
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

94 | P a g e

www.ijacsa.thesai.org

Towards A Broader Adoption of Agile Software

Development Methods

Abdallah Alashqur

Software Engineering Department

Faculty of Information

Applied Science Private University

Amman, JORDAN

Abstract—Traditionally, software design and development

has been following the engineering approach as exemplified by

the waterfall model, where specifications have to be fully detailed

and agreed upon prior to starting the software construction

process. Agile software development is a relatively new approach

in which specifications are allowed to evolve even after the

beginning of the development process, among other

characteristics. Thus, agile methods provide more flexibility than

the waterfall model, which is a very useful feature in many

projects. To benefit from the advantages provided by agile

methods, the adoption rate of these methods in software

development projects can be further encouraged if certain

practices and techniques in agile methods are improved. In this

paper, an analysis is provided of several practices and techniques

that are part of agile methods that may hinder their broader

acceptance. Further, solutions are proposed to improve such

practices and consequently facilitate a wider adoption rate of

agile methods in software development.

Keywords—Agile Methods; Agile software development;

SCRUM

I. INTRODUCTION

Software systems research and development has resulted
in many applications covering various aspects of our lives [1-
5]. Over the years, two major approaches for managing the
software development process have evolved. These
approaches are the traditional engineering approach
exemplified by the waterfall model and its variations [6-8] and
the more recent approach called agile software development
methods [9-12]. The waterfall model as was originally
introduced by Winston Royce [13] does not allow feedback
from later steps to earlier steps in the process, thus adopting
the engineering approach. In the engineering approach (e.g.,
civil engineering) requirements and specifications have to be
fully completed and approved before construction starts.

Some level of flexibility has been incorporated in later
versions of the waterfall model as shown in Figure 1. This
flexibility is achieved by enabling feedback to previous steps
of the model, which makes it possible to perform limited
modifications to prior phases of the development lifecycle.
Another disadvantage of the waterfall approach is that the user
cannot see any running components of the software being
developed until the entire system is completed, which is
normally way too far down the road. Furthermore, a lot of

focus and effort is invested upfront in just documentation and
planning.

Fig. 1. Enhanced Waterfall Model

Due to the shortcomings of the waterfall-based
development methods, a new approach called agile software
development, or sometimes called Agile Methodology or just
Agile Methods (AM), has emerged as a viable and powerful
approach to software development. In agile software
development, portions of the software are designed and
developed in short iterations in an incremental way. After each
iteration, the user has a chance to see the outcome in the form
of a running subsystem and to provide more feedback to the
development team. This iterative approach allows for
flexibility and takes into consideration the fact that the user
may not know for sure, and in detail, what he/she wants prior
to starting the development process.

Despite the advantages provided by agile methods over
traditional methods, there are still several aspects in which
agile methods can be further improved and several issues that
need to be addressed. This paper aims at exposing several of
these issues for the purpose of understanding them and being
able to identify workarounds and solutions to handle them. In
addition, in this paper some solutions to tackle these issues are
proposed. The overall objective is to make agile methods more
appealing to a wider audience in the software development
community.

The rest of this paper is organized as follows. In section 2
a brief description of agile methods is provided with a focus
on the values and principles of agile software development.
Also a brief description of one of the agile methods is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

95 | P a g e

www.ijacsa.thesai.org

described in some briefly. Section 3 describes several of the
issues with agile methods with a description of each one of
these issues and its impact. Solutions are proposed in Section
4 on how to deal with these issues. Conclusions are given in
Section 5.

II. AGILE METHODOLOGY AND SCRUM

In this section a brief description of the agile values and
principles is provided. Then a brief descriptions of SCRUM
[14], which is an important agile methodology is given. Some
terms and concepts of SCRUM will be used in subsequent
sections of this paper.

A. Agile Methodology

The term agile software development was introduced after
extensive meetings and discussions conducted by seventeen
experienced individuals in the area of software development in
2001. The outcome of those meetings was summarized in a
document called The Agile Manifesto [15], which describes
the values and principles of agile software development.

The authors of The Agile Manifesto [15] cited four
qualities that they value in agile development over four related
qualities that exist in traditional software development. These
four qualities are:

1) Individuals and interactions are valued more than

processes and tools. Individuals are team members of the agile

development teams. Agile teams are usually self-organizing

and cross-functional teams.

2) Working software is valued more than comprehensive

documentation. The primary objective of agile teams is to

provide the client with early and working subsystems to keep

the customer engaged and to obtain feedback.

3) Customer collaboration is valued more than contract

negotiation. Collaboration between the customer and the agile

team on a continuous basis is necessary to obtain feedback and

make sure that deliverables meet customers’ expectations.

4) Responding to change is valued more than following a

plan. Permitting flexibility and providing a culture where

requirements are allowed to evolve results in a final software

that better meets the customer’s needs. On the contrary,

adhering to a fixed plan may result in software that is not

exactly what the customer needs.
The Agile Manifesto [15] cited twelve principles for agile

software development. These principles are summarized in
Table 1.

TABLE I. PRINCIPLES OF AGILE METHODS

B. SCRUM

SCRUM is the most popular agile methodology [16-18].
Development in SCRUM is performed as a series of iterations
called sprints as shown in Figure 2. A sprint is a time-box
whose duration is 2 to 4 weeks. The output of a spring is an
increment or subsystem of the overall system being
developed. Each sprint can be viewed as a small project that
has its own system development life cycle (SDLC). The final,
aggregate product is the result of integrating the subsystems
produced by these sprints.

Fig. 2. SCRUM sequence of sprints

Figure 3 details a single sprint. The Product Backlog
shown on the left side of Figure 3 is a list of requirements and
features that need to be included in the end product. In
addition to requirements, the Product Backlog contains

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

96 | P a g e

www.ijacsa.thesai.org

description for any changes to be made to what has been
produced so far. The content of the Product Backlog evolves
overtime to permit requirements to change. The Sprint
Backlog is a subset of the items in the Product Backlog that
are selected for implementation in the current sprint.

Fig. 3. Details of a single sprint

On a daily basis, the SCRUM team holds a short meeting,
also called daily-standup meeting (or SCRUM meeting). This
meeting is represented in Figure 3 with the arrow labeled
“Daily Meeting.” In this meeting, team members present what
was done in the past 24 hours and discuss the plan for the
coming 24 hours. In SCRUM the product that is produced at
the end of a sprint is called potentially shippable product
increment, which is the release or subsystem produced by the
sprint.

Scaling up the agile process. Sprints can be performed
serially by the team. However in large projects, there can be
several parallel sprints, where multiple teams can be working
on different sub-products simultaneously. In this case we can
have what is referred to as “team of teams” or “scrum of
scrums” [19]. In its purist form, agile methods do not allow
for team-of-teams structure in order to stay away from
forming a hierarchical management structure. The scrum of
scrums technique is used to scale-up SCRUM to handle large
projects. However when this is done, coordination and
collaboration between the teams become an overhead. Teams
have their own daily meetings as usual. But then each team
selects a representative to attend the scrum of scrums meeting
to plan the overall project and coordinate the various
development efforts. The scrum of scrums meetings may be
scheduled less frequently than the scrum (or sprint) meetings.

III. AGILE PRACTICES THAT MAY DISCOURAGE WIDER

ACCEPTANCE

Below are the agile practices that need improvement and
can be considered obstacles preventing many organization
from adopting agile methods fully. They are based on the
author’s extensive experience in software research, design,
and development.

1) Pushing items back to the product backlog. Whenever

a team encounters or discovers a major bug, the team may

push it back in the product backlog (with the approval of the

product owner or user). In reality this bug can be a problem

with current sprint implementation. But instead of solving it

during the current sprint, the team postpones it to a future

sprint by “kicking the can down the road.” Because of

scheduling pressures, the team may be tempted to postpone

some genuine current-sprint work by hiding it as a bug, thus

effectively taking it out of the sprint backlog and pushing it

back to the product backlog. That way the team can meet strict

deadlines and appear as a team of high performance.

2) Not valuing individuals. In agile methods, a team is

treated and measured as a single entity. The performance of

the entire team is measured without much regard to

differences in the performance of individual members of a

team (except may be for the purposes of discovering very low

performers and taking some measures towards them). By not

allowing the “stars” in a team to shine and not giving them

credit for their achievements, their incentive for doing

outstanding work diminishes. This negatively impacts the

overall project. In a team of twenty individuals, the real stars

of overachievers could be three or four individuals. These are

the ones who can do magic in solving very hard problems and

overcoming tough obstacles. You don’t incentivize them by

telling them that no matter what they do, their work will be

considered as a team achievement and that they will not be

rewarded for it.

3) Treating programmers as interchangeable resources. A

tendency may exist in some development environments to

treat programmers just as a bunch of interchangeable “techies”

or “resources”. This behavior negatively affects moral and

enthusiasm towards the work environment as a whole and

makes it harder to attract talented individuals to fill future

open positions. This problem is aggravated if most of those

“techies” are people who have language accents that are

different from the main stream accent. This usually gives a

false impression that “accent” is an intentional line of

segregation where people with accent are given low-level

implementation tasks and are treated as pluggable resources.

A similar problem can happen in a distributed agile team,

where some members of the team are in one country and other

members are in another country. Team members in one

country may perceive themselves as the “thinkers” and

decision makers whereas team members in the other country

are perceived as just “doers.”

4) Agile Methods focus on short term iterations. This

means that the time available for developers to learn and

experiment with new ideas is limited if not totally eliminated.

Many of those developers are highly intellectual individuals

who would dislike it if their work is transformed to cookie-

cutter, non-intellectual, and repetitive task patterns. Computer

science is a fast-evolving field and giving developers some

room to experiment with new ideas is important. In traditional

software engineering methods tasks and modules are usually

large in size and not very limited and short-term as in the case

of agile methods. This gives developers who use traditional

methods the leeway to perform some level of research and

experimentation that will not only benefit the specific task at

hand but the overall project.

5) Scaling-up to handle Large Projects. Agile methods

emphasize teams but avoid the adoption of a management

hierarchy. In traditional methods, there is normally a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

97 | P a g e

www.ijacsa.thesai.org

management hierarchy that can expand in size (in either depth

or breadth) as much as needed to accommodate all

components of a project. Because of this, traditional software

engineering methods are more capable of scaling up to handle

projects of large size. Agile methods are more appropriate for

handling small size projects and, to some extent, medium size

projects. A need exists to scale-up agile methods to handle

larger projects.

6) High complexity of the system Integration process.

Because agile methods emphasize short iterations that produce

small subsystems, the integration of these many small

subsystems into a coherent, working, and bug-free system

becomes a very complex task that is difficult to accomplish.

7) Determining a project budget upfront. At the heart of

agile methods is the idea of not freezing the requirements at

the very beginning of a project in order to give the client the

ability to introduce new requirements and modify existing

requirements on an on-going basis. But this gives rise to the

problem of not being able to have a clear agreement with the

client regarding budget and schedule before the start of a

project. This opens the door for potential disputes between the

client and the developer during project execution, which is a

major risk factor. How can we preserve the agility and benefit

from the flexibility it provides, but at the same time avoid

running into budget-related issues during project execution?

This is a big question. The problem can be less sever if the

client and developer are two different departments within the

same company. However, if they are two different companies,

the budget issue becomes a high risk area that hinders the

adoption of agile methods especially in projects of large size.

IV. PROPOSED WAYS OF DEALING WITH THE ABOVE ISSUES

1) Pushing items back to the product backlog. The

following three solutions can be implemented. (1) A titer

approval process needs to be put in place, in order to avoid

pushing items back to the product backlog unless it is

absolutely necessary. (2) A record of these incidents need to

be saved, in order to expose situations in which a team

frequently resorts to pushing items back to the product

backlog, which may indicate a potential problem. (3) The

number of items placed by a team on the product backlog

during a sprint implementation needs to be used as one of the

metrics for measuring team performance. Less items pushed to

the product backlog contribute to a higher performance

measure.

2) Not valuing individuals. In addition to performing

team appraisals, individual appraisals are necessary. Some sort

of reporting hierarchy needs to exist in order for a manager or

team leader to perform individual reviews and reward

exceptional achievers. Even though the agile methodology

tries to avoid having a management hierarchy, it is necessary

to have some form of reporting hierarchy for the purposes of

assessing and rewarding team members.

3) Treating programmers as interchangeable resources.

Involving some of those programmers, especially the senior

ones, in the decision making process at the strategic level as

well as at the tactical level may help alleviate this problem.

Recognizing that the skills and experience of each individual

are distinguished and appreciating the uniqueness of each

individual is a step in the right direction.

4) Agile Methodology focuses on short term iterations.

Allowing for extra time during a sprint or between sprints to

reflect, learn, and experiment is one way to reduce the impact

of sprints of the agile methods being very short term and

tactically focused. Sending agile team members to short

training courses (e.g., one week) on a quarterly or semi-annual

basis may partially satisfy the need of those individuals to

progress at their careers. This elevates their moral and

enthusiasm towards the work environment and the projects

they work on.

5) Scaling-up to handle Large Projects. Because of the

nature of agile methods, it may be hard to solve this problem.

Drastic modification to the agile methodology may be

required to make handling large projects more natural and

systematic. Formalizing the idea of “team of teams” or “scrum

of scrums” may be a necessary prerequisite to enable scaling-

up agile projects in a smooth way. A lot of research is needed

in this area to be able scale-up to handle large projects but at

the same time try to preserve the agile spirit and core

concepts.

6) High complexity of the system integration process. The

best solution here is to use CASE tools that aid in the

integration process and track versions of components. Few

CASE tools tailored to agile methods have started to appear on

the market such as JIRA Software by Atlassian.

7) Determining a project budget upfront. Though in agile

methods it is impossible to have an exact budget estimate, it

may be possible to come up with reasonably correct estimate

if we limit the variability of the requirements. One can think

of demanding that 75% or more of the requirements be

specified, detailed and finalized before starting the project and

allowing up to 25% to be identified, modified, or added later.

This gives a better guideline for estimating the budget. Again,

more research is needed here.
Overall, it seems the time is ripe for blending best

practices from agile methods and from traditional methods to
come up with a new model of software development. The new
methodology should try to avoid many of the shortcomings of
agile methods as well as many of the shortcomings of
traditional methods, which requires loosening some
restrictions in both worlds. This approach is sometimes
referred to as hybrid software development. Examples of
pioneering research in this area can be found in [20, 21]. More
research is needed in order to crystallize and identify the
nature and characteristics of such a hybrid software
development methodology.

V. CONCLUSION

Agile methods have proven over the years that they
provide many advantages over traditional methods in the area
of software development. Enabling the user to modify

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

98 | P a g e

www.ijacsa.thesai.org

requirement or add new requirements after the start of a
project, providing the user with working subsystems at early
phases of a project, and emphasizing a closer interaction
between the development team and the user are some of these
advantages. However, there are many issues pertaining to
agile methods that act as barriers to its adoption by a wider
community of software developers. Some of these issues are
practices that can easily be improved, whereas others are
deeply rooted in the methodology itself. In this paper, many of
these issues are highlighted and a brief description of each one
is provided. Furthermore, the paper proposed possible
solutions/guidelines on how to deal with these issues in order
to minimize their negative impact. This, in the end, will
contribute towards improving the quality of software products
developed using agile methods, which results in increased
customer satisfaction. Consequently agile methods are
expected to gain more momentum.

REFERENCES

[1] Wang, Lizhe, Rajiv Ranjan, Joanna Kolodziej, Albert Y. Zomaya, and
Leila Alem. "Software Tools and Techniques for Big Data Computing in
Healthcare Clouds." Future Generation Comp. Syst. 43 (2015): 38-39.

[2] Alashqur, Abdallah. "Mapping Data Between Probability Spaces In
Probabilistic Databases." International Journal Of Database
Management Systems (IJDMS), Vol. 7, No. 3, pages 1-12, June 2015.

[3] Dvorak, Carl, Khiang Seow, and Charles Young. "Healthcare
Information System with Clinical Information Exchange." U.S. Patent
Application No. 15/131,738.

[4] Zhai, Huixia. "Application of Information Construction in University
Financial Management." 2015 8th International Conference on
Intelligent Networks and Intelligent Systems (ICINIS). IEEE, 2015.

[5] Ian Sommerville, Software Engineering, 10 edition, 2015. Publisher:
Pearson,

[6] Balaji, S., and M. Sundararajan Murugaiyan. "Waterfall vs. V-Model vs.
Agile: A comparative study on SDLC." International Journal of
Information Technology and Business Management 2.1 (2012): 26-30.

[7] Elghondakly, Roaa, Sherin Moussa, and Nagwa Badr. "Waterfall and
agile requirements-based model for automated test cases generation."
2015 IEEE Seventh International Conference on Intelligent Computing
and Information Systems (ICICIS). IEEE, 2015.

[8] Hasnine, M. N., Chayon, M. K. H., & Rahman, M. M. (2015). A Cost
Effective Approach to Develop Mid-size Enterprise Software Adopted

the Waterfall Model. World Academy of Science, Engineering and
Technology, International Journal of Computer, Electrical, Automation,
Control and Information Engineering, 9(5), 1140-1149.

[9] Lassenius, Casper, Torgeir Dingsøyr, and Maria Paasivaara, eds. Agile
Processes, in Software Engineering, and Extreme Programming: 16th
International Conference, XP 2015, Helsinki, Finland, May 25-29, 2015,
Proceedings. Vol. 212. Springer, 2015.

[10] Brhel, Manuel, Hendrik Meth, Alexander Maedche, and Karl Werder.
"Exploring principles of user-centered agile software development: A
literature review." Information and Software Technology 61 (2015):
163-181.

[11] S. Ambler. Agile software development at scale. Balancing Agility and
Formalism in Software Engineering, pages 1–12, 2008.

[12] Brenner, Richard, and Stefan Wunder. "Scaled Agile Framework:
Presentation and real world example." Software Testing, Verification
and Validation Workshops (ICSTW), 2015 IEEE Eighth International
Conference on. IEEE, 2015.

[13] W. Royce. Managing the development of large software systems:
Concepts and techniques. In Proceedings of IEEE WESCON, pages
328–339. IEEE CS Press, 1970

[14] Mahnič, Viljan. "Scrum in software engineering courses: an outline of
the literature." Global Journal of ngineering Education 17.2 (2015).

[15] M. Fowler and J. Highsmith. The agile manifesto. Software
Development, 9(8):28–35, 2001.

[16] Rubin, Kenneth S. Essential Scrum: a practical guide to the most
popular agile process. Addison-Wesley, 2013.

[17] Akif, R., and H. Majeed. "Issues and challenges in Scrum
implementation." International Journal of Scientific & Engineering
Research 3, no. 8 (2012): 1-4.

[18] Almseidin, M., Khaled Alrfou, Nidal Alnidami, and Ahmed Tarawneh.
"A Comparative Study of Agile Methods: XP versus SCRUM'."
International Journal of Computer Science and Software Engineering
(IJCSSE) 4, no. 5 (2015): 126-129.

[19] Scheerer, Alexander, Tobias Hildenbrand, and Thomas Kude.
"Coordination in large-scale agile software development: A multiteam
systems perspective." In 2014 47th Hawaii International Conference on
System Sciences, pp. 4780-4788. IEEE, 2014.

[20] Hayata, Tomohiro, and Jianchao Han. "A hybrid model for IT project
with Scrum." In Service Operations, Logistics, and Informatics (SOLI),
2011 IEEE International Conference on, pp. 285-290. IEEE, 2011.

[21] Batra, Dinesh, Weidong Xia, Debra VanderMeer, and Kaushik Dutta.
"Balancing agile and structured development approaches to successfully
manage large distributed software projects: A case study from the cruise
line industry." Communications of the Association for Information
Systems 27, no. 1 (2010): 21.

