
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

174 | P a g e

www.ijacsa.thesai.org

The Effect of Parallel Programming Languages on the

Performance and Energy Consumption of HPC

Applications

Muhammad Aqib

Department of Computer Science

FCIT, King AbdulAziz University

Jeddah, Saudi Arabia

Fadi Fouad Fouz

Department of Computer Science

FCIT, King AbdulAziz University

Jeddah, Saudi Arabia

Abstract—Big and complex applications need many resources

and long computation time to execute sequentially. In this

scenario, all application's processes are handled in sequential

fashion even if they are independent of each other. In high-

performance computing environment, multiple processors are

available to running applications in parallel. So mutually

independent blocks of codes could run in parallel. This approach

not only increases the efficiency of the system without affecting

the results but also saves a significant amount of energy. Many

parallel programming models or APIs like Open MPI, Open MP,

CUDA, etc. are available to running multiple instructions in

parallel. In this paper, the efficiency and energy consumption of

two known tasks i.e. matrix multiplication and quicksort are

analyzed using different parallel programming models and a

multiprocessor machine. The obtained results, which can be

generalized, outline the effect of choosing a programming model

on the efficiency and energy consumption when running different

codes on different machines.

Keywords—power consumption; quicksort; high- performance

computing; performance; Open MP; Open MPI; CUDA

I. INTRODUCTION

With the addition of multiple cores, the capability of chips
to process multiple instructions simultaneously has increased
the performance. High-performance computing provides boost
in performance but at some stages, it requires more resources
to increase the performance. To provide an optimal solution
which could be running efficiently and consumes fewer
resources, like energy etc. the performance of the computing
system must be analyzed.

Multiple performance analysis tools could be used to test
the performance of different software applications [1]. This
kind of performance analysis studies help to improve the
performance of the software application and to provide an
optimal solution. Tools that are utilized for the performance
analysis of HPC applications use different approaches for the
analysis purposes [2].

In earlier work, performance analysis criteria was based
upon the computation of speed, the number of threads
generated to perform a task and how the memory was utilized
to perform those tasks [3]. When considering HPC
architecture, it is supposed that there are a large number of
processors that are dedicated to performing the computation
tasks. So there is an obvious increase in the consumption of the

energy resources as well. So, in addition to the optimization
techniques to improve performance, it is also necessary to use
energy-aware techniques.

Many optimization techniques could be applied to the code
to be running in parallel. For example, loop optimization
techniques could be implemented to improve the performance
of loops in a code. The use of different programming APIs or
architectures like Open MP [4], Open MPI [5], CUDA [6] etc.
provides the programmers and application developers with the
ability to running different blocks of codes in parallel on CPUs
and GPUs. These APIs also provide a mechanism to running
the code in parallel using multiple cores in HPC environment.

In this paper Open MP, Open MPI, CUDA were used to
perform simple computation tasks i.e. matrix multiplication
and to sort using quicksort. Matrix multiplication task is
considered as one of the expensive tasks as it involves nested
loops and performs multiplication and addition of numbers. In
both cases, the code was implemented in C++ to measure the
computational time and energy consumption in sequential
manner. Then parallel programming API's have been used to
get the results while performing the same operations in parallel.
Comparing the results obtained implementing different models
used in HPC with the results in the sequential mode made it
possible to analyze the effect of parallel programming
languages on the performance and energy consumption in HPC
environment.

The rest of the paper is organized as follows. Section 2
describes the work done by other researchers to analyze the
performance of parallel programming models and techniques.
Section 3 discusses different tools/models/APIs available for
parallel programming. In Section 4, the performance analysis
model adopted in this study is presented. Section 5 contains the
results obtained using different APIs. Section 6 discusses the
results presented in section 5. Finally, conclusion and future
work is presented in Section 7.

II. RELATED WORK

Many researchers have provided energy consumption
analysis of machines having HPC capabilities. Rejitha et al.
have analyzed the effect of loop optimization techniques on the
use of energy consumed by different techniques [7]. Although
they have compared different such techniques but they did not
implement them using all available models in HPC

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

175 | P a g e

www.ijacsa.thesai.org

environment. In [8], authors have implemented MPI based
solutions using different loop optimization techniques. But,
their results are also limited to the use of MPI model.

Freeh et al. have directly measured the time and energy
with the help of power meters consumed by the AMD-64
nodes [9]. The effects of bottlenecks in the memory and
communication in these nodes have been measured. According
to them, there is a trade-off between time and energy consumed
by HPC applications. i.e. If bottleneck problem arises in any
node, it will increase the amount of energy consumed for that
application. But this could be reduced by increasing the
execution time for that application.

Feng et al. have emphasized on the need to characterize the
power characteristics of high performance applications to
control the energy consumption of future HPC applications
[10]. According to them, the operational costs to run an
application depends on the characteristics of that application.
Even if two applications are running on a system for the same
amount of time, the energy consumed by them may differ
depending upon their characteristics.

In [12, 13], different techniques to estimate energy
consumption in embedded systems have been discussed.
Although embedded systems in general are different from high
performance systems they have a common case i.e. in both
systems energy consumption is a critical issue. So the
techniques used for comparison in embedded systems may give
an idea on how to estimate the energy consumption in HPC
systems.

Enos et al. in [14] have provided a mechanism to monitor
the energy consumed by CPUs and GPUs installed in a HPC
machine. This approach is capable of calculating the power
consumption by individual CPUs and GPUs. For this purpose
they have used hardware devices and other equipment to
monitor the power consumed by the system components. In
this paper, a software mechanism has been provided to
measure the energy consumption.

A very recent work done by Rashid et al. [15] provides an
analysis of different sorting algorithms. They have
implemented these algorithms on ARM based devices. So this
work is basically related to mobile devices. But they have
identified some factors which affect the energy consumption in
those devices. According to them, algorithm implemented to
perform a task and the language used affect the energy
consumed by that application.

A model to calculate the energy complexity of different
algorithms has been proposed in [16]. Although this is not
directly related to high performance computing, it provides a

model which deals with the energy consumption and the
memory layout which is divided into two layers in this model.

III. PARALLEL PROGRAMMING MODELS AND ENERGY

CONSUMPTION ANALYSIS TOOLS

In this section, the parallel programming models and the
software tool that were used to get data related to energy
consumption analysis have been described. For parallel
execution of the code blocks used in the experiments different
programming models have been used.

Fig. 1 shows a simple code in C++ language to perform
matrix multiplication without any optimization. All the loop
instructions in this code run sequentially. Even if this code is
run as it is on a multiprocessor machine, it will take the same
time to execute.

Fig. 1. Matrix multiplication code in C++ without optimization

Different energy consumption analysis tools have been
used by researchers to measure the energy consumed during
the execution of the code. In this study, Intel Power Gadget 3.0
[11] have been used for this purpose. It is a power monitoring
tool developed by Intel. It supports second generation Intel
Core processors to monitor the power consumption in that
system. Desktop view of this gadget is show in Fig. 2.

Intel Power Gadget GUI have four different sections that
shows different readings. ―Package Pwr‖ section shows the
overall power consumption and the average power limit.
Current CPU frequency is shown as the ―Package Frq‖. If GPU
is attached with the system, its frequency is shown under the
label ―GT frq‖. The overall system temperature is shown in the
section named ―Package Temp‖. It shows both, the current
temperature and the max. temperature limit.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

176 | P a g e

www.ijacsa.thesai.org

Fig. 2. Intel Power Gadget 3.0

This gadget generates the energy consumption log that
provides the power consumption statistics. Log file includes
the elapsed timed, package power limit, processor frequency,
GT frequency, processor temperature, average and cumulative
power of the processor [11]. For the purpose of this study, the
―Processor Energy‖ have been used. This gives the total energy
consumed by the processor including the energy consumed by
processor cores, GPU, and by other devices.

To run the above code in parallel mode, different parallel
programming models have been used. The same code has been
implemented using C++ compatible APIs for each parallel
programming model. The code has been implemented using
Open MP, Open MPI and CUDA. In the following subsections,
a brief introduction to these parallel programming models is
given.

A. OpenMP

Open MP provides a set of compiler directives. It also
includes a set of runtime library routines that are implemented
using Fortran, and C/C++. These routines provide support for
the parallelism using shared memory model [4].

B. Open MPI

The Message Passing Interface has been implemented in
the form of Open MPI [5]. It fully supports the multithreading
approach and could be used to develop applications that
support concurrent access to memory. It also supports the old
versions of MPI like LAM/MPI, LA-MPI and FT-MPI. It also
provides options to check the data integrity for processes
running in parallel.

C. CUDA

Compute Unified Device Architecture (CUDA) is also a
parallel programming model and it is developed by NVIDIA. It
runs on a graphical processing unit that supports CUDA. For
parallel processing, it provides direct access to the virtual
instruction set of GPU [6].

IV. PROPOSED MODEL FOR ENERGY CONSUMPTION

ANALYSIS

In this section, the model which was used to perform the
analysis and the computing system specifications are
presented. To run the programs a multicore hyper threaded
machine has been used. The System specifications for that
machine are given in the following table.

TABLE I. SYSTEM SPECIFICATIONS

Component Name / Capacity

Operating System Microsoft Windows 7

CPU Inel® Xeon® CPU E5-2640 @ 2.50 GHz (12 CPUs)

GPU Nvidia® Tesla K-40

Ram 8 GB

Analysis tool Intel Power Gadget 3.0

A power consumption analysis model has been proposed.
This model describes the process flow and all the steps
performed during the analysis process. At the initial stage,
before starting the program execution, the energy consumption
analysis log needs to be started, and the destination folder for
this log file to be selected. After starting the log, the program
execution will start. But before starting the multiplication
function, the execution time start will be recorded then the
multiplication process will be started. After the completion of
multiplication process, the time again will be calculated, and
both starting and ending times will be written to a separate time
log file. Now program will be terminated and the energy
consumption analysis log will be stopped. After that, starting
and ending time will be available in the time log file and from
that time, the energy consumed during that period can be
found. A flow chart describing this model is shown in Fig. 3.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

177 | P a g e

www.ijacsa.thesai.org

Start analysis

process

Start energy consumption

analysis log

Check if energy

consumption analysis log is

started

Run program and it calculates

start time before starting

multiplication

After completing multiplication, calculate end

time and write both the time on a file.

Also terminate the program

Stop energy consumption

analysis log

Stop analysis

process

No

Yes

Collect results from log according to star and

end time of execution of multiplication function

Fig. 3. Proposed model for energy consumption analysis

V. RESULTS

The following section presents the results obtained by
running the matrix multiplication program for different matrix
sizes and using different programming models. Also the results
for running the quick sort algorithm for different array sizes
and different programming models are given.

For comparison purposes, different matrix sizes that range
from 500 × 500 to 5500 × 5500 have been used. Execution
time has been recorded in seconds and the energy log sampling
resolution was set to 500ms. This enables the monitoring of
energy consumption and other related statistics twice a second.
Table 2, and 3, show the results obtained by running each code
to multiply square matrixes of five different sizes for each
programming model (i.e. C++, Open MPI, Open MP, and
CUDA). In table 2, the execution time consumed during the
multiplication process is given.

TABLE II. TIME CONSUMED BY DIFFERENT PROGRAMMING MODEL TO

MULTIPLY MATRICES OF FIVE DIFFERENT SIZES

Matrix Size
Time Consumption (sec)

C++ OpenMP Open MPI CUDA

 640 × 640 3.042 2.074 1.03 4.055

1280 × 1280 29.062 18.257 17.318 29.408

2560 × 2560 284.131 164.094 181.252 225.279

3840 × 3840 1236.349 571.047 650.066 755.43

5120 × 5120 3101.816 1922.444 1617.374 1789.212

Table 3 shows the results for the energy consumption
analysis for the same set of data using the same models for
matrix multiplication. Note that, For the purpose of energy
consumption analysis, we have measured the overall energy
consumed by the system.

TABLE III. ENERGY CONSUMED BY DIFFERENT PROGRAMMING MODEL TO

MULTIPLY MATRICES OF FIVE DIFFERENT SIZES

Matrix Size
Energy Consumption (mWh)

C++ OpenMP Open MPI CUDA

 640 × 640 24.051 16.408 8.184 37.497

1280 × 1280 280.361 186.676 158.254 302.709

2560 × 2560 2709.928 1723.636 1689.389 2347.044

3840 × 3840 11677.053 6028.354 6100.8 8019.528

5120 × 5120 29988.794 20762.018 16686.165 19439.64

For quick sort, array sizes have been considered between
128,00,000 to 1,024,00,000. Here it is worth mentioning that
for the sorting comparison, array size for CUDA ranges from
12,80,000 to 102,40,000. Similar to matrix multiplication,
execution time has been recorded in seconds and energy
consumption resolution was also set to 500ms. These results
will be discussed in detail in the following section.

TABLE IV. TIME CONSUMED BY DIFFERENT PROGRAMMING MODEL TO

SORT ARRAYS OF FIVE DIFFERENT SIZES

Array Size

Time Consumption (sec)

C++ OpenMP Open MPI CUDA

× 105 × 105 × 105 × 104

128 60.312 112.142 12.012 84.087

256 229.315 431.019 41.058 608.026

512 901.225 1702.979 155.044 649.202
768 2016.177 3956.418 340.095 2133.056

1024 3564.942 6849.089 596.007 5869.163

In table 5, the results obtained by measuring the energy
consumed by different programming models to sort the arrays
of different sizes have been presented. Same like matrix
multiplication, the sampling window was set to 500ms to
collect the data for energy consumed by different programming
models using the quick sort.

TABLE V. ENERGY CONSUMED BY DIFFERENT PROGRAMMING MODEL TO

SORT ARRAYS OF FIVE DIFFERENT SIZES

Array Size

Energy Consumption (mWh)

C++ OpenMP Open MPI CUDA

× 105 × 105 × 105 × 104

128 551.37 1067.009 94.185 10258.337

256 2740.969 5517.866 1575.13 16745.233

512 11410.318 22433.522 3516.288 24443.189

768 30765.32 60925.113 7831.1 45670.962

1024 64959.75 129887.901 14293.997 103397.188

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

178 | P a g e

www.ijacsa.thesai.org

Figures 4 and 5 show the results obtained by running the
matrix multiplication code using the four programming
models. Time comparison has been given in Fig. 4, whereas the
energy consumption analysis is shown in Fig. 5.

Figure 4. Time efficiency comparison of all four types for matrix multiplication

Figure 5. Energy consumed by four models for matrix mulitplication

Figures 6 and 7 show the results obtained by running the
quick sort algorithm that is implemented using the four
programming models. Time comparison has been given in Fig.
6, whereas the energy consumption analysis is shown in Fig. 7.

Figure 6. Time efficiency comparison of all four types for quick sort

Figure 7. Time efficiency comparison of all four types for quick sort

VI. DISCUSSION

The main purpose of this work is to analyze the
performance and energy consumption analysis of different
parallel programming models using the computing system and
the model described in the previous sections. For this purpose,
matrix multiplication and quick sort algorithm have been used.
It is obvious that the parallel programming models improve the
efficiency and reduce the energy consumption only if there are
some blocks of codes that could be parallelized. For example,
in matrix multiplication, it is not possible to run all the
instructions in parallel, but as the multiplication takes place in
the form of rows * columns, so this task could be assigned to
multiple threads to run in parallel. Results shown in Fig. 4 and
Fig. 5, show that models that support parallel execution of
multiple threads produce good results when matrix size is
large. For small matrix size, the time and energy consumption
is same for all models. And even in some cases, sequential
execution is better than the parallel. But when the size
increases, the parallel execution produce good results both in
terms of time and energy. The results in section 4 show that for
large data manipulation, Open MPI performs much better than
the other parallel models. On the other hand, results shown in
Fig. 6 and Fig. 7 for quick sort show that in most of the cases,
sequential execution (C++) produces good results as compared
to parallel architectures. Although Open MPI is much more
faster than sequential and consumes less energy as compared to
sequential execution. But the other two approaches, Open MP
and CUDA takes much longer than sequential and in result
consumes more energy.

VII. CONCLUSION AND FUTURE WORK

Results obtained by running test codes using four models
C++ (sequential), Open MPI, Open MP, and CUDA have been
discussed in the previous section. The results show that for
small calculations, all the models produce the same results in
terms of time and energy consumption. Even in some cases as
in sorting, the parallel programming models need more
resources and time to perform the task. Also, the results
obtained by sequential execution are same for small matrix and
array sizes. Parallel computation increases performance when
running large and complex computations where it is possible to

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500 3000 3500

M
at

ri
x

si
ze

Time elapsed (sec)

Time Consumption Analysis

OpenMPI CUDA OpenMP C++

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

179 | P a g e

www.ijacsa.thesai.org

parallelize the code blocks. Though, every language provides
different mechanisms to increase efficiency the default
mechanism provided by those models was used. As was
mentioned earlier in this paper, the computational tasks of
matrix multiplication and sorting were performed on a certain
machine. Although the results may differ when performing a
different task and utilizing different machine the simple
technique used in this work provide a quick and simple way to
get a general idea about the performance and energy
consumption of a particular programming model on similar
machines for different tasks.

In future, this work will be extended by executing some
other codes and using different machines or running real
applications to get a better estimate of the performance and
energy consumption.

REFERENCES

[1] Benedict, Shajulin, et al. "Automatic performance analysis of large scale
simulations." Euro-Par 2009–Parallel Processing Workshops. Springer
Berlin Heidelberg, 2010.

[2] Wang, Zhiming, et al. "Energy-aware and revenue-enhancing
Combinatorial Scheduling in Virtualized of Cloud Datacenter." JCIT 7.1
(2012): 62-70.

[3] Benedict, Shajulin. "Energy-aware performance analysis methodologies
for HPC architectures—An exploratory study." Journal of Network and
Computer Applications 35.6 (2012): 1709-1719.

[4] Dagum, Leonardo, and Rameshm Enon. "OpenMP: an industry standard
API for shared-memory programming." Computational Science &
Engineering, IEEE 5.1 (1998): 46-55.

[5] Gabriel, Edgar, et al. "Open MPI: Goals, concept, and design of a next
generation MPI implementation." Recent Advances in Parallel Virtual
Machine and Message Passing Interface. Springer Berlin Heidelberg,
2004. 97-104.

[6] Kirk, David. "NVIDIA CUDA software and GPU parallel computing
architecture." ISMM. Vol. 7. 2007.

[7] Rejitha, R. S., C. Bency Bright, and Shajulin Benedict. "Energy
consumption analysis and energy optimization techniques of HPC
applications." Energy Efficient Technologies for Sustainability
(ICEETS), 2013 International Conference on. IEEE, 2013.

[8] Chowdhuri, Arghyadip, and M. Rajashekhara Babu. "Analysis of Loop
Optimization Techniques in Multi-Core Environment using MPI-C."
Analysis 2.4 (2011).

[9] Freeh, Vincent W., et al. "Analyzing the energy-time trade-off in high-
performance computing applications." Parallel and Distributed Systems,
IEEE Transactions on 18.6 (2007): 835-848.

[10] Feng, Xizhou, Rong Ge, and Kirk W. Cameron. "Power and energy
profiling of scientific applications on distributed systems." Parallel and
Distributed Processing Symposium, 2005. Proceedings. 19th IEEE
International. IEEE, 2005.

[11] https://software.intel.com/en-us/articles/intel-power-gadget-20 last
accessed on 05-12-2015.

[12] Zotos, Kostas, et al. "Energy complexity of software in embedded
systems." arXiv preprint nlin/0505007 (2005).

[13] Castillo, Juan, et al. "Energy Consumption Estimation Technique in
Embedded Processors with Stable Power Consumption based on Source-
Code Operator Energy Figures." XXII Conference on Design of Circuits
and Integrated Systems. 2007.

[14] Enos, Jeremy, et al. "Quantifying the impact of GPUs on performance
and energy efficiency in HPC clusters." Green Computing Conference,
2010 International. IEEE, 2010.

[15] Rashid, Mohammad, Luca Ardito, and Marco Torchiano. "Energy
Consumption Analysis of Algorithms Implementations." Empirical
Software Engineering and Measurement (ESEM), 2015 ACM/IEEE
International Symposium on. IEEE, 2015.

[16] Roy, Swapnoneel, Atri Rudra, and Akshat Verma. "An energy
complexity model for algorithms." Proceedings of the 4th conference on
Innovations in Theoretical Computer Science. ACM, 2013.

