
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

149 | P a g e

www.ijacsa.thesai.org

Skip List Data Structure Based New Searching

Algorithm and Its Applications: Priority Search

Mustafa Aksu

Department of Computer Technologies

Vocational School of Technical Sciences,

Sutcu Imam University

Kahramanmaras, Turkey

Ali Karcı

Department of Computer Engineering

Faculty of Engineering, Inonu University

Malatya, Turkey

Abstract—Our new algorithm, priority search, was created

with the help of skip list data structure and algorithms. Skip list

data structure consists of linked lists formed in layers, which

were linked in a pyramidal way. The time complexity of

searching algorithm is equal to O(lgN) in an N-element skip list

data structure. The new developed searching algorithm was

based on the hit search number for each searched data. If a

datum has greater hit search number, then it was upgraded in

the skip list data structure to the upper level. That is, the mostly

searched data were located in the upper levels of the skip list data

structure and rarely searched data were located in the lower

levels of the skip list data structure. The pyramidal structure of

data was constructed by using the hit search numbers, in another

word, frequency of each data. Thus, the time complexity of

searching was almost Ө(1) for N records data set. In this paper,

the applications of searching algorithms like linear search,

binary search, and priority search were realized, and the

obtained results were compared. The results demonstrated that

priority search algorithm was better than the binary search

algorithm.

Keywords—Algorithms; Priority search; Algorithm analysis;

Data structures; Performance analysis

I. INTRODUCTION

Various disciplines in computer sciences benefit from
algorithms and data structures directly or indirectly, and
different data structures were used as solutions to various
problems. The limitations like processing, time complexity,
required hardware or inefficiency of current algorithms
conclude in defining new algorithms such as searching, sorting,
and graph algorithms [1].

Sometimes, an algorithm was preferred on another one
because of its processing, time complexity, etc. For example,
binary search was preferred instead of sequential search to
increase searching complexity. Skip list data structures based
searching algorithm presented in this study is another option
instead of binary search. Considering these factors, it is evident
that new algorithms and data structures will continue to emerge
as needed [2].

In computer science, the linked list is a data structure
consisting of a group of nodes, which together represent a
sequence (Fig. 1). The principal benefit of a linked list over a
conventional array is that in the linked list elements can easily
be inserted or removed without reallocation or reorganization
of the entire structure, because the data items need not to be

stored contiguously in memory or on disk. Linked lists allow
insertion and removal of nodes at any point in the list, and can
do so with a constant number of operations if the link previous
to the link being added or removed was maintained during list
traversal. Linked lists by themselves do not allow random
access to the data, or any form of efficient indexing. Thus,
many basic operations may require scanning most or all of the
list elements [3], [20]. The time complexity of linked list is
linear, so, the time complexity of searching in linked list of size
N is O(N) [15], [19].

68 86 9757423421137
Head

Fig. 1. Linked list

In this study, a new searching algorithm based on the skip
list was developed and it was compared to other searching
algorithms by doing some applications. The rest of paper was
arranged as follows: Related works have been presented in
Section II. The skip list data structure must be clarified for the
sake of the understandability of developed searching algorithm.
Due to this case, Section III explains the skip list data structure.
The methodology of proposed algorithm has been explained in
Section IV and Section V demonstrates the experimental
results and significance of work. The conclusion has been
given in Section VI.

II. RELATED WORKS

Skip list data structure, which was introduced by Pugh [8],
is a data structure alternative to binary tree search structure.
Search, insertion and deletion algorithms of nodes in skip list
data structure is discussed in article written by Pugh [8]. The
time complexity of searching in the skip list data structure is
O(lgN). In addition, several studies have been conducted so far
on the improvement and analysis of skip list data structure
algorithms. In [2], how randomly creation of levels and
different ―P‖ thresholds (0.25, 0.5, 0.75) effect the performance
was studied and solutions were proposed.

An optimized search algorithm for skip lists was analyzed
in [6]. In [7], the probabilistic analysis of the search cost was
considered in a slightly different way, namely, performing the
asymptotic analysis of the total search cost or path length.

In [12], proposed exploring techniques based on the notion
of a skip list to guarantee logarithmic search, insert and delete

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

150 | P a g e

www.ijacsa.thesai.org

costs. The basic idea is to insist on that between any pair of
elements above a given height are a small number of elements
of precisely that height.

Other studies are about level optimization in skip list data
structure [1], formal verification of a lazy concurrent list-based
set [4], a simple optimistic skip list algorithm [5], average
search and update costs in skip lists [9], skip lists and
probabilistic analysis of algorithms [10], the binomial
transform and the analysis of skip lists [11], deterministic skip
lists [12], a skip lists cookbook [13], and concurrent
maintenance of skip lists [14].

Various data structures and algorithms were also created
apart from skip list data structure such as Tiara: A self-
stabilizing deterministic skip list and skip graph [22],Corona:
A Stabilizing Deterministic Message-Passing Skip List [23]
and Skip lift: A probabilistic alternative to red–black trees [24].

III. SKIP LIST DATA STRUCTURE

Linked lists were used in skip list data structure and it
aimed to facilitate searching, insertion and deletion through
placing elements in a pyramid-like order at different levels. In
this data structure, elements were placed at different levels
randomly.

First, all nodes were placed at level 0 and, starting from left
row and skipping each 2

i
th node (i=0,..,MaxLevel (15 or 31)),

pointers representing each level are created towards the top.
The list at level 0 is the linked list at the bottom in skip list data
structure and encompasses all nodes. Each list from bottom to
the top were arranged as an index of the previous list [1], [19]
(Fig. 2).

When levels in skip list data structure were created (level 0,
level 1,.., level k), it was done randomly (Pugh‘s random Level
algorithm [8]; for P=1/4). Let us say that the number of
ordered nodes in skip list data structure is N. Level 0 consists
of these entire N ordered nodes (Fig. 4- Level 0).

Level 1 is created if every other element of the list at Level
0 has also an extra link to the element four ahead of it (Fig. 4 –
Level 1). Since the maximum number of elements at Level 1

level equals to 14 N , so on, the data structure will be

constructed.

The height of skip list depends on the probability P
threshold value given in Pugh‘s ―random Level algorithm‖.
The effects of P threshold values were studied in a previous
study [2] and skip list is more efficient when P threshold value
is equal to 1/4. While if P=1/2, the height of skip list
approaches to height of balanced tree (lgN). If P=1/4, one out
of every four nodes in Level 0 copied to Level 1 (an upper
level), and this process was continued in the same way until all
data structure were constructed. This process resulted in the
height of skip list will be half of the height of the balanced tree.
These cases are seen in Fig. 2 and Fig. 4 respectively.

A group of data consisting of the elements {zinc, bee, fox,
hill, dive, lift, null, total, vary, other, see} on a skip list shown
in Fig. 2. The true skip list structure, which was constituted
from these elements, is shown in Fig.3.

Time complexity is O(N) for search, insertion and deletion
processes when linked and ordered lists are used. On the other
hand, the time complexity is O(lg N) in skip list data structure
[8], [15] when the same process were performed.

In a search algorithm, a node was searched from upper
levels to lower levels. During insertion, first, the node to be
inserted was searched. If not found, new value is inserted to the
matching location starting from a random level and pointers
and lists are updated. The process was repeated for other levels
where a node is to be inserted. Search was performed from the
top level to lower levels for removal operations. The node was
deleted when found and pointers and lists were updated. The
process was repeated on other levels where the node is
available [2].

other see total vary zincnulllifthillfoxdivebee

see varynullhilldive

seehill

see

Head

Level 0

Level 1

Level 2

Level 3

Tail

Fig. 2. Skip list (for P=1/2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

151 | P a g e

www.ijacsa.thesai.org

other see total vary zincnulllifthillfoxdivebee

Head

Level 0

Level 1

Level 2

Level 3

Tail

Fig. 3. Skip list (Real structure of skip list for Fig. 2)

other see total vary zincnulllifthillfoxdivebee

seehill

see

Head

wall

wall

Level 0

Level 1

Level 2

Tail

Fig. 4. Skip list (for P=1/4)

IV. PRIORITY SEARCH AND BINARY SEARCH

The innovative search algorithm which was called priority
search uses the skip list data structure. It was benefited from
the pyramidal layered-structure of the skip list data structure.
The standard searching algorithm (algorithm 1) in the skip list
data structure starts at top-level to the lowest level until it finds
the searching data or it ends up in the lowest level. The
developed new searching algorithm (Algorithm 2) was based
on the hit search number for each searched data. If a datum has
greater hit search number, then it was upgraded in the skip list
data structure to upper level. That is, the mostly searched data
were located in the upper levels of the skip list data structure
and rarely searched data were located in the lower levels of the
skip list data structure. The time complexity of searching in the
skip list data structure (Algorithm 1) is O(lgN), but the time
complexity of searching algorithm in priority search

(Algorithm 2) approximates to (1). In another word, the
mostly searched data were located in the top-level of the skip
list data structure, thus, the searching for these data has time

complexity as ~(1). The rarely searched data were located in
the lowest level and their searching time complexities
approximate to O(lgN). The time complexity of searching by

using priority search algorithm changes between (1)-O(lgN).

When ‗dive‘ two times, ‗null‘ four times and ‗vary‘ three
times were searched as in Table I, the results in Table II will be
obtained. The skip list data structure for data in Table II is seen
in Fig. 5, in which priority search algorithm (Algorithm 2) was
used. It was performed by using frequencies (hit search
numbers). That is, the searched data is upgraded once for each
search process. Therefore, the mostly searched data were
located at the top of skip list data structure (pyramidal
structure) and rarely searched data were located at the bottom
of skip list data structure.

 Algorithm 1 {Search in skip list }

SearchNode(slist, key)

 HEAD slist→head

 LEVEL slist→level

 if (HEAD→next[0] = NULL) or (LEVEL<0)

 return false

 for i LEVEL downto 0 do

 while(HEAD→next[i]≠NULL

 and HEAD→next[i]→value < key)

 HEAD HEAD→next[i]

 HEAD HEAD→next[0]

 if (HEAD ≠ NULL and HEAD→value = key)

 return true;

 return false;

TABLE I. FREQUENCY-WISE LEVEL DISTRIBUTION OF NODES ON FIG. 4

nodes bee dive fox hill lift null

frequency 0 0 0 1 0 0

level 0 0 0 1 0 0

nodes other see total vary zinc wall

frequency 0 2 0 0 0 1

level 0 2 0 0 0 1

The priority search algorithm was used in the skip list data
structure due to its pyramidal structure. Additionally, the
standard search algorithm (Algorithm 1) for the skip list of size
N has time complexity as O(lgN). Data were sorted in
ascending order in the skip list data structure when skip list
data structure were constructed (Fig. 5 Level0, Level1, Level2,
Level 3, and Level 4). The most important property of skip list
data structure is its pyramidal structure and ordered data in it.

The searching process started at the first element in the list
and carried on till the end of list, when data were unordered.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

152 | P a g e

www.ijacsa.thesai.org

So, the searching algorithm is a linear algorithm in term of the
number of data in the list. The time complexity of linear search
is O(N). The searching process considered the data as

unordered whether data were ordered or not. But it is not a
suitable search process for ordered data [16], [17], [21].

TABLE II. FREQUENCY-WISE LEVEL DISTRIBUTION OF NODES ON FIG. 5

nodes bee dive fox hill lift null

frequency 0 2 0 1 0 4

Level 0 2 0 1 0 4

nodes other see total vary zinc wall

frequency 0 2 0 3 0 1

Level 0 2 0 3 0 1

other see total vary zincnulllifthillfoxdivebee

seehill

see

wall

walldive

dive

null

null

null

vary

vary

vary

Head

null

Tail

Level 0

Level 1

Level 2

Level 3

Level 4

Fig. 5. Obtained Priority Search schemes for searching ‗dive‘ two times, ‗null‘ four times and ‗vary‘ three times on Fig. 4)

Algorithm 2 {Priority search}

PrioritySearch(slist, search_value)

 HEADslist→head ,

 LEVELslist→level

 update[MaxLevel +1]

 while (LEVEL>=0)

 if(HEAD->next[LEVEL]->value=search_value)

 for i LEVEL downto 0 do

 while (HEAD→next[i] ≠ NULL and

HEAD→next[i]→value <search_value)

 HEADHEAD→next[i]

 update[i] HEAD

 end for

 HEADHEAD→next[0]

 intlvl = LEVEL+1;

 if(lvl>slist->level)

 update[lvl] = slist->head

 slist->level = lvl

 end if

 HEAD->next[lvl] = update[lvl]->next[lvl]

 update[lvl]->next[lvl] = HEAD;

 return true

 end if

 if(HEAD->next[LEVEL]->value<search_value)

 HEAD= HEAD->next[LEVEL]

 if(HEAD->next[LEVEL]->value>search_value)

 LEVEL=LEVEL-1

end while

return false;

Another searching algorithm is binary search algorithm for
ordered data. In order to use this algorithm, data have to be
ordered on the list. If data were unordered, initially they must
be ordered by using any sorting algorithm.

The mechanism of binary searching algorithm is as follows
[15], [16], [18], [20]:

 If list or array is not sorted, it is firstly sorted.

 Sorted array is divided into two equal sub-arrays or
approximately equal sub-arrays.

 The searched data is compared with the middle element
of array. If it is equal then, it is found. If searched data
is less than the middle element of array, then right sub-
array is discarded and data will be searched in the left
sub-array. If searched data are greater than the middle
element of array, then searched data will be searched in
the right sub-array.

 The searched data will be scanned on the left or right
sub-array in the same manner.

 The process goes on in the same manner until searched
data is found or search is terminated.

The time complexity of binary search algorithm is O(lgN)
for an array of size N elements. Moreover, the time complexity
of binary search for balanced binary trees is also O(lgN).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

153 | P a g e

www.ijacsa.thesai.org

V. EXPERIMENTAL RESULTS: PRIORITY SEARCH AND

OTHERS

The proposed algorithm was implemented by using C++
and tested successfully on distinct arrays. In order to compare
Priority Search (PS), Linear Search (LS), and Binary Search
(BS), random arrays and sorted arrays were used. The
searching times of PS, LS and BS for sizes from 1000 to
100000 of arrays were illustrated in the Table III and Table IV.
Moreover, each algorithm was applied to same size arrays 100
times and all times for all executions was added up and then
their average was computed. This means that the effect of data
permutation will be minimized and the comparison will be
more equitable. If there is one search for algorithm, the
comparisons may be non-equitable. For example, searched data
for PS may be on the top level of skip list data structure, and

then its time will be (1). If the searched data for BS is not
found in the binary search tree, then its time will be longer.
This case may be available for each search algorithm. Due to
this case, there were 100 executions for equitable comparisons
of search algorithms.

All results were obtained on the same computer and the
results in Table III and Table IV demonstrated that when size
of array is small, BS shows normal performance; when the size
of array increases, the performance of PS increases and PS is
better than LS and BS. The results were illustrated in Fig. 6.

TABLE III. SEARCHING TIMESFOR LS, BS AND PS FOR SORTED ARRAYS

(IF THE SEARCHED DATA ARE NEAR TO THE BEGINING OF ARRAY)

(MS=MILLISECOND)

of

nodes
1000 5000 10000 30000 50000 100000

LS
0.0032

ms

0.0103

ms

0.0167

ms

0.0374

ms

0.0671

ms

0.1382

ms

BS
0.00015
ms

0.00018
ms

0.00020
ms

0.00022
ms

0.00023
ms

0.00025
ms

PS
0.00009

ms

0.00011

ms

0.00013

ms

0.00016

ms

0.00017

ms

0.00019

ms

Table III, Table IV and Fig. 6, Fig. 7 depict that PS is better
than LS and BS with respect to searching time. The time
complexities for searching PS, and BS on sorted arrays are
O(lgN). The time complexities for searching LS on sorted array
is O(N). While computing time complexity for any algorithm,
the dominant (term with the greatest degree) term is regarded
as time complexity. The asymptotic behaviors of PS and BS are
similar; however, the constant coefficients are different and this
case makes PS be the best algorithm.

It is noticeable in Table III and Table IV; PS algorithm has
better performance than LS and BS. Moreover, PS algorithm is
better than BS algorithm as seen in Fig. 7. Searched data in PS
algorithm were located to the top of Skip List, hence time

complexity will be (1) for these data.

Fig. 6. Performance comparison for LS, BS, PS (If the searched data are in

middle of array)

TABLE IV. SEARCHING TIMES FOR LS, BS AND PS FOR SORTED ARRAYS

(IF THE SEARCHED DATA ARE NEAR TO THE END OF ARRAY)

(MS=MILLISECOND)

of

nodes
1000 5000 10000 30000 50000 100000

LS
0.0047

ms

0.0171

ms

0.0327

ms

0.0858

ms

0.1471

ms

0.2876

ms

BS
0.00012
ms

0.00014
ms

0.00017
ms

0.00020
ms

0.00022
ms

0.00025
ms

PS
0.00008

ms

0.00010

ms

0.00012

ms

0.00015

ms

0.00017

ms

0.00020

ms

The results in Table III were obtained when the searched
data were located near to the beginning of array. Whereas,
Table IV shows the situation where the searched data were
located near to the end of the array. Comparing the results of
LS algorithm in both tables, it was seen that the search time
increases if the data were located at the end of array. However,
the results were the same for BS and PS algorithms no matter
where the searched data was located.

Fig. 7. Performance comparison for BS and PS (Sorted arrays)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

154 | P a g e

www.ijacsa.thesai.org

When arrays are unsorted, the performance of linear search
algorithm is better than the other algorithms, since remaining
algorithms require the sorted arrays to show better
performances.

A. Significance of work

Priority search algorithm locates the most searched data to
the top of the pyramid-shaped skip list data structure. For these

reason, enabling time complexity (1) of frequent searched
data were important.

The priority search algorithm may be used in the search
engine like Google, Yandex, etc. The greater frequency (search
hit number) the upper level for searched data; the smaller
frequency the lower level for searched data. The mostly
searched data were located in the top level of skip list data
structure, so, searching this data will take less time. The rarely
searched data were located in the lowest level of the skip list
data structure, so, its searching time will take longer. If
searching process was grouped with respect to frequencies of
data, the searching would be easier. There many data (may be
billion data, etc.) in the internet. If data were located in a large
skip list data structure for search engine, it would be more
advantageous.

This data structure is also advantageous for dictionary
operations, since the most hit data will be on the top level of
skip list data structure and its searching will take shorter time;
the least hit data will be on the lowest level of the skip list data
structure and its searching time will take longer time.

VI. CONCLUSION

Skip list data structure was created with the help of linked
list data structures. Thanks to its layered structure, skip list data
structure presented in this study reduces the time complexity of
search, insertion and deletion processes in linked list data
structure to O(lgN), which was O(N).

The applications of linear search, binary search and priority
search were realized, and obtained results were compared. The
obtained results verified that priority search was better than the
linear search and binary search considering the applications.
Priority search superior than binary searching and linear
searching due to its application results. The time complexity of

priority search algorithm was between (1)-O(lgN); the most

searched data has time complexity as (1), the least searched
data has time complexity as O(lgN).

To summary priority search algorithm could be used in
searching processes more efficiently. It enables saving
remarkable time when larger sets of data were handled.

REFERENCES

[1] M. Aksu, A. Karcı, and Ş. Yılmaz, ―Level optimization in Skip List data
structure,‖ in Proc. 1ST International Symposium on Innovative
Technologies in Engineering and Science (ISITIES2013), 2013, pp. 389-
396.

[2] M. Aksu, A. Karcı, and Ş. Yılmaz, ―Effects of P Threshold Values in
Creation of Random Level and to the Performance of Skip List Data
Structure,‖ BitlisEren University Journal of Science, Vol. 2, No. 2, 2013,
pp. 148-153.

[3] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, MIT Press, 2009.

[4] R. Colvin, L. Groves, V. Luchangco, and M. Moir, ―Formal verification
of a lazy concurrent list-based set,‖ in Proc. Computer Aided
Verification, Lecture Notes in Computer Science, Vol. 4144, 2006, pp.
475-488.

[5] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit, ―A Simple Optimistic
Skiplist Algorithm,‖ in Proc. Structural Information and Communication
Complexity, Lecture Notes in Computer Science, Vol. 4474, 2007, pp.
124-138.

[6] P. Kirschenhofer, C. Martinez, and H. Prodinger, ―Analysis of an
optimized search algorithm for skip lists,‖ Theoretical Computer
Science, Vol. 144, 1995, pp. 199-220.

[7] P. Kirschenhofer, and H. Prodinger,‖The path length of random skip
lists,‖ ActaInformatica, Vol. 31, No. 8, 1994, pp. 775-792.

[8] W. Pugh, ―Skip Lists: A Probabilistic Alternative to Balanced Trees,‖
Communications of the ACM, Vol. 33, No. 6, 1990, pp. 668-676.

[9] T. Papadakis, J. I. Munro, and P. V. Poblete, ‖Average search and update
costs in skip lists,‖ BIT, Vol. 32, 1992, pp. 316-332.

[10] T. Papadakis, ―Skip lists and probabilistic analysis of algorithms,‖ PhD
Thesis, University of Waterloo, Tech. Report CS-93-28, 1993.

[11] P. V. Poblete, J. I. Munro, and T. Papadakis,―The binomial transform
and the analysis of skip lists,‖ Theoretical Computer Science, Vol. 352,
2006, pp. 136-158.

[12] J. I. Munro, T. Papadakis, and P. V. Poblete, ―Deterministic Skip Lists,‖
in Proc. SODA '92 Proceedings of the third annual ACM-SIAM
symposium on Discrete algorithms, 1992, pp.367-375.

[13] W. Pugh, ―A Skip List Cookbook,‖ Dept. of Computer Science,
University of Maryland, College Park, Technical report, CS–TR–2286.1,
1990.

[14] W. Pugh, ―Concurrent Maintenance of Skip Lists,‖ Dept. of Computer
Science, University of Maryland, College Park, Technical report,TR–
2222.1, 1989.

[15] M. T. Goodrich, and R. Tamassia, Algorithm Design and Applications,
Wiley, America, 2014.

[16] M. J. Dinnen, G. Gimel‘farb, and M. C. Wilson, Introduction to
Algorithms, Data Structures and Formal Languages, Pearson Education,
Second edition, 2009.

[17] R. Sedgewick, and K. Wayne, Algorithms, Addison Wesley, Fourth
Edition, America, 2011.

[18] K. Mehlhorn, and P. Sanders, Algorithms and Data Structures; The Basic
Toolbox, Springer, 2007.

[19] M. McMillan, Data Structures and Algorithms Using C#, Cambridge
University Press, 2007.

[20] C. A. Shaffer, Data Structures & Algorithm Analysis in C++, Dover
Publications, 2011.

[21] D. E. Knuth, The Art of Computer Programming—Sorting and
Searching, Volume 3, Addison Wesley, Second edition, 1998.

[22] T. Clouser, M. Nesterenko, and C. Scheideler, ―Tiara: A self-stabilizing
deterministic skip list and skip graph,‖ Theoretical Computer Science,
Vol. 428, 2012, pp. 18-35

[23] R. M. Nor, M. Nesterenko, and C. Scheideler, ―Corona: A Stabilizing
Deterministic Message-Passing Skip List,‖ Theoretical Computer
Science, Vol. 512, 2013, pp. 119-129.

[24] P. Bose, K. Douïeb, and P. Morin, ―Skip lift: A probabilistic alternative
to red–black trees,‖ Journal of Discrete Algorithms, Vol. 14, 2012, pp.
13–20.

