
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

45 | P a g e

www.ijacsa.thesai.org

On Standards for Application Level Interfaces in

SDN

Yousef Ibrahim Daradkeh
1

College of Engineering at Wadi Aldawaser

Prince Sattam bin Abdulaziz University

18611, Kingdom of Saudi Arabia

Mujahed ALdhaifallah
2

College of Engineering at Wadi Aldawaser

Prince Sattam bin Abdulaziz University

18611, Kingdom of Saudi Arabia

Dmitry Namiot
3

Faculty of Computational Mathematics and Cybernetics

Lomonosov Moscow State University

Moscow, Russia

Manfred Sneps-Sneppe
4

Ventspils International Radioastronomy Centre

Ventspils University College

Ventspils, Latvia

Abstract—In this paper, authors discuss application level

interfaces for Software Defined Networks. While the Application

Programming Interfaces for the interaction with the hardware

are widely described in Software Defined Networks, the software

interfaces for applications received far less attention. However, it

is obvious that interfaces to software applications are very

important. Actually, application level interfaces should be one of

the main elements in Software Defined Networks. It is a core

feature. In this article, we want to discuss the issues of

standardization of software interfaces for applications in

Software Defined Networks area. Nowadays, there are several

examples of unified Application Program Interfaces in the

telecommunications area. Is it possible to reuse this experience

for Software Defined Networks or Software Defined Networks

standards are radically different? This is the main question

discussed in this paper.

Keywords—SDN; REST API; Northbound interface;

application

I. INTRODUCTION

Software-Defined Networking (SDN) is a paradigm that
separates network‟s control logic from the underlying hardware
(e.g., routers, switches etc.). SND paradigm promotes the
centralization of network control and ability to program the
network. It let introduce new abstractions, simplify the network
management, and simplify the application programming. Most
authors highlight two basic moments for this paradigm:

the abstraction of the network logic from hardware
implementation – network logic is a software;

the separation of a control panel and network forwarding

SDN assumes the presence of network controller that
coordinates the above-mentioned tasks.

So, SDN concept, by the definition, is based on the various
programming interfaces. Actually, SDN controller is a bunch
of programming interfaces by itself. In Figure 1, we present the
classical model for SDN.

In this paper, we will discuss so-called northbound API.
This open entity enables the network application ecosystem.

Actually, this ecosystem is the main promise of SDN. It is what
SDN networks are for. The idea is to create an intermediate
level independent from equipment vendors. In this case,
Network Operators can quickly modify or customize their
network control through the application API.

Basically, anyone who wants to develop network
applications is the potential user for Northbound API. Of
course, the question is to propose a common API on this level.
Otherwise, developers will face many different proposals from
the vendors. There will be no portability, as well as no way to
create „application store‟ for network programming.

Fig. 1. SDN APIs [1]

Originally, many different sets of northbound APIs are
emerging [2]. Currently, more than 20 different SDN
controllers are available -- all featuring different northbound
APIs. And the Open Networking Foundation (ONF), a
consortium dedicated to promoting and commercializing SDN,
is studying their variation and why they're all so different [3].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

46 | P a g e

www.ijacsa.thesai.org

One possible reason is that requirements for a northbound
API vary, depending on the needs of the applications and
orchestration systems above it. It complicates the collaboration
on common API. Actually, one popular opinion is based on
ideas to collect market feedback (responses from the
developers) first. It makes sense because many programming
standards (and Northbound API is about programming only)
are based on de-facto approaches, adopted by the majority of
developers. For example, as per ONF vision, “the northbound
API is a software interface inside a server, and API standards
generally emerge from the market, not necessarily from a
committee” [4].

The Architecture and Framework Working Group in ONF,
originally, set three goals for the Northbound API
development:

1) to collect use cases for the Northbound API;

2) to collect a list of examples of the Northbound API and

perform some sort of reverse engineering. The goal is to

explore what applications do, describe their data model, and

what they require from SDN controller;

3) to provide recommendations to industry on required

actions.
At this moment, there is no “standard” document that will

describe the common requirements to Northbound (application
level) API. Typically, a Northbound interface abstracts the
low-level instruction sets used by Southbound interfaces to
program forwarding devices. Probably, application level
interface is the less elaborated area in SDN world [5]. As per
this review, most of the existing solutions are either some ad-
hoc (proprietary) API or a pure REST API. Authors conclude
that it is unlikely that a single Northbound interface emerges as
the winner, as the requirements for different network
applications are quite different. One possible path of evolution
for Northbound APIs are vertically-oriented proposals, before
any type of standardization occurs. It is discussed in section 2.

The whole idea of this paper is to discuss the need for
application level API for SDN, as well as the possible model
for such standard. There are several attempts to create a unified
application level program interfaces for telecommunication
services. Because this area is very close to SDN, it would be
interesting to discuss re-usage of the telecom experience (in the
terms of APIs) for SDN. Potentially, it could save a lot of
resources (at the first hand, a time for training of developers). It
is the main motivation for this paper.

SDN model introduces many new concepts. So, the
standardization for SDN is a multi-aspect problem too. In the
subsequent sections, the related works in the various aspects of
SDN stadardization have been discussed.

The rest of our paper is organized as follows. In Section 2,
we present the short history of common APIs. In Section 3, we
discuss Network Functions Virtualization. In Section 4, we will
talk about the Remote Procedure Calls (RPC) and
Representational State Transfer (REST) in SDN. In Section 5,
we discuss the possible sources for Northbound API
requirements. Section 6 presents the discussion. The key
question is: what should be included in basic requirements for

application level API and how can we reuse existing unified
APIs?

II. ON TELECOM STANDARDS FOR APPLICATION LEVEL

API

Probably, the most notable example of application-level
API in the area very close to SDN was Parlay. Parlay (Parlay
X) is an attempt to present common application level API in
telecom world [6]. The main idea behind the Parlay is to
combine service delivery mechanisms for network-centric
communications (intelligent network) and service delivery
approaches in the enterprise world. By enabling access to
network capabilities via an API, any solution provider
(independent software vendor) can produce new applications
that add value to functionality resident in communications
networks. The Parlay API hides the basic network complexity
(e.g., signaling capability), but is still able present indirect
access to them to enterprise applications and maintain the
security level like Network Operators do. This can be achieved
by creating an API that resides between the application layer
and the service component layer (Figure 2).

Fig. 2. The Parlay API [7]

The basic principles for API are very transparent:

1) The Parlay API is about programming interface, rather

than wire-protocols.

2) The Parlay API should be network independent.

3) End-to-end security.

4) Manageability support. It is the ability to manage the

operation and provision of the API.

5) Simplicity. It should be easy to use for software

developers.

6) Extensibility. The idea was to expand the API in a

series of phases.
At the first hand, it looks very similar to SDN conception.

It the main reason we choose Parlay API for the comparison. It
is absolutely the same idea – separate a logic and hardware,
convert logical part into pure software services. Actually, even
the target areas (developers) are similar. In some sense, a
Parlay-related movement in programming was even bigger,
because there are more developers of telecom services, rather
than programmers for network management systems. So, in our
opinion, the lessons from Parlay development (end especially,
from Parlay failure) could be used for SDN Northbound APIs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

47 | P a g e

www.ijacsa.thesai.org

Let us see the components (parts of API) in Parlay [8].
They are vertical oriented:

1) Call Control APIs. It is how to setup and control of

connections

2) User Interaction APIs. It is how to send SMS, how to

recognize tones, etc. So, they are pure telecom services.

3) Terminal Capabilities API. It is again pure telecom-

related services: how to query to terminal capabilities.

4) Connectivity Management API. It is a common API for

Quality of Services (QoS).

5) User Status APIs. In practice, it is how to get a status of

a mobile terminal.

6) Data Session Control and Account management. It is

about billing and tariffs.
The main conclusion is very transparent. It is an attempt to

present a standard for applied services in the telecom world.
The key word here is “applied”. The Parlay API was developed
with some model for applied services in mind. The Parlay API
assumes (proposes) some model for applied services and
supports this model with the standard API. Applied services
target the end users, at the first hand. Let us see the typical use
cases, presented in [7]: services like „Buddy List‟, „Location-
based ads‟, m-commerce, and „Scheduler service using
Outlook‟, etc. Each of the particular API could be a plain
REST, but it is a vertically oriented solution.

In the case of SDN, the original model for application level
API has no problem-oriented divisions. It is a conceptual
difference. The question here is very obvious. Shall we talk
about different types of SDN applications and originally
present Northbound API as a collection of problem-oriented
APIs? We see that some like this is mentioned in open-source
SDN development [9], but have not seen practical results in
direction.

III. ON STANDARDS FOR NETWORK FUNCTIONS

VIRTUALIZATION

The ONF is working closely with a group of service
providers behind Network Functions Virtualization (NFV). The
goal is to use Northbound APIs to build top layers for virtual
appliances [10].

The NFV was created by a consortium of service providers.
It is an attempt to speed up a deployment of new network
services. In the basic NFV paper, European
Telecommunications Standards Institute described the basic
ideas behind NFV [11]. Network Operators‟ networks are
populated with a large and increasing variety of proprietary
hardware appliances. It increases the cost of launching new
network services. Moreover, hardware-based appliances
rapidly reach an end of life, requiring much of the procure-
design-integrate-deploy cycle to be repeated with little or no
revenue benefit. NFV aims to address these problems by
leveraging standard IT virtualization technology to consolidate
many network equipment types onto industry standard high

volume servers, switches, and storage, which could be located
in Data-Centers, Network Nodes and in the end user premises.

NFV is highly complementary to SDN, but not dependent
on it (or vice-versa). NFV can be implemented without any
SDN being required, although the two concepts and solutions
can be combined. The approaches relying on the separation of
the control and data forwarding planes as proposed by SDN
can enhance performance, simplify compatibility with existing
deployments, and facilitate operation and maintenance
procedures. In the same time, NFV is able to support SDN by
providing the infrastructure upon which the SDN software can
be run [12].

So, SDN Application API should be able to play a role of
application API in NFV. It means that the area of applications
is firmly bounded. It is networking. The typical areas for NFV
are:

Virtual Switching. In this case, physical ports are connected
to virtual ports on virtual servers. VPN gateways could be
virtualized too.

Virtualized Network Appliances. For example, firewalls
could be virtualized.

Virtualized Network Services. The typical examples of the
virtualized services are network monitoring tools, load
balancers, SSL accelerators.

Virtualized Applications. The typical example is virtualized
data storage.

In our opinion, this classification could be used for the
problem-oriented splitting for developers API (see Section 2).
NFV by its nature is “close” to the applied application
development and Northbound API can borrow ideas from here.

IV. ON REST MODEL AS STANDARDS BASE FOR SDN APIS

According to the fundamental review [5], devoted to SDN,
most of the programming interfaces for SDN are based on
REST protocol. The conception of programmability is also
evolving and is not the pure REST in the case of SDN.
Actually, the word „Northbound‟ for SDN API could be also
outdated [13]. Instead of Northbound and Southbound, ONF
uses terms data interface and application interface. It could be
strange because application interfaces could be data program
interfaces too [14]. But this naming (terminology) is not so
interesting comparing with the new model based on
RESTCONF [15]. There are several new acronyms that we
would like to present here: NETCONF, YANG, RESTCONF,
TOSCA.

In general, all of them are about describing data for the
calls in REST model.

The Network Configuration Protocol (NETCONF) [16]
provides mechanisms to install, manipulate and delete the
configuration of network devices. It uses an Extensible Markup
Language (XML)-based data encoding for the configuration
data as well as the protocol messages.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

48 | P a g e

www.ijacsa.thesai.org

Fig. 3. NETCONF layers [17]

The NETCONF protocol operations are realized as remote
procedure calls (RPCs). NETCONF supports devices with
multiple configuration datastores. Furthermore, we can also
subscribe to notifications or perform other Remote Procedure
Calls (RPCs) using NETCONF (Figure 3).

YANG is a data modeling language used to model
configuration and state data manipulated by the Network
Configuration Protocol (NETCONF), NETCONF remote
procedure calls, and NETCONF notifications [18]. As per the
specification, YANG is a language used to model data for the
NETCONF protocol. A YANG module defines a hierarchy of
data that can be used for NETCONF-based operations,
including configuration, state data, Remote Procedure Calls,
and notifications. This allows a complete description of all
data sent between a NETCONF client and server (Figure 4).

Fig. 4. NETCONF and YANG

YANG models the hierarchical organization of data as a
tree in which each node has a name, and either a value or a set
of child nodes. YANG provides clear and concise descriptions
of the nodes, as well as the interaction between those nodes.

Here is the typical YANG description:

list interface {

 key "interface-name";

 leaf interface-name {

 type string;

 }

 leaf speed {

 type string;

 }

 leaf duplex {

 type string;

 }

}

And here is NETCONF XML:

<interface>

 <interface-name>TenGigabitEthernet 1/0/1</login-
name>

 <speed>10Gbps</speed>

 <duplex>full</duplex>

</user>

<interface>

 <interface-name>TenGigabitEthernet 1/0/2</login-
name>

 <speed>10Gbps</speed>

 <duplex>full</duplex>

</user>

RESTCONF is a model describes a REST-like protocol that
provides a programmatic interface over HTTP for accessing
data defined in YANG, using the datastores defined in
NETCONF [19].

As per RESTCONF specification, the NETCONF protocol
defines configuration datastores and a set of Create, Retrieve,
Update, Delete (CRUD) operations that can be used to access
these datastores. CRUD operation is a standard programming
approach for databases. The YANG language defines the
syntax and semantics of datastore content, operational data,
protocol operations, and notification events. REST-like
operations are used to access the hierarchical data within a
datastore. So, it is a mapping from NETCONF‟s CRUD
operations to HTTP requests.

What does it mean for SND API? It means a new trend for
programmability and APIs for SDN controllers, based on
RESTCONF. NETCONF and YANG describe the devices
(virtualized devices) and REST (RESTCONF) could be used
for access (Figure 5).

OpenDayLight (Open Source SDN controller [20])
proposes a list of Northbound interfaces. Let us see it [21]:

1) Top-Level Inventory: list of all nodes known to the

controller.

2) OpenFlow Nodes: extends the top-level inventory node

with OF-specific features that allow retrieving and

programming of OF-specific states, such as ports, tables,

flows, etc.

3) Topology. Base Topology: list of all topologies

known to the controller.

4) BGP routing configuration.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

49 | P a g e

www.ijacsa.thesai.org

Fig. 5. OpenDayLight model [20]

In other words, it is a very specific networking APIs. In our
opinion, the vertical splitting (according to applications area
like the above-mentioned list borrowed from telecom world)
should be more suitable.

TOSCA is Topology and Orchestration Specification for
Cloud Applications [22]. TOSCA should facilitate the creation
cloud applications and services. TOSCA provides mechanisms
to control workflows, describe relationships and dependencies
between resources. TOSCA and YANG can be used together.
E,g., in some IaaS (Infrastructure as a Service) configuration
the cloud components (compute and storage) could be
described by TOSCA. And the connectivity service and
networking equipment in the network would be described by
YANG.

In other words, all these components bring nothing to
Northbound API. All these components are various forms of
top-level meta-data and nothing more.

V. ON REQUIREMENTS FOR SDN API

In 2013, the Open Networking Foundation (ONF)
established a working group to focus on the Northbound
Interfaces (NBI). One of ideas, proposed by this group was the
conception of “scopes” for APIs. It is based on the idea that
different applications would require the different granularity
(levels of abstraction) from API. ONF‟s papers use the term
“latitude” [23].

One thing that is missed in the above-mentioned NBI paper
is resource sharing. As soon as we separate our architecture on
levels we need to some arbitrage for resources too. Otherwise,
every application will command all the controller‟s resources.

The next idea we‟ve discovered from NBI paper is an
intent-based interface. Technically, such kind of interfaces
should be focused on what the application or service needs,
rather than the commands to change the status. Intent-based
interfaces are more natural for programmers because they do
not need to study a new set of commands. Technically, intent-
based interfaces have a natural support in the form of web
intents. We‟ve used them in M2M projects [24], but it looks
like now this direction is closed by Google. So, it looks like the

REST will be the prevailing model. But we can make the
following important conclusion. Intent-based interface, in
general, does not assume the unified model for all devices. So,
we should talk, probably, about different NBIs for various
SDN controllers.

Technically, building a robust application is not about
splitting up their code into smaller services, but instead
understanding the connections between these services. So, the
connectivity between APIs is more important. And this fact
requires a new set of development tools. As an example, we
could mention PANE SDN controller [25]. The controller
provides an API that allows applications to dynamically add
autonomously request network resources. PANE includes a
compiler and verification engine to ensure that bandwidth
requests do not exceed the limits set by the administrator
and to avoid starvation, i.e., other applications shall not be
impaired by new resource requests [5].

Top-level classification for NBI could be borrowed from
telecom applications. For example, we should follow to [26,
27] and define the following classes:

Model API

Interfaces and objects comprising the domain model. For
example the devices, ports, network topology, and related
information about the discovered network environment.

Control API

Interfaces to access the modeled entities, control their life-
cycles and in general to provide the basis for the product
features to interact with each other.

Communications API

Interfaces which define the outbound forms of interactions
to control, monitor, and discover the network environment.

Health Service API

Allows an application to report its health to the controller
and listen to health events from the controller and other
applications.

VI. THE DISCUSSION

Comparing SDN user cases and Parlay. Let us return to the
original ONF‟s plans and describe the potential use cases for
Northbound (Application) SDN API. In general, we present the
following uses cases for SDN [28]:

1) Cloud Orchestration
Traditionally, networks and servers were managed

separately and independently. SDN is a proper way to
integrate management of both network and cloud frameworks.
It is, actually, what SDN are for. And for 3-rd party software
applications, the API behind SDN is the natural way to get
access to the abstracted hardware [29].

2) Load Balancing
Online services, e.g., search engines and web portals, are

often replicated on multiple hosts in a data center for
efficiency. The load balancer dispatches client requests to a
selected service replica based on certain metrics such as server

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

50 | P a g e

www.ijacsa.thesai.org

load. With SDN, the load balancing can be integrated within
any element in the network.

3) Monitoring and Measurement
It is a yet another classical task for SDN. We can perform

network monitoring operations and measurements without any
additional equipment. Also, the monitoring can be integrated
with any network element.

4) Routing
The idea is very similar to load balancing. The routing

services can be virtualized and implemented via programming
modules [30].

5) Network Management and QoS
With SDN, it is very easy to build a centralized solution for

traffic analysis, for example. SDN software can analyze traffic
patterns as well as a quality of services.

As we see, all the above-mentioned tasks are specific
network applications. There is almost nothing common
(probably, except management and QoS) with applications for
telecom. Parlay (in telecom world) offers (indirectly) some
model for the possible services. The key idea for SDN could be
shortly described as integration. SDN is about the integration
of networking into 3-rd party applications.

This conclusion has a direct implication to the possible
solutions for Northbound API. Without Network Functions
Virtualization, something conceptually similar to Parlay
cannot be expected. Actually, just a list of the various technical
APIs with the simple form for 3-rd party integration could be
provided here.

REST and meta-data. In this sense, the idea of RESTCONF
looks more promising. REST API are easy to use, they are
simple and very understandable for the developers. As per [5],
most of the existing SDN program interfaces are REST-based.
But with REST APIs (in general) programmers will face
another issue. In practice, REST is missing meta-data [31]. Let
us see one example from Neutron API (OpenStack) [32]. The
request is a typical REST:

GET /v2.0/networks?limit=2

Accept: application/json

And here is a response (part of it):

{ "networks":[{

"status":"ACTIVE",

"subnets":[

"a318fcb4-9ff0-4485-b78c-9e6738c21b26"

],

"name":"private",

"admin_state_up":true,

"tenant_id":"625887121e364204873d362b553ab171",

"id":"9d83c053-b0a4-4682-ae80-c00df269ce0a",

"shared":false

}] }
REST approach proposes the uniform interface. It means

that all resources present the same interface to clients. And it is
one of the reasons for REST popularity.

SOA and meta-data. Alternatively, the Service Oriented
Architecture (SOA) approach (where the REST is from) may

offer personalized interfaces for the different resources [33].
The whole SOA model often compared with REST is based on
the idea that different services have different interfaces. It
means, immediately, that we need to provide the definition for
used interfaces. Indeed, the definition of the services is a key
part of SOA. For example, Web Service Definition Language
(WSDL) [34] is a part of SOA specification. A WSDL
definition of a Web Service defines operations in terms of their
underlying input and output messages. Unlike this, REST is
based on the self-described messages. WSDL defines the form
of the data that accompany the messages in SOA. REST does
not provide this information. In other words, SOA has got a
rich set of metadata.

On meta-data for REST. The problem with meta-data
support is very transparent. Let us see the above-mentioned
Neutron API example. How the developers can get information
(“get” means programmatically discovery) about the following
elements:

HTTP command (it is GET in this case)

URI (it is /v2.0/networks)

Output formats (it is JSON)

Version (it is 2.0 in this case)

Optional and mandatory parameters (it is limit=2)?

There are no ways to discover this information
programmatically in the modern implementations of REST
approach. The key work here is “programmatically”. The
typical model for REST-based API deployment includes the
“manual” consulting (reading) with the API manual. So,
without the metadata, there is no way to automate
programming [35]. That is why we can conclude that metadata
for Northbound API (application API) is a key problem.

Another classical example is network management. With
SNMP [36], an application can programmatically detect new
devices and their features. It is a classical example of meta-data
deployment.

VII. THE CONCLUSION

As the conclusion of this review, the following suggestions
have been made. Unified API for NBI is unlikely. This
conclusion is based on the fact that SDN NBI API is not
designed to solve applied-level problems. In SDN model, NFV
works on an application level. In the same time, we can reuse
some developments from telecommunication APIs for SDF.
Firstly, in our opinion, the classification for NBI API could be
and should be unified. This classification could be directly
borrowed from the telecommunications API.

But inside of top-level classes (and this is important in our
proposal), the effort should not be focused on developing a
common API. The efforts should be concentrated on the search
for a unified approach to the description of the APIs. In other
words, in our opinion, the developers need unified metadata
description, rather than unified API. In practice, this conclusion
proposes a fix for meta-data in REST APIs.

The main use cases for NBI applications are the integration
and analysis of traffic. These applications should be automated.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 10, 2016

51 | P a g e

www.ijacsa.thesai.org

It is what NBI APIs are for. But the basis for automating the
programming is exactly the meta-data. And the harmonization
of metadata is, in our opinion, the main task.

Of course, the lack of meta-data in REST model is not a
specific SDN problem. As we stated above, it is a payment for
REST model simplicity. But the network programming
(network management, for example) really requires automated
solutions. And REST programming cannot be automated
without some form of meta-data. In this connection, we can
conclude that the real problem for application level API in
SDN is the way for describing meta-data. In this connection,
RESTCONF approach looks promising. It has meta-data for
network elements. The question is how to expand this
information to REST API. In our opinion, it is what
Northbound (or Application level) API standardization should
be about.

ACKNOWLEDGMENT

The project was supported by the deanship of scientific
research at Prince Sattam bin Abdulaziz University (Kingdom
of Saudi Arabia) under the research project # 2014/1/863.

REFERENCES

[1] The Northbound API- A Big Little Problem http://networkstatic.net/the-
northbound-api-2/ Retrieved: Jul, 2016.

[2] Sezer, Sakir, et al. "Are we ready for SDN? Implementation challenges
for software-defined networks." Communications Magazine, IEEE 51.7
(2013): 36-43.

[3] Ortiz, Sixto. "Software-defined networking: On the verge of a
breakthrough?" IEEE Computer 46.7 (2013): 10-12.

[4] Do SDN northbound APIs need standards?
http://searchnetworking.techtarget.com/feature/Do-SDN-northbound-
APIs-need-standards Retrieved: Jul, 2016

[5] Kreutz, Diego, et al. "Software-defined networking: A comprehensive
survey." Proceedings of the IEEE 103.1 (2015): 14-76.

[6] Yates, M. J., and I. Boyd. "The Parlay network API specification." BT
Technology Journal 25.3-4 (2007): 205-211.

[7] Uve Herzog “OSA & Parlay. Enabling an open services market”
http://archive.eurescom.eu/message/messageJun2002/tutorial.asp
Retrieved: Jul, 2016.

[8] Sneps-Sneppe, Manfred, and Dmitry Namiot. "About M2M standards
and their possible extensions." Future Internet Communications
(BCFIC), 2012 2nd Baltic Congress on. IEEE, 2012.

[9] C. E. Rothenberg, R. Chua, J. Bailey, M. Winter, C. Correa, S. Lucena,
and M. Salvador, “When open source meets network control planes,”
IEEE Computer Special Issue on Software-Defined Networking,
November 2014

[10] Schneider, Fabian, et al. "Standardizations of SDN and ITs practical
implementation." NEC Technical Journal 8.2 (2014): 16-20.

[11] NFV White Paper http://portal.etsi.org/nfv/nfv_white_paper.pdf
Retrieved: Sep, 2016

[12] Nunes, Bruno, et al. "A survey of software-defined networking: Past,
present, and future of programmable networks." Communications
Surveys & Tutorials, IEEE 16.3 (2014): 1617-1634.

[13] Medved, Jan, et al. "Opendaylight: Towards a model-driven sdn
controller architecture." Proceeding of IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks 2014. 2014.

[14] Namiot, Dmitry, and Manfred Sneps-Sneppe. "On software standards for
smart cities: API or DPI." ITU Kaleidoscope Academic Conference:

Living in a converged world-Impossible without standards?,
Proceedings of the 2014. IEEE, 2014.

[15] Bierman, A., Bjorklund, M., Watsen, K., & Fernando, R. (2014).
RESTCONF protocol. IETF draft, work in progress.

[16] Enns, R., Bjorklund, M., Schoenwaelder, J., & Bierman, A. (2011).
Network configuration protocol (NETCONF) (No. RFC 6241).

[17] NETCONF layers http://itential.com/tech-briefs/ Retrieved: Jul, 2016

[18] YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF) https://tools.ietf.org/html/rfc6020

[19] RESTCONF Protocol http://tools.ietf.org/html/draft-bierman-netconf-
restconf-04

[20] Baucke, Stephen, et al. "OpenDaylight: An Open Source SDN for your
OpenStack Cloud." An Open-Stack Summit, Hong Kong (2013).

[21] OpenDayLight Northbound API
https://wiki.opendaylight.org/view/OpenDaylight_Controller:RESTCON
F_Northbound_APIs Retrieved: Jul, 2016

[22] Mijumbi, Rashid, et al. "Management and orchestration challenges in
network functions virtualization." IEEE Communications Magazine 54.1
(2016): 98-105.

[23] Northbound Interfaces Working Group
https://www.opennetworking.org/images/stories/downloads/working-
groups/charter-nbi.pdf Retrieved: Oct, 2016

[24] Sneps-Sneppe, Manfred, and Dmitry Namiot. "About M2M standards
and their possible extensions." Future Internet Communications
(BCFIC), 2012 2nd Baltic Congress on. IEEE, 2012.

[25] Guha, Arjun, Mark Reitblatt, and Nate Foster. "Machine-verified
network controllers." ACM SIGPLAN Notices. Vol. 48. No. 6. ACM,
2013.

[26] Marie-Paule Odini, Hewlett-Packard, “SDN and NVF for Carriers”,
ETSI Future Networks Workshop, April 10, 2013

[27] Chung-Shih Tang, Chin-Ywu Twu, Jen-Hong Ju, Ying-Dian Tsou
“Collaboration of IMS and SDN to enable new ICT service creation”.
Network Operations and Management Symposium (APNOMS), 2014
16th Asia-Pacific 17-19 Sept. 2014 pp.:1-4.

[28] Jarschel, Michael, et al. "Interfaces, attributes, and use cases: A compass
for SDN." IEEE Communications Magazine 52.6 (2014): 210-217.

[29] M.Banikazemi, D.Olshefski, A.Shaikh, J.Tracey, G.Wang, “Meridian:
an SDN platform for cloud network services,” IEEE Communications
Magazine, vol. 51(2), 2013, pp. 120-127

[30] C.E. Rothenberg, M.R. Nascimento, et.al. “Revisiting routing control
platforms with the eyes and muscles of software-defined networking,”
Proceedings of the first workshop on Hot topics in software defined
networks, Aug. 2012, pp. 13-18.

[31] Sneps-Sneppe, Manfred, and Dmitry Namiot. "Metadata in SDN API for
WSN." 2015 7th International Conference on New Technologies,
Mobility and Security (NTMS). IEEE, 2015.

[32] Denton, James. Learning OpenStack Networking (Neutron). Packt
Publishing Ltd, 2014

[33] Al-Rawahi, N., and Y. Baghdadi. "Approaches to identify and develop
Web services as instance of SOA architecture." Proceedings of
ICSSSM'05. 2005 International Conference on Services Systems and
Services Management, 2005.. Vol. 1. IEEE, 2005.

[34] Newcomer, Eric, and Greg Lomow. Understanding SOA with Web
services. Addison-Wesley, 2005.

[35] Namiot, Dmitry, and Manfred Sneps-Sneppe. "On IoT Programming."
International Journal of Open Information Technologies 2.10 (2014):
25-28.

[36] Harrington, David, Bert Wijnen, and Randy Presuhn. "An architecture
for describing simple network management protocol (SNMP)
management frameworks." (2002). https://tools.ietf.org/html/rfc3411
Retrieved: Aug, 2016.

