
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 12, 2016

Modeling and Solving the Open-End Bin Packing
Problem

Maiza Mohamed and Tebbal Mohamed and Rabia Billal
Laboratoire de Mathématiques Appliquées

Ecole Militaire Polytechnique
B.P. 17 Bordj-El-Bahri
Alger, 16111 Algérie

Abstract—In the Open-End Bin Packing Problem a set of items
with varying weights must be packed into bins of uniform weight
limit such that the capacity of the bin can be exceeded only by the
last packed item, known as the overflow item. The objective is to
minimize the number of used bins. In this paper, we present our
Integer Linear Program model based on a modification of Cesili
and Righini model [1]. Also, we propose two greedy heuristics to
solve a problem. The first one is an adaptation of the Minimum
Bin Slack heuristic where we have reduced to one unit capacity,
the weight of the largest item in the current bin. While, the
second heuristic is based on the well-known First Fit Decreasing
heuristic. Computational results based on benchmark instances
taken from the literature as well as generated instances show the
effectiveness of the proposed heuristics in both solution quality
and time requirement.

Keywords—Open-End Bin-packing; heuristics; discrete opti-
mization; combinatorial problem

I. INTRODUCTION

The one dimensional open-end bin packing problem
(OEBPP) is a variant of the classical bin packing problem.
In the OEBPP, items with varying weights are packed into
identical bins such that in each bin, the total items weight
content before packing the last item is strictly less than the
bin capacity. The aim of the OEBPP is to minimize the
number of bins used to pack all items.

This problem was introduced by Leung et al. [2], where
the authors proved that the OEBPP is NP-hard. Various
application of this problem can be found in a wide variety of
industries such as manufacturing, transportation, affectation
tasks, etc. For example, in the fare payment system in the
Hong Kong and Taipei subway stations, the passengers can
buy a ticket of a fixed value. A machine at the entrance
gateway records the ticket’s value, while another machine
deducts the fare from the ticket’s value at the exit gateway.
The machine at the exit gateway returns the ticket if the
remaining balances of the ticket is positive; otherwise, it keeps
the ticket. The objective from a passenger’s point of view is
to minimize the number of tickets they need to purchase as
to minimize the number of bins generated by an algorithm.
Another application can be found in job scheduling in the
manufacturing environment that operates one shift per day. A
worker loads jobs to a machine that can operate automatically.
The objective is to schedule jobs to minimize the total time
(days) to complete all the jobs. Intuitively, the job with the
longest processing time is scheduled to the last to fully utilize

the automated machine when the worker leaves from work,
and the worker can unload the finished job next day.

Whilst, a few work carried out on this problem, we present
a modification of the 0-1 linear programming formulation
proposed by Ceselli and Righini [1] in which the authors
studied a variant of the open-end bin packing called Ordered
Open-End Bin Packing Problem (OOEBBP). Then we present
our contributions based on the proposition of two greedy
heuristics for solving the problem in an offline mode while
ensuring high quality solutions in very short computational
time compared to solving the problem in optimal way.

The remainder of this paper is organized as follows. In
the next Section, we present a few existing lower and upper
bounds on which we based to develop our propositions.
Suitable way to formulate the problem with an Integer Linear
Program formulation without considering the order between
items is presented in Section III. In Section IV, we describe
and develop our proposed heuristics which are tested and
compared by means of computational tests on benchmark
instances in Section V. The last Section provides some final
conclusions and directions for future work.

In the next, we assume the following notations:
C: Bin capacity;
I: Set of item;
i;j: Index of items and bins respectively;
wi: Weight or size of item i;
rj : Residual capacity of bin j;
S: Set of candidate items;
O: Set of overflow items;
R: Overall residual capacity of used bins;

II. LITERATURE REVIEW

While there exists abundant research for the classical bin
packing problem (interested reader can reffered to the chapter
of Coffman et al. [3] for an excellent survey of this topic),
there is much less research on the OEBPP. Initially, Leung
et al. [2] proposed this variant of bin packing, in which the
authors modelled the ticketing system at the subway station
in Hong Kong. The authors was showed that any online
algorithm for the disscused problem have an asymptotic
worst-case ratio of at least 2. Thereafter, Yang and Leng [4]
studied the Ordered Open Bin Packing Problem which extends

www.ijacsa.thesai.org 399 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 12, 2016

the requirement corresponding to the order of passenger’s
itinerary in subway station problem. The same problem,
which is the Ordered Open-End Bin Packing Problem, have
been also studied by Cesili and Righini [1] where authors
present branch and price algorithm for its exact optimization.

A. Lower bounds

In this section we briefly describe two existing lower
bounds from the OEBPP literature.

Ongkunaruk’s lower bound: Ongkunaruk [5] presented
a simple idea used to compute a lower bound for the
OEBPP, it consists in determining the number of needed
overflow items firstly in order to apply the continuous
lower bound for the rest of items. The overflow items are
those selected to be packed as the last item which exceed the
capacity of bin. Generally, overflow items have a large weight.

The main target in the OEBPP is to maximize the overflow
items in order to minimize the capacity of items inside bins,
so minimize the number of bins used.

For do, the author order items in the non-increasing size
firstly, then determine the smallest integer K which indicate
the number of overflow item, using the following formula:

n∑
j=K+1

wj ≤ KĊ (1)

So the lower bound of Ongkunaruk L0
OBP can be expressed

by:

L0
OBP = K (2)

Ceselli’s lower bound: Ceselli and Righini [1] proposed a
combinatorial lower bound algorithm called in what follows
CBA. This lower bound computes a set of overflow items
iteratively in an optimal fractional packing by the following
way; the authors define R to be the overall residual capacity
of all the bins already initialized, whenever an item j is found,
whose size is greater than R, a new bin is initialized and the
overflow item of this bin is selected as the largest item among
those already packed but not yet used as overflow items, then
insert item j into the set O of overflow items in order to yield
the maximum residual capacity for the next iteration. So this
lower bound can be expressed by:

LCLB = |O| (3)

B. Upper bounds

Well known algorithms for the classical BPP: First Fit
Decreasing(FFD) is one of the well-known algorithm often
used to solve the classical BPP. Developed by Coffman et
al. [3], FFD guarantees asymptotic worst case performance
bounds of 11/9 [6]. Let all items are sorted in the non-
increasing weight order, the FFD algorithm consist on packing

the current item in the first opened bin, else, a new bin is
opened.

Other effective algorithm for solving the classical BPP
called Minimum Bin Slack (MBS). This algorithm was
proposed by Gupta and Ho [7]. At each step, an attempt is
made to find a set of items that fits the bin capacity as much
as possible. At each stage, a list of items not assigned yet
is sorted in the decreasing order of their weights. Each time
a packing is determined, the items involved are placed in a
bin and removed from a set of unpacked items. Thereafter
Fleszar et al. [8] proposed a variant of MBS called MBS’, in
which the item of maximum size is not unstuck. MBS has
been used in several variants of bin packing problem, such as
the bin packing problem with conflicts [9], and the variable
sized bin packing problem [10].

Ongkunaruk’s heuristic for the OEBPP: Ongkunaruk
[5] proposed a modification of the well-known first fit
decreasing algorithm for the OEBPP called Modified First Fit
Decreasing (MFFD), this modification consists of determining
the overflow items firstly, then apply the first fit decreasing
for the rest of items not yet packed.

In MFFD, the author computes the lower bound K defined
above (equation (2)) and considered as overflow items, the
K−first large items , then apply the first fit decreasing
algorithm for the remaining items i not yet packed, where
i = k + 1 to n. Finally, assign the overflow items into the
bins using FFD algorithm.

III. PROBLEM FORMULATION

In this section, we propose a modification of the integer
linear program initially proposed by Cesili and Righini
[1]. The authors studied a variant of the open bin packing
problem called the Ordered Open-End Bin Packing Problem
(OOEBPP) in which items to be packed are sorted in a
given order. For this formulation, the authors used the binary
variable yi to indicate whether item i is the overflow item in
its bin, and the binary variable xij to indicate whether item i
is assigned to the bin in which the overflow item is the item j.
Because of the constraints on the order of the items, there is
only xij variables with i < j. Instead, for the general OEBPP
(without order), we have therefore xij decision variables with
i 6= j.

Minimize
∑
i∈N

yi (4)

s.t.

yi +
∑
i 6=j

xij = 1 ∀i ∈ N (5)∑
i6=j

wixij ≤ (C − 1)yj ∀j ∈ N (6)

xij ∈ 0, 1 (7)
yi ∈ 0, 1 (8)

www.ijacsa.thesai.org 400 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 12, 2016

Each binary variable yi indicates whether item i is the
overflow item in its bin. Each binary variable xij indicates
whether item i is assigned to the bin in which the overflow
item is item j. Constraints (5) impose that each item must
be assigned to a bin, while constraints (6) impose that the
overall weight of the items assigned to a bin, excluding the
overflow item, must fit into the bin and must leave at least
one capacity unit available for accommodating the overflow
item. The number of bins used is indicated in the objective
function (4) by the number of binary variables yi set to 1.

IV. PROPOSED HEURISTICS

A. Adapted First Fit Decreasing AFFD

In this section, we will describe our heuristic algorithm,
called in the following Adapted First Fit Decreasing(AFFD).

1) Main idea: In the open-end bin packing problem the
capacity of any bin can be exceeded by only the last packed
item, called the overflow item. Then, it is wise to consider the
weightest items as overflow items in order to minimize the
number of used bins. In this way, Ongkunaruk [5] proposed
MFFD algorithm which is a modification of the FFD runway.
The author determines overflow items firstly before packing,
then apply first fit decreasing with bins capacity equal to C−1.

Our Proposition is an adaptation of the well-known first fit
decreasing where each selected overflow item can occupy at
least one unit of bin capacity. Sorted items in decreasing order
of their weight, the AFFD algorithm consist on assignment of
the current item i into the lowest indexed opened bin which
accommodate it, else, a new bin is opened. An opened bin can
receive an item i if and only if the residual capacity -without
take into account the overflow item- is sufficient to contain it.
In other words, an item i can be placed into an opened bin
if the weight wi is less than or equal to C − 1 −

∑
j∈Î wj

where Î is the set of items assigned to the opened bin, except
the overflow item.

When a new bin is opened, a selection of an overflow
item j is to be made. The overflow item j is selected as the
weighted item among those already packed into all previous
opened bins, but not yet used as overflow items. Once the
overflow item is selected, a permutation of the placement
between the selected item j and the current item i is performed.

2) AFFD Pseudo code: Let Îj a set of items assigned to
bin j, except the overflow item oj . The AFFD heuristic can
be summarized in the following steps:

• Step 0: Sort the items into a list I in decreasing order
of their weight, set i = 1, S = ∅, O = ∅.

• Step 1: Until there are no items in a list I do
◦ S = S ∪ i;
◦ Pack the current item i into the lowest indexed

opened bin j∗ in which the total weight of
items Îj∗ already assigned to it -except, the
over flow item- is strictly less than the bin

capacity. Open a new bin if it cannot be
assigned to any existing bin;

◦ if a bin k is opened,
select the overflow item ok such that
wok = argmaxi∈Î{wi} we pack firstly
the overflow item;
Permute placement of the current item i
and selected overflow item ok
Set O = O ∪ ok and update Î .

◦ Set I = I \ i
◦ Update the residual capacity of opened bins

(We assume that the residual capacity of bin
is the remaining of the capacity where we
consider that the over flow item require only
one unit)

3) Algorithm: Algorithm 1 details the AFFD procedure.

Algorithm 1: Adapted First Fit Decreasing AFFD
Data: I Set of items ordered in decreasing order of

weights, wi weight of item i, C Bins capacity.
Result: The number of used bins |O|
initialization
O := ∅
S := ∅
for i = 1 to n do

S = S ∪ {i}
if (i can be assigned in one of opened bins) then

assign item i with bin capacity C − 1 using
FFD procedure

else
j = argmaxj∈S{S}
S = S \ {j}
O = O ∪ {j}
Permute assignment between items i and j

AFFD procedure can be implemented on O(n log n) time,
where n is the number of concerning items.

B. Adapted Minimum Bin Slack AMBS

We describe in the follow the second proposed heuristic
which consists in a simple adaptation of MBS heuristic
of Gupta and Ho [7]. We call this proposition, Adapted
Minimum Bin Slack heuristic (AMBS). In this heuristic,
we execute the MBS procedure, in which we consider that
the weight of the largest item in the current bin is equal to
one capacity unit. Otherwise, this item is considered as the
overflow item of its bin, and this bin must leave at least one
capacity unit available for the requirement of the overflow
item. The AMBS heuristic is summarized in the following:

Until there are no items in the unpacked items set I:

• Select the largest item in I and assign this item as
an overflow item in the current bin j. The residual
capacity of bin j becomes rj = rj − 1. Then, remove
the selected overflow item from the set I;

www.ijacsa.thesai.org 401 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 12, 2016

• Apply the MBS-one search procedure on I with a
capacity of bin equal to C − 1, in which we obtain
the best subset of unpacked yet items.

• Remove the founded subset from I .

The complexity of MBS procedure is O(2n), but the compu-
tational experience shows that it is quite efficient in solving
practical problem instances with various parameters [8][9].
This is due to the fact that in practical problem instances, the
number of items involved in each packing is much smaller than
n. If the maximum number of items that can be placed in one
bin is u, then the complexity of MBS-one-packing procedure
is reduced to O(nu) and thus packings for all bins are built in
O(nu+1).

V. COMPUTATIONAL RESULTS

Heuristics and lower bounds have been coded in java and
run on an Intel i5 @ 2Go of RAM. The solver CPLEX 12.5
was used to solve the linear programming to the optimality.

We tested our heuristics algorithm on three data-sets called
uniform, triplet and random instances. The two first data-sets
contain eight instances classes were initially proposed by
Falkenauer [11] and they were excessively used to test the
performances of several bin packing problem variants. Each
class contains 10 different instances. The uniform data-set
includes four instances classes of bins capacities C = 150
and items with integer weights uniformly distributed in the
interval of [20 − 100]. The number of items n for each class
is respectively, 120,250,500 and 1000. The second data-set
was called the triplet bin-packing instances because in the
classical bin-packing problem, each bin can be filled with at
most three items. This data-set includes also four instances
classes of bin capacities C = 1000 and items with integer
weights uniformly distributed over the interval [25− 50] with
one decimal digit. The number of items n for each class is
respectively, 60, 120, 249 and 501.
If for the triplet instances in the classical bin-packing problem
(closed bin), each bin cannot contains more than three items,
so for the open bin cases we can add no more than one item
as an overflow item. Therefore, a valid lower bound (lower
number of used bins) can be expressed by LT

OBP = dn4 e
where n is the problem size or the number of items.

The last data-set was generated randomly and contains
five classes of instances with different problem size,
n = 50, 100, 200, 500 and 1000. For each class, items weight
was generated using uniform distribution over four different
intervals [20 − 140], [20 − 160], [40 − 140] and [40 − 160].
The capacity of bins is fixed to 200. Ten different instances
was generated for a given problem size and weight interval
distribution.

The performance and average run time of tested heuristics
on data-sets described above are shown in Table I, Table II
and Table III respectively. Each line contains average results
over ten OEBPP instances and the best results are shown in
bold faced characters.

Table headings are as follows:
Dev. : Deviation of solution obtained by the corre-

sponding heuristic(H) from the best lower bound
provided by Ongkunaruk [5] LB0

OBP and the
lower bound provided by Cesili and Righini [1]
LBCBA, computed as :

Dev(%) = 100 ∗ H −max(LB0
OBP , LBCBA)

max(LB0
OBP , LBCBA)

sec. : Computational time in seconds.

TABLE I. COMPUTATIONAL RESULTS FOR THE UNIFORM INSTANCES

Problem MFFD AFFD AMBS
size Dev. sec. Dev. sec. Dev. sec.
u120 2.99 0 2.99 0 3.65 0.0031
u250 1.41 0.0085 0.94 0.0063 2.50 0.0031
u500 1.33 0.0266 1.02 0.014 2.27 0.0078
u1000 1.42 0.0312 0.95 0.0078 2.10 0.0328

Average 1.78 0.016 1.47 0.0070 2.63 0.0117

TABLE II. COMPUTATIONAL RESULTS FOR THE TRIPLET INSTANCES

Problem MFFD AFFD AMBS
size Dev. sec. Dev. sec. Dev. sec.
t60 4.66 0 2.01 0 0 0.0032
t120 2.66 0 2.33 0 0 0.0249
t249 1.26 0.0030 1.26 0 0 0.3557
t501 1.34 0.0157 1.19 0.0030 0 1.6488

Average 2.48 0.0047 1.69 0.0007 0 0.5081

Table I shows computational results for the Falkenauer
uniform instances, from these results we note that the average
deviation decreases when the problem size increases, this is
due to the convergence of the upper bounds and lower bounds
from the optimal solution. In average, our heuristic AFFD
performs better than heuristic provided by Ongkunaruk,
more particularly when the problem size increase, this is
due to the way on which MFFD algorithm extract the set
of overflow items. In fact, the lower bound provided by
Ongkunaruk performs worse when the problem size increase.
Ongkunaruk’s upper bound MFFD gives a further solution.

Concerning AMBS, this heuristic gives an important
deviation from the optimal solution, this is due to the fact
that from the MBS adaptation, some items with a large
weight will be packed inside the bin. While, the optimal
solution requires that all largest weight items must be packed
as overflow items in order to minimize the number of used bins.

In Table II, we present the computational results of MFFD
and proposed heuristic for the Falkenauer triplet instances.
From these results, the overall attracting remarks that our
heuristic AMBS give the optimal solution for this instances,
because it is enough to find three items in each subset to
be packed inside the bin, and one as overflow item. So the
solution given by AMBS coincides with the lower bound
value LT

OBP = dn4 e. Moreover, from this table we note that
both proposed heuristics AMBS and AFFD perform better

www.ijacsa.thesai.org 402 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 12, 2016

than MFFD.

For a given problem size, the results given by both AFFD
and MFFD are better on the uniform instances comparing
to the triplet instances. These remarks can be explaining by
the fact that the Falkenauer triplet instances are particularly
difficult because in the optimal solution all constructed bins
should have maximally three items as no overflow item plus
one overflow item, therefore it is difficult to find an optimal
subset of four items to each bin using first fit decreasing.

In overall, all the results present reasonable average com-
putation time which confirms the good performances of our
proposed heuristics. The time required by MFFD and AMBS
are negligible. Furthermore, it is obvious to note that the time
requirements increase with the problem size, but reasonable in
order of some millisecond until problem size of 500 items.

Table III shows computational results for the random
instances. In addition to both average deviation and execution
time columns, we show the column Diff which represent the
average difference of number of bins obtained by the proposed
heuristics and the lower bound. From these results we remark
that the average deviation decreases when the problem size
increases, this is due to the convergence of the upper bounds
and lower bounds from the optimal solution. The results
also show that MFFD and AFFD methods performs better
in quality of solution and computational time. An average
deviation of 0% to 2.58% is given for the small problem
size and 0.47% to 2.75% for the problems beyond to 200
items. Also, for such an interval of weight distribution, the
average deviations decreases when the problem size increases
which ensures the good performances of proposed methods.
In overall proposed AFFD performs better with an overall
average deviation of 1.29%. However, MFFD and AMBS
show good performances and the same behaviour in the
variation of deviation with an overall average deviation of
1.36% and 6.33% respectively. Although we have positive
values of deviation, the average difference between the lower
bound and the upper bounds is usually just two bins for
MFFD and AFFD, while this difference is in order to average
seven bins for AMBS. Obviously, this value of the difference
increases with the problem size.

Generally, obtained results are given with reasonable
average computation time, in order to some milliseconds
for MFFD and AFFD heuristics and few large running
time for AMBS, but always in order to milliseconds. The
execution time increase with the problem size. For 1000
items, the solutions are obtained after average 28, 10 and
149 milliseconds for MFFD, AFFD and AMBS respectively.
These results confirm the excellent performances of proposed
heuristics.

VI. CONCLUSION

The open end bin-packing problem is an NP-hard
combinatorial problem often encountered in the practical
field. Few works are carried out to solve the problem in
polynomial or pseudo-polynomial time. Through the present

paper, we have proposed and described two newly heuristics
for the OEBPP problem, these heuristics are an adaptation of
the well-known first fit decreasing algorithm and minimum
bin slack algorithm.

Computational results based on a benchmark test bed
show the good performance of proposed heuristics both on
quality of solution, and on required execution time.

ACKNOWLEDGEMENT

This work was supported by Algerian state and performed
jointly at LMA/EMP (Laboratoire de mathématiques
appliquées de l’Ecole Militaire Polytechnique - Alger,
Algérie) and CRIL (Centre de Recherche en Informatique de
Lens CNRS - UMR 8188, France). This support is gratefully
acknowledged.

REFERENCES

[1] A. Ceselli and G. Righini, “An optimization algorithm for the ordered
open-end bin-packing problem,” Operations Research, vol. 56, no. 2,
pp. 425–436, 2008.

[2] J. Y. T. Leung, M. Dror, and G. H. Young, “A note on an open-end bin
packing problem,” Journal of Scheduling, vol. 4, no. 4, pp. 201–207,
2001.

[3] J. E. G. Coffmann, M. R. Garey, and D. S. Johnson, Approximation
algorithms for NP-hard problems: Approximation algorithms for bin-
packing-a survey. Boston: PWS Publishing, 1997, ch. 2, pp. 46–96.

[4] J. Yang and J. Y. T. Leung, “The ordered open-end bin-packing
problem,” Operations Research, vol. 51, no. 5, pp. 759–770, 2003.

[5] P. Ongkunaruk, “Asymptotic worst-case analyses for the open bin
packing problem,” Ph.D. dissertation, Virginia Polytechnic Institute and
State University, 2005.

[6] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L.
Graham, “Worst-case performance bound for simple one dimensional
packing algorithms,” SIAM Journal on computing, vol. 3, no. 4, pp.
299–325, 1974.

[7] J. N. D. Gupta and J. C. Ho, “A new heuristic algorithm for the one-
dimensional bin-packing problem,” Production Planning & Control,
vol. 10, no. 6, pp. 598–603, 1999.

[8] K. Fleszar and K. S. Hindi, “New heuristics for one-dimensional bin-
packing,” Computers & Operations Research, vol. 29, pp. 821–839,
2002.

[9] M. Maiza and M. S. Radjef, “Heuristics for solving the bin-packing
problem with conflicts,” Applied Mathematical Sciences, vol. 5, no. 35,
pp. 1739 – 1752, 2011.

[10] M. Maiza, A. Labed, and M. S. Radjef, “Efficient algorithms for
the offline variable sized bin-packing problem,” Journal of Global
Optimization, vol. 57, no. 3, pp. 1025–1038, 2013.

[11] E. Falkenauer, “A hybrid grouping genetic algorithm,” Journal of
heuristics, vol. 2, pp. 5–30, 1996.

www.ijacsa.thesai.org 403 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 12, 2016

TABLE III. COMPUTATIONAL RESULTS FOR THE RANDOM INSTANCES

MFFD AFFD AMBS
% Dev Diff Sec. % Dev Diff Sec. % Dev Diff Sec.

R-50

[20-140] 1.66 0.2 0.0000 0.83 0.1 0.0000 3.21 0.4 0.0000
[20-160] 0.00 0.0 0.0000 0.00 0.0 0.0000 5.07 0.7 0.0000
[40-140] 1.42 0.2 0.0000 1.42 0.2 0.0000 2.14 0.3 0.0000
[40-160] 1.91 0.3 0.0000 2.58 0.4 0.0000 3.83 0.6 0.0000

Avg. 1.24 0.2 0.0000 1.20 0.2 0.0000 3.56 0.4 0.0000

R-100

[20-140] 1.16 0.3 0.0016 1.16 0.3 0.0000 5.84 1.5 0.0000
[20-160] 0.35 0.1 0.0000 0.35 0.1 0.0000 5.09 1.4 0.0000
[40-140] 2.50 0.7 0.0000 2.15 0.6 0.0015 5.36 1.5 0.0000
[40-160] 2.07 0.6 0.0016 2.40 0.7 0.0000 5.79 1.7 0.0000

Avg. 1.52 0.4 0.0008 1.51 0.4 0.0003 5.52 1.5 0.0000

R-200

[20-140] 0.79 0.4 0.0000 1.18 0.6 0.0000 6.94 3.5 0.0000
[20-160] 0.75 0.4 0.0000 0.94 0.5 0.0000 7.72 4.1 0.0000
[40-140] 2.34 1.3 0.0016 1.44 0.8 0.0000 6.29 3.5 0.0015
[40-160] 1.71 1.0 0.0000 1.71 1.0 0.0016 7.00 4.1 0.0016

Avg. 1.39 0.8 0.0004 1.31 0.7 0.0004 6.98 3.8 0.0007

R-500

[20-140] 0.47 0.6 0.0046 0.72 0.9 0.0031 8.14 10.1 0.0031
[20-160] 0.82 1.1 0.0000 0.89 1.2 0.0000 7.85 10.5 0.0016
[40-140] 2.68 3.7 0.0061 1.74 2.4 0.0032 6.97 9.6 0.0093
[40-160] 1.56 2.3 0.0031 1.97 2.9 0.0047 7.55 11.1 0.0032

Avg. 1.38 1.9 0.0034 1.33 1.9 0.0027 7.62 10.3 0.0043

R-1000

[20-140] 0.73 1.8 0.0265 0.77 1.9 0.0110 8.65 21.3 0.2511
[20-160] 0.53 1.4 0.0173 0.68 1.8 0.0094 8.61 22.6 0.0764
[40-140] 2.75 7.6 0.0407 1.48 4.1 0.0111 7.35 20.3 0.2683
[40-160] 1.22 3.6 0.0264 1.63 4.8 0.0092 7.39 21.7 0.0014

Avg. 1.30 3.6 0.0277 1.14 3.1 0.0101 8.00 21.5 0.1493
Total Avg. 1.36 1.4 0.0064 1.29 1.3 0.0027 6.33 7.5 0.0308

www.ijacsa.thesai.org 404 | P a g e

