were done well
and successfully before the application of the new changes
in the software. Again, after applying new changes, those
tests are applied to the software and are examined whether
plan behavior changed after applying new changes; moreover,
determine if the deficiencies have already been fixed or are not
re-emerged and also determine if the already fixed deficiencies
have re-emerged or not.

Unfortunately, at present, connections between application
codes and test codes are not very rich, and these links are
not easily visible. Even when integrated development envi-
ronments support building test cases based on the generated
classes, finding a proper link between the class code and the
test is difficult.

Test cases are a valuable source of documentation for
developers which they change them continuously to reflect
changes in the generated code of their software and maintain
an effective regression analysis. Maintaining links between
application codes and test codes are an excellent source for
selectively testing the software after applying changes in the
generated code.

Discovering these links can also be used in the regression
analysis. In large-scale software projects, regression test in
the form of retest all approach is a time-consuming duty. In
particular, operating some of the cases of the test can take
hours or even days of time. So developers cannot test software
system quickly or even at an acceptable time. Researches show
that only 30% of developers, after applying changes in the
generated code of their application, they thoroughly tested it
again; however, only 70% test those functions that they have
changed them.

II. RELATED WORKS

There are a variety of methods for discovering the links
between software codes and test codes. These methods could

www.ijacsa.thesai.org 320 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

then be classified based on the method used. Some of these
methods are based on Heuristic Algorithm, some are based on
Information Retrieval, some are based on Data Mining and,
finally, there are some methods based on Machine Learning.

In recent years, some methods are proposed to retrieve
and manage the connections between test classes and software
code classes. The researchers proposed the waterfall method
to improve the testability of complex classes [1].

In 2007, Bouillon and et al. [2] suggested the Eclipse JUnit
to call static graphs. They used a Java icon to identify and
communicate the description of generated code of the software.

In 2004, Bruntink and Deursen [3] offered two methods to
combine the test case and software generated code. The first
method used a name convention and handheld communications
for mapping the code functions to the requirements model. In
the second method, they proposed the connection between the
test case and the code functions with time stamps of the test
cases and time-stamp of the code functions.

Ren and et al. [4] proposed a system called Chianati. This
system is a software add-on for the Eclipse, which can evaluate
the impact of changes in the products with the help of software
generated code identification. The system analyzes the changes
by the developer between different versions of the system;
then it maps them in the test case by analyzing the call graph.
Moreover, this system can be implemented after changes; thus,
it is not able to identify and maintain the connection between
the generated code and test case. This method is also useful to
understand the application and test the regression along with
effective analysis.

In 2012, Hurdugaci and Zidman [5] wrote a plug-in for vi-
sual studio that mapped the changes in the software generated
code to the case test code for a change in a piece of code.

In 2009, Rompaey and Demeyer [6] implemented exper-
imentally naming convention, the last call before assertion,
Latent Semantic Indexing [8] and co-evolution approach. They
discovered the test class naming convention by eliminating the
keyword ”test” of classes in the software generated. The last
call before assertion recognized those classes under the test by
the inspection and reviewing of the method in JUnit. It is a
Heuristic approach that makes a distinction between the test
classes and helper classes. In summary, the last call before
the assertion assumes that the test methods immediately call
the actual test classes before the confirmation of the orders.
The latent naming convention is an Information Retrieval tech-
niques that identified test classes based on context similarity
of the JUnit and code classes of the software. Finally, the Co-
evolution approach assumes that a JUnit test class is completed
again with a relevant test. Their results have shown that
the naming convention is more accurate than other methods.
Moreover, the latent naming convention has been successful in
identifying the relationship between several types of artifacts
such as those functions under the test written in the natural
language and program codes. They also showed that the use of
The latent naming convention to identify relationships between
JUnit test class are not satisfied. Naming convention shows a
one by one relationship between the test cases and the software
generated code.

In 2010, Qusef and et al. [9] proposed the use of data

flow analysis to overcome some restrictions. They considered
the test classes as a series of classes that affect the results of
the latest announcement of each test. The authors examined
decomposability and accessibility based on the dependency of
the analysis.

In 2011, Qusef and colleagues [10] proposed using slicing
to identify a set of classes that are generated by software and
have an effect on commands. It is called SCOTCH. Their re-
sults are displayed on three system software called ArgoUML,
AgilePlanner, Ant Apache. The advantages of SCOTCH are
bright compared to conventional naming techniques and the
last call before assertion as well as data flow analysis. In
particular, words in class names are important.

In 2014, once again, Qusef and et al. [11], developed their
2011 system based on text filtering strategy from internal and
external information communication and called it SCOTCH+.
In their work they used name similarity; moreover, they took
their results on software systems and with this method they
improve their previous result.

III. THE PROPOSED METHOD

In this paper, a method has been introduced based on data
mining algorithms to link between the code classes and the test
classes. The proposed method includes the following sections.

1) Retrieving the name of those classes which have
the same name in both test classes and source code
classes.

2) Extracting features of the source code and test
classes:

a) Extracting complexity metrics
b) Extracting Cyclomatic metrics
c) Extracting design metrics

3) Creating the train test and the test set
4) Operating the data mining algorithms on the obtained

file.

Figure 1 and Algorithm 1 demonstrate the full implemen-
tation of the proposed method and the pseudo codes presented
in this paper. These parts will be explained in the next sections
respectively.

Fig. 1: An overview of the whole system

www.ijacsa.thesai.org 321 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

Algorithm 1 The Pseudocode of the Proposed Method

for each (Classname T in TestFolder) do
for each (Classname C in CodeFolder) do

if (T equal C) then
add← T to NamingConventionList

end if
end for

end for

for each (Item in TestFolder and CodeFolder) do
extract (Complexity Metrics)
extract (Cyclomatic Metrics)
extract (Design Metrics)

end for

for each (Item in TestFolder) do
if (Item in NamingConventionList) then
add← Item and its features to TrainSet

end if
end for

TABLE I: Comparing Similarity Between Two Terms

Term1 Term2 Jaccard Similarity Proposed Similarity
PropertiesEcho PropertiesEcho 100% 100%
PropertiesEcho EchoProperties 100% 85%

A. Recovery of the Name of the Same Classes Between the
Test Class and Source Code Class

One of the common approaches among the open source
community is the approach of naming the set of test classes.
The naming convention of the test class is for selecting the
name of the test class. The keyword ’test’ has been located
before or after the test name. For example, a class called
TestSample or SampleTest is implementing a test set associated
with a class called Sample. However, unfortunately, the devel-
opers do not follow the class definition of this approach when
naming their test series. Accordingly, to make connections
between test cases and source codes, initially, we should act
in accordance with similarity criteria.

To find such a relationship, initially, the class brand names
along with the packages used in this class from the test
files should be derived. In particular, the terms used in the
class names have much more importance than the name of
the other terms in the content of the class. However, it is
believed that the terms outlined in the class name offer primary
key information, especially when the naming conventions are
applied. The names of source code should be scrutinized by
using Jaccard similarity criteria with the threshold of 100 and
make links between those classes which have quite similar
names.

In this method, to find the similarities between the two
words, based on the alphabetical order, this task was done
which a number of similar letters in the two words divided by
the total number of words were counted as it shown in Table
III Algorithm 2.

naming conventions create a one-to-one relationship be-
tween the test class and the code class based on names,
so when there is more than one class tested or when the

Algorithm 2 The Pseudocode of Similarity Measure

for each item A in list do
if (A matches B) then

return y
for each char in A or B do

if (char in both A and B) then
Di← 1

else
Di← 0

end if
end for

end if
end for

similarity ← sum(D)/(|A|+ |B|) ∗ 100

return similarity

developers are not able to follow the naming based on the
smart technology, a shortfall has happened.

B. Feature Extraction of the Source Code and Test Classes

Using the model referred to in phase A, only make links
between test cases and source codes for some of the test cases
should be found out. If there is no possibility to find such links
by class name, the feature extraction model should be used.

In this part, the features such as the technical metrics
of the software have been extracted from both sides of the
source code and the test classes. These technical metrics are
quantitative criteria that can be used for product evaluation. In
this paper, complexity metrics, cyclomatic metrics and design
metrics have been used.

1) Complexity metrics: In this paper, Halstead complexity
measure which was proposed by Howard Halstead in 1977 was
used to determine the complexity metrics [12]. These metrics
identify those software criteria that reflect implementation or
express the algorithm in different languages; also, these metrics
are independent of the operation on a specific platform.

Halstead aims to identify the properties of software and
relationship between them. For these metrics, a series of initial
scale should be applied when the design is complete. These
scales are introduced as follows:

n1: number of specified operators that appear in the pro-
gram
n2: number of specified operands that are displayed in the
program
N1: total number of operators
N2: total number of operands
The properties extracted from the Source Code and test file
are shown as follows:

• The number of program lines: in this feature, the
number of lines of each class of the program was
derived.

• The length of the program: the length of the program
is the total number of operators and operands.

ProgramLength : N = N1 +N2 (1)

www.ijacsa.thesai.org 322 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

• The number of words of the program: the number of
words of the program is the total number of unique
operators and operands.

n = n1 + n2 (2)

• Estimation of the length of the program: the following
formula can be used for estimation of the length of the
program.

N = n1log2n1 + n2log2n2 (3)

• Volume: volume is the contents of information of the
program. Volume size describes the implementation
of an algorithm. V calculation is based on the number
of operators and operands executable by the control
algorithm. Therefore, V sensitivity to LOC criteria is
less than code.

V = N ∗ log2n (4)

• Hard/ Difficulty: the difficulty of the program or error-
proneness is assigned by the number of unique opera-
tors in the program. The difficulty is also proportional
to the quotient between the total number of operands
and the number of individual operands. For example,
if the same operands are used many times in the
program, it is probably more prone to errors.

D = n1/2 ∗N2/n2 (5)

• Program effort: program effort (implementation) or
understanding of a program is proportional to the
volume and level of difficulty of a program.

E = D ∗ V (6)

• Program level: program level (L) is the inverse of the
probability of error in the program. This means that
a lower level program is more prone to errors than a
higher level program.

L = 1/D (7)

• Program Time: time program is proportional to the
efforts. The experiments can be used to calibrate
this quantity (amount). Halstead has shown that the
division of effort (E) by 18 is an approximation for
the seconds of time.

T = E/18 (8)

2) Cyclomatic metrics: In this paper, McCabe criteria were
used for Cyclomatic metric. Thomas McCabe proposed this
metric in 1976 [13] for the measurement of the complexity of
the software. He also considered the number of independent
paths covering an entire module or method as the complexity
of it. There are different methods to calculate the number of
independent paths in the method, and the most formal method
is plotting the control graph of the flow of that method. After
plotting the control flow graph using the following formula, we
can calculate the number of independent paths. This technique
is used in the classes of the source code, but the test classes
use the properties of the number of calling methods.

Cyclomatic Complexity = EN + 2 (9)

E : Number of graph edges (10)

N : Number of graph nodes (11)

3) Design metrics: Software design technique can be use-
ful in evaluating software. In 1974, Steven and colleagues, at
the beginning of their work, introduced coupling on the struc-
tural development of the content as ”measuring the strength
of the relationship between a module with another module”.
The size of the inter-correlation between two objects is called
coupling. For example, object ”a” and object ”b” are coupling
if a method of the object ”a” is called by a method of ”b”
or by accessible variables of the object ”b”. When the defined
methods in a class are called by methods or features of the
other class, classes are coupled with each other.

Another metric for designing software is Di. Di is a metric
for interior design which has the factors related to the internal
structure of the module. Di is a basic design metric to evaluate
the cohesion of design. The second design software metric is
the De. De is an external design metric. De focuses on an
external communication of a module with other modules in a
software system. So De is a basic metric designed to evaluate
coupling of design. The third and the last is the compound
design metrics. Dg value is the sum of Di and De.

Coupling factor will display the decimal number that
represents the number of communication between the non-
inherited classes.

C. Creating the Train Set

For the classification and creating the train set, label one
was allocated to the names of those classes which are exactly
matched to the source code class which were obtained in phase
A; Additionally, those features in phase B from the source
codes and test codes were extracted. The sampling method
was applied to add the label 0 to the train data.

To perform this process, to determine the distribution of
the files, the remaining files were classified.

Then a sample of each source code and test code with
their features with zero labels to train data is added. Finally,
the train set with features and labels 0 and 1 is available.

D. The Implementation of Data Mining Algorithms on the
Obtained Data File

At this phase, the data mining algorithms on the obtained
train data from phase C from the source code and test class is
run. In this paper, Bayesian learning algorithms, RBF network,
logistic regression, SVM, Decision Tree and Part from the data
mining algorithms are applied.

1) Naive Bayes Algorithm: A very practical approach to
learning is the learning Bayesian method, which has been able
to provide useful practical solutions [14].

The Bayesian reasoning method is based on the probability
to draw inferences.

This method relies on this principle that there is a prob-
ability distribution for each quantity. Therefore, an optimal
decision may be concluded by observing a new data and having
inferences about the probability distribution. This method
requires prior knowledge of a large number of probable values.
When this information is not available, we are forced to
estimate it.

www.ijacsa.thesai.org 323 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

To achieve that, the basic information which was gathered
previously and assumptions about the probability distribution
was used. Calculation of the optimal Bayesian hypothesis is
very costly.

2) RBF Network Algorithm: This algorithm implements
a network with radial Gaussian bias function. Here, the K-
Means algorithm is used for the bias function; moreover, the
logistic regression is used for the nominal properties and linear
regression for the numerical regression. Activating the basis
functions is normalized before entering into the linear model,
by the accumulation of a number. The K-mean applied to each
category separately to extract K cluster for each class.

3) Logistic Regression Algorithm: Nowadays, in most of
the studies, by using several other factors, a particular purpose
should be achieved to get an optimal level. In statistics, such
works are done, and the results are analyzed with different
regression methods. In regression by independent variables,
the responses are estimated. This response variable is the main
purpose of the research [15]. Logistic regression is a special
case of regression which is used when the variable is a two
or more alternative option, i.e. there are two or more different
modes for response variable.

4) SVM Algorithm: This algorithm is used in areas that
their data are not separated linearly, and the data are mapped
into a higher-dimensional space so that they can be separated
in this new space linearly.

The basis of SVM classifier is linear classification. In linear
dividing of data, that line should be selected which has the
most safety margin.

This algorithm does not stick to the local maximum;
furthermore, this algorithm almost works well for high-
dimensional data.

5) Decision Tree Algorithm: Trees in artificial intelligence
are used to show various concepts such as sentence structure,
equations, etc. this is one of the most famous inductive
algorithms that are successfully used in different applications.
The decision tree has application in practical issues that can be
raised to provide a single answer like the name of a category
or class. The decision tree is suitable for those issues that are
determined by the output value of yes or no. The reason for
naming it as tree decision is that this tree shows the decision-
making process for determining the categories of input data.

6) PART Algorithm: PART is a class to generate a list of
decisions. PART algorithm is used to identify the knowledge,
templates and also different rules [16].

IV. EVALUATION AND EXPERIMENTAL DATA

The works done in this field are based on some famous data
sets. From these sets, three of them has the most similarity;
therefore; briefly we will talk about them in follows:

ArgoUML: it is an open source tool for UML modeling.
It contains 1430 classes and 124,000 lines of code. For this
tool, a total of 163 test classes by JUnit has been written for
it. These 163 classes contain 12000 code lines.

Apache Ant: it is a Java library and a command-line tool
which has the duty of delivering files of the construction

project. This library contains 851 classes and 108,000 code
lines. JUnit writes it a total of 201 test classes for it. These
201 classes include 17000 code lines.

Dependency Finder: it is a set of tool for evaluating
and analyzing compiled code in Java language. The kit also
contains 498 classes and 29,000 code lines. A total of 193
classes by JUnit is written for it. These 193 classes provide
20,000 code lines.

TABLE II: Characteristics of the Experimented System

Datasets Source Class (Number) Test Class (Number) Links (Number)
Apache Ant 871 75 77
ArgoUML 1424 75 80
Dependency Finder 336 120 96

The results were evaluated by two metrics. Typically, two
metric tools called Precision and Recall are used.

The Recall is the percent of the correct links found by
the proposed algorithm to measure. Precision is the accuracy
which measures the retrieved candidate list of links.

In this paper, we used the set of test or those samples which
are unseen data. The files in phase A cannot be detected. The
test file is a subset of data that evaluates the probability of
performance of a future model.

Table III shows the number of distinguishable files from
phase A on the entire data set separately.

TABLE III: Number of Detected and Undetected Links using
Naming Convention Technique

Datasets Detected Undetected
Apache Ant 65 12
ArgoUML 62 18
Dependency Finder 67 29

The table IV shows the values obtained from the proposed
method of this paper using the Logistic Regression on three
data sets; moreover, it shows the results obtained from it using
the recall and precision metrics.

TABLE IV: Accuracy of the Proposed System on 3 Open
Source Datasets

Code Class To Test Class
Algorithm Recall Precision
Apache ANT 0.94 0.94
ArgoUML 0.88 0.92
Dependency Finder 0.84 0.98

In figure 2, the top line graph shows the results obtained
from the Logistic Regression algorithm on all three introduced
data set. The first point for each data set indicates Recall, the
second point represents Precision and the third point of each
data set represents the F-measure.

Figure 3 using the bar graph shows the superiority of the
proposed method on the datasets of Apache ANT, ArgoUML
and Dependency Finder by SCOTCH+ proposed by Qusef in
2014.

www.ijacsa.thesai.org 324 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

Fig. 2: Accuracy metrics of experimented system

Fig. 3: Comparison proposed method with SCOTCH+ method

V. CONCLUSION AND FUTURE WORK

Recently, several techniques have been provided for iden-
tifying the links between test classes and classes under the
test. In this paper, we try to not only investigate the available
algorithm and guidelines but also propose a method to discover
the hidden links and track the correlation between software
codes by the test classes. The aim of this paper is to propose
a method based on the similarity of the names and packages
of a class and also feature extraction from the source code
and test classes as well as using data mining techniques to
discover hidden relationships between software codes class and
test classes. Finally, we compared the proposed method with
the available methods. The results show the acceptable perfor-
mance of the proposed method. Discovering these relationships
will help programmers to perform the Regression Test more
efficiently.

For future works, it could be possible to use feature
selection algorithms to extract features with higher impact
on the classes. Afterward, it is recommended to weight the
features to reach the new results and compare with the previous
results.

REFERENCES

[1] H. M. Sneed, Reverse engineering of test cases for selective regression
testing, in Eighth European Conference on Software Maintenance and
Reengineering, 2004. CSMR 2004. Proceedings, 2004, pp. 6974.

[2] P. Bouillon, J. Krinke, N. Meyer, and F. Steimann, EzUnit: A Framework
for Associating Failed Unit Tests with Potential Programming Errors,
in Agile Processes in Software Engineering and Extreme Programming,
G. Concas, E. Damiani, M. Scotto, and G. Succi, Eds. Springer Berlin
Heidelberg, 2007, pp. 101104.

[3] M. Bruntink and A. van Deursen, Predicting class testability using
object-oriented metrics, in Fourth IEEE International Workshop on
Source Code Analysis and Manipulation, 2004, 2004, pp. 136145.

[4] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, Chianti: A Tool for
Change Impact Analysis of Java Programs, in Proceedings of the 19th
Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, New York, NY, USA, 2004, pp.
432448.

[5] V. Hurdugaci and A. Zaidman, Aiding Software Developers to Main-
tain Developer Tests, in 2012 16th European Conference on Software
Maintenance and Reengineering (CSMR), 2012, pp. 1120.

[6] B. Van Rompaey and S. Demeyer, Establishing Traceability Links be-
tween Unit Test Cases and Units under Test, in 13th European Conference
on Software Maintenance and Reengineering, 2009. CSMR 09, 2009, pp.
209218.

[7] S. M. Fakhrahmad, A. R. Rezapour, M. Zolghadri Jahromi, and M.
H. Sadreddini, A novel approach to machine translation: A proposed
language-independent system based on deductive schemes, Iranian Jour-
nal of Science and Technology. Transactions of Electrical Engineering,
vol. 38, no. E1, p. 59, 2014.

[8] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R.
Harshman, Indexing by latent semantic analysis, J. Am. Soc. Inf. Sci.,
vol. 41, no. 6, pp. 391407, Sep. 1990.

[9] IEEE Xplore Abstract - Recovering traceability links between unit
tests and classes under test: An improved method. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5609581. [Ac-
cessed: 10-Nov-2015].

[10] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley,
SCOTCH: Test-to-code traceability using slicing and conceptual cou-
pling, in 2011 27th IEEE International Conference on Software Mainte-
nance (ICSM), 2011, pp. 6372.

[11] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley,
Recovering test-to-code traceability using slicing and textual analysis,
J. Syst. Softw., vol. 88, pp. 147168, 2014.

[12] M. Halstead, Elements of Software Science, Amsterdam: Elsevier
North-Holland, 1977.

[13] Thomas J. McCabe, A complexity measure, IEEE Transactions on
software Engineering, vol. 4, pp. 308-320, 1976.

[14] P. Lucas, Expert Knowledge and its Role in Learning Bayesian Net-
works, Medicine: an Appraisal, Lecture Notes in Artificial Intelligence
2101, pp. 156-166, 2001.

[15] Xiao, Yuping, M. P. Griffin, D. E. Lake and J. R. Moorman, Nearest-
neighbor and logistic regression analyses of clinical and heart rate char-
acteristics in the early diagnosis of neonatal sepsis, Medical Decision
Making, vol. 30, no. 2, pp. 258-266, 2010.

[16] Cao, Yongqiang and J. Wu, Dynamics of projective adaptive resonance
theory model: The foundation of PART algorithm, Neural Networks,
IEEE Transactions on , vol. 15, no. 2, pp. 245-260, 2004.

[17] J. Tahmoresnezhad and S. Hashemi, A generalized kernel-based random
k-samplesets method for transfer learning, Iranian Journal of Science and
Technology. Transactions of Electrical Engineering, vol 39, p. 193-207,
2015.

www.ijacsa.thesai.org 325 | P a g e

