
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 12, 2016

A Centralized Reputation Management Scheme for
Isolating Malicious Controller(s) in Distributed

Software-Defined Networks

Bilal Karim Mughal
Department of Computer Science

Bahria University
Karachi, Pakistan

Sufian Hameed
Department of Computer Science

National University of Computer and Emerging Sciences
Karachi, Pakistan

Ghulam Muhammad Shaikh
Department of Computer Science

Bahria University
Karachi, Pakistan

Abstract—Software-Defined Networks have seen an increas-
ing in their deployment because they offer better network
manageability compared to traditional networks. Despite their
immense success and popularity, various security issues in SDN
remain open problems for research. Particularly, the problem of
securing the controllers in distributed environment is still short
of any solutions. This paper proposes a scheme to identify any
rogue/malicious controller(s) in a distributed environment. Our
scheme is based on trust and reputation system which is centrally
managed. As such, our scheme identifies any controllers acting
maliciously by comparing the state of installed flows/policies with
policies that should be installed. Controllers rate each other on
this basis and report the results to a central entity, which reports
it to the network administrator.
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I. INTRODUCTION

Software-defined networks (SDN) separate the data plane
and control plane from each other, contrary to traditional
networks in which both are embedded in the same hardware
piece [1]. In SDN, a network administrator has to implement a
policy only in the controller, which is then replicated across the
network’s forwarding devices [2]. Despite immense popularity
and ever increasing growth in deployment of SDNs, much
research is needed as to whether SDN can be deployed on
a large scale, that too with all the security [3].

Various researchers including [4, 5] acknowledge control
layer as a highly vulnerable section of the SDN, which, if
compromised, can result in losing entire network to a malicious
entity. However, the models proposed for deploying SDNs so
far do not answer one basic question: how to identify malicious
or rogue controllers within a network, and how to prevent them
from causing damage [6].

In this paper, we propose a scheme to enhance controller
security in a multi-controller environment. Our framework
identifies malicious/rogue controllers by finding out if a mis-
match exists between the flows which should be installed in
the switches by the controllers and those which are actually
installed. We make use of a centralized trust and reputation
scheme inspired by [7], in which controllers are rated positive
or negative by other controllers according to their performance.
The results are then reported to a central entity called the
Trust Collector which aggregates the results and passes them

on to the network administrator. Earliest detection of rogue
controllers through such reputation management will ensure
the isolation of rogue controllers before they can damage the
network.

For enabling controllers to rate each other, we modified
the Ryu controller code [8]. We also introduced two novel
components, Policy Distributor and Trust Collector for man-
aging trust and reputation, and for providing a benchmark to
controllers against which they can compare the installed flows.
The scheme was implemented in Emulab Network Emulation
Testbed [9]. Initial evaluations show that our scheme is suc-
cessful in identifying rogue controllers.

The rest of the paper is organized as follows. In Section 2,
we briefly review the security threats to SDN controllers, and
state-of-the-art. Section 3 discusses our architecture, compo-
nents and the scheme flow. Section 4 talks about the imple-
mentation and evaluation. Section 5 sheds light on the need of
introducing the central components. Section 6 concludes this
paper after discussing the direction of our future work.

II. LITERATURE REVIEW

In SDN, the controllers are an easy target and are open
to exploitation through unauthorized access. If the controller
platform is not secure, an active adversary can hijack the
network by deceiving the network devices. DNS servers are
prone to these kind of attacks, shown by [10]. An entire
network can be brought down if an adversary gains control
of the network by hijacking the controller in this way [11].

Several threat vectors exist when it comes to security
of the control plane. These include attacks on control plane
communications, i.e. controller-controller or controller-switch
communications. Apart from this, one should also be vigilant
about certain higher-level applications which have access to
network information through controller APIs because such
applications can reprogram a network without causing much
of a suspicion [11]. A major challenge here is to differentiate
between the legit and malicious applications to allow/deny
access. The authors in [5] argue that commonly used intrusion
detection systems (IDS) might not prove to be completely
useful in securing the controllers from misuse, as it may be
difficult to ascertain which events resulted in the malicious
behavior, and whether it should be labeled as malicious at all.
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There are several studies which have tried to resolve con-
troller security problems in SDN. For example, the Security-
Enhanced Floodlight (SE-Floodlight) controller provides a
mechanism for authentication of applications, role-based au-
thorization for avoiding conflicts in flow-rule insertion, and
conflict detection and resolution [12]. It does not, however,
address one core problem, that is, isolating a compromised
controller in a distributed environment.

SDNs are logically centralized networks in which a sin-
gle controller maintains multiple switches and other network
devices, but in case of a man-made or technical mishap, this
proves to be a single point of failure too [13]. To overcome this,
distributed architectures like DISCO [14] have been proposed
in which multiple controllers manage the network for better
resilience and faster network management. Some network
architectures such as HyperFlow [15] and Onix [16] distribute
the control plane physically, but keep it logically centralized.

The distributed systems described above, however, do not
take into account the security aspects. For example, they do
not provide a comprehensive framework for identifying and
isolating a malicious controller out of several others. On the
other hand, so-far proposed schemes for securing the control
layer do not discuss the feasibility of their solutions in the
distributed environments. To the best of our knowledge, no
concrete work has been done to resolve this problem, and
therefore this is an open challenge for research.

III. ARCHITECTURE

The objective of our work is to develop a framework
for singling out a malicious controller in distributed SDN.
We achieve this by employing a trust and reputation scheme
among controllers. We are working on a distributed controller
environment in which the secondary controllers are deployed
not as a dormant backup but as active load-balancers. However,
for either use case, the controllers need to have access to all
switches, so that in case one controller goes down due to an
act of sabotage or for any other reason, the other controllers
can prevent disruptions in network environment.

In our architecture, controllers rate each other after ver-
ifying the policies installed by them in switches against the
policies that are dictated by a central entity called the Policy
Distributor. The Policy Distributor is a component introduced
by us for consistent policy enforcement throughout the dis-
tributed SDN. The second component specific to our scheme
is the Trust Collector, which asks controllers to rate their peer
controllers and takes ratings from them. The code for both the
components was written in Python and they were deployed as
separate components. We describe the working of individual
components below.

A. Components

1) Policy Distributor: It contains all of the policies that are
to be installed by the controllers. Conventionally, a network
administrator defines the policies directly into the controller,
but in our scheme, a network administrator defines the policies
in the Policy Distributor. These policies are then periodically
pushed to all of the controllers in the network. This ensures
network-wide consistency as there is only one place where

the policies need to be defined, thereby centralizing the ad-
ministration of a distributed SDN. We used a HashMap for
policy assignments which takes arguments (Controller, Policy).
Copy of this HashMap can be retrieved by all controllers when
needed, but every controller installs it in only the switches
directly under its control.

This helps them later in verifying whether other controllers
have installed correct policies or not, and is also good for fault
tolerance; in case a controller goes down, other controllers
will automatically know which flow rules were in effect in the
affected controller. It is assumed that the Policy Distributor is
secure and protected from hijacking, and any changes made to
it are purely intentional.

2) Trust Collector: It is another central entity which is
responsible for trust management. After the Policy Distributor
has pushed the policies to the controllers, the Trust Collector
after a specific duration, asks all the controllers of the network
for their opinion about their peer controllers. Specifically, it
asks other controllers to check whether their peer controllers
have installed the policies in switches as dictated by the
Policy Distributor, or they have (maliciously) installed dif-
ferent policies. The controllers then initiate their respective
Policy Checkers (discussed in next section) and fetch the flow
tables from the switches. If a controller finds any discrepancy
between the flow tables fetched from switches and the policies
sent by the Policy Distributor, it reports the results to the Trust
Collector. We use the flow tuple format to specify and compare
policies, e.g. policy1: {srcIP=’8.8.8.8’, action=’drop’}.

3) Policy Checker: We introduce another simple compo-
nent called the Policy Checker, integrated in the Ryu controller.
The primary purpose of Policy Checker is to simply probe the
switches to fetch the installed policies, so that they can be
compared with the policies sent out by the Policy Distributor.

B. Trust Calculation

The mechanism of trust collection in our scheme is based
on PET Model [7], however, we have made necessary changes
to their method to suit our environment. The PET model
is designed for strict P2P environments where there is no
central entity, and the nodes are dependent on ratings obtained
from each other to calculate trustworthiness. In our scheme,
however, we have a central entity called the Trust Collector,
which collects individually calculated trustworthiness values
from all controllers and presents it to the operator for review.

When the Trust Collector asks controllers to find out any
mismatch between policies installed and policies that had to
be installed, the controllers start probing the switches. At this
point, all the controllers simultaneously act as recommender
and recommendee. A recommender who finds out a mismatch
flags the recommendee based on following function.

h(x) =

{
S1, x = G,S1 > 0

S2, x = B,S2 < 0 and |S2| > S1

Where G and B are the constants used for match and
mismatch, respectively. In case of a match, a score of S1 is
output, whereas in case of mismatch, S2 is given as output. The
rating output by the hash function is then used in calculating
the recommendation Er. Note that we use G to represent good
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Fig. 1. Flow diagram for the entire scheme. Shows message exchange flow between switches, controllers, trust collector, and policy distributor.

behavior, similar to PET model [7], but we use B to represent
bad behavior while PET model uses it to represent byzantine
behavior.

Figure 2 shows the different parameters that go in to calcu-
lation of the trustworthiness value. The recommendation value
Er for a controller A is the average value of recommendations
that other controller have given to A. Therefore, in order to
calculate Er for, let’s say, controller A, controller B will need
access to recommendations that other peers have given to A.
The Trust Collector helps here by allowing all controllers to
send their calculated recommendations about other controllers
to itself. Once all recommendations are at the Trust Collector,
each controller can then retrieve the (global) accumulation of
all recommendations about any given controller from the Trust
Collector.

The second thing the controllers need to calculate is the
interaction-derived information Ir. In the PET model, Ir is
a special recommendation given by a peer A to other peers
based on how good or bad of a service those other peers have
provided to only peer A, that is, unlike Er, Ir does not take
into account the recommendations from other peers.

Our controller environment is slightly different from the
pure P2P environment assumed by the PET model, since in
our environment no controllers directly provide any services
to other controllers as in a P2P system, so we changed the
meaning of Ir such that Ir is now each controller’s individual
recommendation about its peer controllers based on whether
they have installed policies in the switches correctly or not.
Thus Ir is an individual controller’s own opinion about a
given controller A and it does not take into account what
other controllers say about A. This saves Ir from getting
overwhelmed if a majority of controllers (maliciously) rate
controller A as negative.

The Er and Ir values are finally used to calculate the
reputation Re in a weighted fashion such that,

W(Er) = 0.2

W(Ir) = 0.8

The values are based on suggestions from the PET model.
A higher value for W(Er) would mean that we put a lot of
trust in the environment but since we consider our environment
risky, therefore we have not set a very high value.

The purpose of reputation Re is to accumulate the past
and current values of a controller’s performance. That is, the

reputation value is the historical accumulation for a recom-
mendee’s past behavior from the recommender’s viewpoint. It
will reflect the overall quality of the recommendee for a long
time period. For example, if a controller which is being rated
has installed 99 correct policies but 1 incorrect policy due
to, let’s say, a software bug, then that controller’s reputation
doesn’t immediately become completely negative. Rather, the
final reputation value is calculated through a combination of
current and past recommendations from both individual and
collective group of controllers.

Fig. 2. Trust calculation model based on [7]. Nodes collect final trustwor-
thiness value based upon number of factors.

Since Ir gives us the personalized view of a node for its
peers, therefore the PET model uses only Ir to calculate the
risk value Ri for the network. This results in each controller
having its own Ri value that represents its own view of the
risk in the network.

The reputation Re and risk Ri values are used by the con-
trollers to calculate trustworthiness T values. Each controller
thus generates one trustworthiness value that gets collected by
the Trust Collector. On PET model’s suggestions, we set the
weight of reputation and weight of risk to 0.5 in all controllers
for calculating the T value such that:

W(Re) = 0.5

W(Ri) = 0.5

The Trust Collector accumulates all these trust values it
receives from controllers. It then averages all the trustwor-
thiness values, and notifies the network administrator as to
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which controllers are malicious since their trustworthiness
value was very low or which controllers are good since their
trustworthiness value was high.

C. Scheme Overview

In presence of the Policy Distributor, Trust Collector, and
Policy Checker integrated within the controllers, our scheme
progresses as follows:

We have a network with three controllers and three
switches, such that each controller directly administers two
switches. The network is in a full mesh setting, so that all the
controllers have access to all switches for backup. Assuming
that the network has just booted, and the switches do not have
any flow rules as of now. A network administrator defines a
policy in the Policy Distributor that all traffic originating from
IP address 8.8.8.8 is to be dropped.

After some time, the Trust Collector asks controllers to
probe all the switches to find out if there is a mismatch between
installed policies, and those dictated by the Policy Distributor.
The controllers then run their respective Policy Checkers over
the network. As shown in Figure 1, each controller probes
switches managed by other controllers too.

When the probe has finished and matches/mismatches have
been found, each controller gives out a ratings map for every
other controller, which contains good or bad scores for them.
Three controllers will generate three such maps, such that in
case of three controllers A, B and C, controller A will report
about B and C, controller B will do it for A and C, and
controller C will do it for A and B. All of these ratings are
sent to the Trust Collector.

Once the Trust Collector has received the reports from all
of the controllers, it combines all of them and sends back to
all of the controllers, so that A will receive reports of B and C
about each other, B will receive reports of A and C, and C will
receive reports of A and B. Each of the controllers now has
information about what its peer controllers think about other
controllers. This information helps a controller in calculating
average value of recommendation (Er) for other controllers.

Er combined with Ir are used to calculate reputation Re.
Combined with risk Ri, the Re is used to calculate final
trustworthiness as:

T = Reputation (Re) * Weight of Reputation [W (Re)] +
Risk (Ri) * Weight of Risk [W (Ri)]

Each controller outputs trustworthiness values for other
controllers. The results are fed to the Trust Collector, which
aggregates the results from all the controllers and shows it to
the network administrator for review.

IV. EVALUATIONS

We built a prototype implementation in Python for Trust
Collector, Policy Distributor, Policy Checker and ratings mech-
anism of our controllers. The Policy Checker and ratings mech-
anism were integrated in Ryu controller, whereas the Policy
Distributor and Trust Collector were deployed as separate
modules. Small number of controllers and OpenFlow switches
were also deployed. We used the Emulab network evaluation
testbed.

In the topology, we used one Policy Distributor, one Trust
Collector, and varying number of controllers and switches
were deployed for different evaluations. For the scalability
tests, we used simulated switches and increased the number
of controllers to up to 15, and the number of switches to up
to 30. The configurations used are shown in Table 1 and the
results are shown in Figure 3.

TABLE I. SHOWS THE DIFFERENT NETWORK CONFIGURATIONS WE
CREATED OF CONTROLLERS AND SWITCHES

Configuration Controllers Switches Malicious
controllers

Config 1 5 10 2
Config 2 10 20 4
Config 3 15 30 6

For our correctness evaluations, we deliberately triggered
one or more of the controllers to randomly install a malicious
policy and then ran the rating mechanism in the controllers.
All other controllers were able to detect the controller which
installed wrong policy, and rated it negative. The Trust Col-
lector aggregated the ratings from all these controllers. For all
the tests we conducted, the scheme was always able to find
the malicious controller(s) with zero false positives or false
negatives.

Figure 3 shows the time taken to perform the entire process
of rating and trust collection as the number of controllers
involved in the process is increased. As seen from the graph,
the time shows a linear pattern of increase and our scheme is
able to work fast in finding out malicious controller.

Fig. 3. Scalability of the scheme: Shows the time taken in seconds for our
entire rating and trust collection scheme to finish as the number of controller
is increased.

The scheme defines a specific number of message ex-
changes (as shown in Figure 4) between the different com-
ponents in the system, i.e. the controllers, switches, Trust
Collector, and Policy Distributor. We use a centralized graph
database, Neo4j [17], which serves as a ’noticeboard’ for
communication using the publish-subscribe mechanism. This
saves network bandwidth since the Policy Distributor or Trust
Collector do not have to broadcast messages containing com-
mands such as ’startTrustCalculation’, a command meant to
be sent to all controllers to start the trust calculation process,
to all controllers. Instead, the Trust Collector can publish this
command by writing it in the centralized database and the
controllers can read it from there. Thus only one message
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exchange has to be used instead of a broadcast of messages to
all controllers.

Neo4j has a Python library that handles the lower level
network communication code and provides a RESTful web
API which we invoke from our code to perform publish or
subscribe functions. Note that each node in our evaluation
setup has an IP address, this includes the node running Neo4j,
and so the REST API can be invoked on the Neo4j database
from any of the controllers and Trust Collector or Policy
Ditributor components by using the IP of the Neo4j node.

The number of messages that need to be used for one
complete process of our trust calculation is O(N*M) where
N is the number of controllers involved in calculating the
trust and M is the number of switches in the network, and
there exists one instance of the Policy Distributor component
and one instance of the Trust Collector component. While the
Neo4j database based communication scheme described earlier
helps get rid of broadcast messages, each controller (from N
number of controllers) has to communicate with each of the
switches (from the M number of total switches).

TABLE II. DIFFERENT NETWORK CONFIGURATIONS WE CREATED OF
CONTROLLERS AND SWITCHES FOR SCALABILITY EVALUATION OF
NUMBER OF MESSAGES. IN EACH CONFIGURATION, NUMBER OF

SWITCHES CONTROLLED BY ONE CONTROLLER IS EQUAL TO (NO. OF
SWITCHES / NO. OF CONTROLLERS).

Configuration Controllers Switches Malicious
controllers

Config 1 1 3 0
Config 2 3 6 1
Config 3 6 12 2
Config 4 9 27 3

Table 2 shows the various configurations of controllers
and switches which we created in our evaluation setup. Note
that this set of configurations created are different than those
created for the earlier evaluation and were shown in Table
1. Figure 4 shows the number of messages that were used
to perform one complete process of trust collections for the
various configurations mentioned in Table 2. Note that here a
message from a component A to component B is defined as one
write of a message from a component A and its corresponding
read by a component B. As can be seen from the graph,
our scheme scales smoothly as the number of controllers and
switches involved in the process is increased. For the highest
configuration, Config 4, with 9 controllers and 24 switches,
the scheme uses less than 250 messages to finish the entire
process of trust calculation.

V. DISCUSSION

Our test results presented earlier show that our scheme
works correctly and efficiently in weeding out malicious con-
trollers. Since the Trust Collector decides whether a controller
is malicious based on aggregate of recommendations from
all other controllers, therefore our scheme provides defense
against bad mouthing attacks [18, 19].

In bad mouthing attacks, a malicious party provides dis-
honest recommendations for another good party to malign
the name of the good party. But since our scheme does not
make a decision of whether a controller is malicious based
on recommendation from just one other controller, therefore

Fig. 4. Shows the number of message exchanges that take place for
different network configurations of controllers and switches, the names of
the configurations on the X-axis (e.g. Config1, Config2, ..) refer to the
configurations in Table 1.

we can provide defense against bad mouthing as long as
malicious controllers are not the majority in the total number
of deployed controllers. This assumption is reasonable since
we can guarantee the number of controllers which would need
to become malicious before the network collapses. That is, in a
network with N controllers, our scheme is guaranteed to work
correctly and identify malicious controllers as long as (N/2)+1
controllers stay uncompromised. This assumption is realistic
since majority of controllers is unlikely to become malicious
in an instant and if they become malicious one by one over
time, then our scheme will identify the malicious controllers
at all times when (N/2)+1 controllers are still uncompromised.

Our scheme of collecting ratings and aggregating trust and
reputation using a Trust Collector component works more
robustly and accurately than delegating trust and reputation
management entirely to individual controllers in a distributed
environment. This is because we always need a central entity
that can aggregate the ratings generated by all the controllers
that are part of the distributed environment, and the central
entity can then make a decision of whether a given controller
is malicious by looking at what the majority of ratings say
about that controller. Alternatively, the central entity can also
output the result of the ratings to a human operator who can
decide whether a given controller is malicious based on both
their domain knowledge about the network and also based on
the majority of ratings that were received for that controller.

Introducing a central trust managing entity also helps in
solving an important dilemma, which is, what happens if
majority of rogue controllers vote against a controller which
otherwise has installed correct policies? Let us examine a case
of distributed trust management, in which controllers find the
policy mismatches themselves, and there is no central entity for
managing the trust and reputation. There are three controllers
in a network, A, B, and C, each managing one switch under
them, and connected to other switches too. A network admin-
istrator defines one flow rule, i.e. block any traffic originating
from IP address 200.0.0.1. The controllers install the flow rules
in their respective switches. After sometime, controllers probe
the switches to find out whether other controllers installed
correct policies in their respective switches. A finds out that
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TABLE III. DIFFERENT NETWORK CONFIGURATIONS WE CREATED OF CONTROLLERS AND SWITCHES FOR BAD MOUTHING EVALUATION. IN EACH
CONFIGURATION, NUMBER OF SWITCHES CONTROLLED BY ONE CONTROLLER IS EQUAL TO (NO. OF SWITCHES / NO. OF CONTROLLERS). AND CX
REFERS TO THE CONTROLLER NUMBER, E.G. C1, C2, ETC. THE BAD MOUTHING COLUMN SHOWS THE DETAILS OF WHICH CONTROLLER(S) BAD
MOUTHED WHICH OTHER CONTROLLER(S). THE RESULT COLUMN SHOWS THE FINAL RESULT AFTER THE TRUST CALCULATION ROUND WHICH

AGGREGATES TRUST VALUES FROM ALL CONTROLLERS IN THE NETWORK. AS SEE FROM RESULTS, THE POSITIVE OR NEGATIVE MAJORITY RATINGS
AFFECT THE RESULT OF WHETHER A GIVEN CONTROLLER IS DEEMED TRUSTED OR UNTRUSTED.

Configuration Controllers Switches #Malicious controllers Bad mouthing Result
Config 1 3 6 1 C1 bad mouthed C2 C2 found trusted
Config 2 3 6 2 C1, C2 bad mouthed C3 C3 found untrusted
Config 3 6 12 1 C1 bad mouthed C2 and C3 C2 and C3 found trusted
Config 4 6 12 2 C1, C2 bad mouthed C3 and C4 C3 and C4 found trusted

B and C have (maliciously) installed flow rules in their
switches which allow traffic originating from 200.0.0.1. It
rates B and C negative. B and C on the other hand rate A
as negative. In presence of an automated solution of shutting
down or restricting a malicious controller, this will prove to be
disastrous. If, however, a human operator has to approve the
shutting down or restricting of a malicious controller, then it
will be a burden for him to sort through the conflicting ratings
of controllers against each other.

Using the Trust Collector for aggregating the opinions
about other controllers from each controller not only helps us
in ascertaining the validity of recommendations with surety,
but it also helps in eliminating broadcasts. If, for example,
there are three controllers A, B, and C, then all of the nodes
will have to send their reports to each other so that they can
perform final trust calculation (since the final step in the trust
calculation process inside a controller needs input from other
controllers too).

However, by introducing the Trust Collector in between,
all controllers send their reports to this central entity, which
simply forwards it to individual controllers. While it is true that
our scheme introduces this one central point of compromise,
the Trust Collector, but we emphasize that it is much easier to
guard and protect one component if it can help us have a safe
distributed environment of controllers where each controller
does not have to guarded very well. As long as majority of
controllers are not compromised, our scheme guarantees that
the network will keep functioning correctly.

VI. CONCLUSION AND FUTURE WORK

Securing the controllers in SDN is an open problem for
research. Researches carried so far do not address the prob-
lem of identifying malicious controllers, especially in multi-
controller environment. We tackle this problem by employing
a trust management scheme in which controllers rate each
other on the basis correctness of flow rules installed by
them in switches. We do this by introducing a centralized
entity which keeps record of policies to be installed, so that
controllers can compare them with installed policies for rating
purpose. We coded the scheme and implemented it in Ryu
controller as prototype and found that the scheme is able to
successfully flag a malicious controller. Our next step will
be to extensively evaluate our scheme in different network
topologies and number of nodes, and also by launching various
kinds of attacks on our trust management system.
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