
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

200 | P a g e

www.ijacsa.thesai.org

A Topic Modeling Based Solution for Confirming

Software Documentation Quality

Nouh Alhindawi
1

Faculty of Sciences and Information Technology, JADARA

UNIVERSITY

Jordan

Obaida M. Al-Hazaimeh2

Department of Information Technology,

AL-BALQA' APPLIED UNIVERSITY

Jordan

Rami Malkawi3

Faculty of Sciences and Information Technology,

JADARA UNIVERSITY

Jordan

Jamal Alsakran4

King Abdullah II School for Information Technology,

THE UNIVERSITY OF JORDAN

Jordan

Abstract—this paper presents an approach for evaluating and

confirming the quality of the external software documentation

using topic modeling. Typically, the quality of the external

documentation has to mirror precisely the organization of the

source code. Therefore, the elements of such documentation

should be strongly written, associated, and presented. In this

paper, we use Latent Dirichlet Allocation (LDA) and

HELLINGER DISTANCE to compute the similarities between

the fragments of source code and the external documentation

topics. These similarities are used in this paper to improve and

advance the existing external documentation. Furthermore, these

similarities can also be used for evaluating the new documenting

process during the evolution phase of the software. The results

show that the new approach yields state-of-the-art performance

in evaluating and confirming the existing external

documentations quality and superiority.

Keywords—Software Documentation; LDA; Clusters;

HELLINGER DISTANCE; and Information Retrieval

I. INTRODUCTION

Modern software often consists of thousands of software
development artifacts, such as external documents, design
documents, code, bug reports, and test cases. These different
kinds of documents are used by different kinds of people, such
as developers, testers and also the end customers or clients.
Therefore, writing these documents in a clear, easy, and
understandable way is considered as an attribute for ideal
software development and maintenance processes.

Typically, Software Documentation faults and oversights
can increase the errors caused by software engineers.
Moreover, it wastes developer’s time and increases
maintenance costs. For that reason, software engineers should
pay much attention to documentation process. Moreover,
Software Documentation quality is as significant as program
quality. Any missing information about how to use the system,
or how the system works, will cause the system to be degraded
[1-3].

The external documentation describes each feature of the
program, and assists the user in realizing these features,
specially the new ones. Moreover, the external documentation

can also go thus far as to supply thorough troubleshooting
support. Generally, the external documentations are helpful in
software engineering for development, maintenance, and
evolution processes. Therefore, the external documentation
should not be confusing, and they should be up to date. The
assumption here is that external superiority documentation has
to mirror precisely the organization of the source code.
However, the external documentation and, where necessary,
the system design and implementation, should be ideally
modified and structured, so that changes can be easily
documented and considered via external documentation
correspondingly.

In this paper, a new methodology is presented that can be
used to confirm the existing external documentation quality
and superiority. The new approach for document assessment
and confirmation consists of building models for source code
and models for source code external documents using LDA.
We compute the similarity between the documents distribution
of the two models using Hellinger Distance.

Thus, we improve the techniques that were developed to
deal with documentation quality assessment by integrating
topic modeling with structural similarity measures to assess
the quality of existing documentation.

In order to provide a base for our new external

documentation confirming approach, we will now give more

details about LDA modeling as well as a brief introduction to

Hellinger Distance.

II. EXTRACTING TOPICS WITH LATENT DIRICHLET

ALLOCATION

Latent Dirichlet Allocation (LDA) [4] is a popular
technique for getting probabilistic topic models from textual
corpora by means of a generative process. LDA model is
based on a fully generative model; for each document in the
entire corpus, LDA represents it as a mixture of linguistic
topics.

That is, LDA use the probability distribution over the
gained topics to represent each document. In other words,

http://en.wikipedia.org/wiki/Troubleshoot

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

201 | P a g e

www.ijacsa.thesai.org

each document is modeled using LDA as multi-membership
mixture of K-topics. Moreover, each topic is also represented
as multi-Membership mixture of the corpus terms that exist in
the vocabulary.

Using LDA, the corpus can be represented by a set of
topics, and each document in the corpus can also be described
by more than one of these topics. Moreover, each term from
the corpus can be included in more than one of these topics.
Therefore, any of corpus documents is not limited to being
associated with a single topic, but as an alternative, it is
modeled in a way that considers the possibility that document
may address multiple topics.

Given S documents containing k topics stated over u
unique words (w) the distribution of i-th topic to i over u
words can be represented by φi and the distribution of j-th
document ,document i (doc i) over k topics can be represented
by θj.

The LDA assumes the following generative process for
each document doc i in a corpus D:

- Choose N ~ Poisson distribution (ξ)
- Choose θ ~ Dirichlet distribution (α)
- For each of the N words wi:

 Choose a topic (k) tok ~ Multinomial (θ).

 Choose a word wi from P(wi|zn,β), a multinomial
probability conditioned on topic tok.

As conclusion, given a corpus of documents, LDA tries to
discover the following:

- Recognizing a set of topics.
- Relates a set of words with a topic
- Specifies an exact mixture of these topics for each

document in the corpus.

Fig. 1. LDA model. K is the number of topics; N is the number of

documents; Nd is the number of word tokens in document d

For more details regarding LDA model, we refer the
readers to Blei et al. work [4]. As mentioned before, LDA
permits a document to have a combination of topics as we see
in Figure 1. Moreover, the LDA model allows a document to
exhibit multiple topics to different degrees, thus being more
flexible than the cluster based techniques.

III. HELLINGER DISTANCE

Using HELLINGER DISTANCE with LDA modeling is
our main contribution, as it achieves promising results. Using
LDA proved its performance in locating and modeling any
software artifacts, on the other hand, HELLINGER
DISTANCE is also used in the literature as one of the standard
methods that can compute the similarities between any
dissimilar clusters probability distribution [5]. The main idea
of our approach is to use the HELLINGER DISTANCE
between document topics distributions to find the most likely
similar and relevant topics from the two corpuses (SC and
ED):

 () √

∑

(√ √)

IV. DOCUMENTATION ASSESSMENT AND CONFIRMING WITH

LDA AND HELLINGER MODELING

The proposed methodology is based on a set of parallel
and sequential steps, which are partially automated:

STEP1. Extracting source code artifacts

STEP2.Extracting documents from external
documentation.

STEP3. Building a corpus for source code artifacts

STEP4.Building a corpus for external documentation

STEP5. Extracting source code corpus topics (SC)

STEP6.Extracting external documentation corpus topics
(ED)

STEP7. Computing the HELLINGER DISTANCE
between the documents of SC and ED

STEP8. Analyzing the topics documents similarities

As shown in Figure 2, the process is done in pipeline
architecture, in other words, the output from one phase
constitutes the input for the next phase. The source code
artifacts and the external documentation are used to create the
corpuses that are used to generate the semantic space for
Information Retrieval (IR) (see steps 1, 2, 3, and 4). The
semantic topics produced from LDA for both corpuses are
automatically generated in phases 5 and 6. More details about
this step can be found in [2, 5, 6]. Once the topics of both
corpuses are generated, the HELLINGER DISTANCE
between the two corpuses documents is computed. As a final
phase, we analyze the topics documents similarities, we use
the similarities between source code topics and documents to
infer missing associations or cross-references between existing
sections of a documentation or suggest relations for the new
documentation and source code.

In the following paragraphs, we present with details the
corpuses building steps, the topics generating procedure, and
the HELLINGER DISTANCE method.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

202 | P a g e

www.ijacsa.thesai.org

Fig. 2. Steps of Documentation Assessment with LDA and HELLINGER

Modeling Approach

STEP 1: as an initial step for building source code corpus,
we prepare the collections of artifacts which make up the
corpus that LDA can process and infer. This is achieved by
extracting all the textual information associated with a given
source code; all the words used in comments or identifiers
inside the method, class or package are extracted using our
efficient corpus builder which was implemented in C++ to
extract these important elements from source code that in
XML format.

It takes less than 30 seconds to build both corpuses
(corpora for of the two systems we used in the experiments).
We use SrcML [7] tool to transform the C++ source code to
XML format.

STEP 2: The same steps mentioned above for extracting
source code artifacts are performed here to prepare the
artifacts of the external documentation which make its corpus
that LDA can infer. This is also done by extracting all the
natural language information associated with a given source
code; all the words used in include user documents (e.g.,
HTML,XML/docbook, LaTeX and Doxygen), build
management documents (automake, cmake, and makefile),
HowTo guides (e.g., FAQs), release and distribution
documents (e.g.,ChangeLogs, whatsNew, README, and
INSTALL guides), progress monitoring documents (TODO
and STATUS), and extensible mechanisms (e.g., Python,
Ruby, and Pearl bindings for an API) [2, 8, 9].

STEP 3: For both corpuses, we preprocess the words that
can be found in both corpuses, starting by running them
through a tokenizer. This allows us to split identifier names
written with camel case or underscores (i.e., CamelCase or
under_score) into their component words, giving us a better
idea of what natural language topics and words are used in
implementation.

STEP 4: In this step, we get rid of a set of reserved

keywords and some other words that are very commonly used,
such as “the” and “get”. Our approach allows the developer to
specify easily any other stop words list.

STEP 5: The next step taken is stemming the words that
make up our corpuses. Stemming includes removing the
endings from words in order to recognize any corpus word
despite what grammatical usage it appears in. We use porter
default English stemmer [6].

STEP 6: After completing the previous steps, we are now
able to generate and compute the topics with LDA. We use the
LDA implementation provided by the Gensim library.
Subsequently here, we choose the parameters to use in the
computation, and then we extract topics from the documents.
More details about this step are covered later in the following
sub-sections.

STEP 7: In order to extract relevancy between the two
corpuses linguistic topics, we use HELLINGER DISTANCE
approach in two manners; in the first one, we compute the
similarity between the topic i from ED topics and all the SC
topics, while in the other one, we compute the similarities
between all ED topics and all SC topics at the same query.
Thus, we propose the following two methods for extracting
and computing the two corpuses topics similarities: multi-
topic and single-topic.

A. Single- Topic (LDA-S)

The LDA model is built based on all of the training
documents of the source code. Given an ED test topic, we
measure the HELLINGER DISTANCE between this topic
distribution and the distributions of all SC topics. The SC
topics with the lowest mean distance are returned as the most
likely relevant SC topics to the taken ED topic. That is, the ED
topic is queried over SC topics to retrieve the most similar
topics.

B. Multi- Topic (LDA-M)

Here, the similarities between all SC and ED topics are
measured, the result of this step is a ranked list that contains
and shows any of SC and ED topics that have the maximum
similarity percentage. Once the list is retrieved, the developer
can distinguish and locate the related topics from both
corpuses.

V. EXPERIMENTS SETUP AND DATASETS

In this section, we describe the experimental setup and
datasets used in our experiments, followed by the evaluation
of our new approach.

We conducted our experiments over KDE/KOFFICE open
source system. We performed LDA topics modeling for both
of KDE/KOFFICE source code system and over its external
documentation. The evaluation of the new approach is done by
comparing how many relevant topics from both corpuses
were retrieved as relevant in the retrieved list, and the number
of traceability links that exist between the two corpuses, which
we found in our previous work [10].

Table I, shows the elements and the attributes for both of
the two corpuses we built for KDE/KOFFICE system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

203 | P a g e

www.ijacsa.thesai.org

TABLE I. ARTIFACTS OF THE KDE/KOFFICE SYSTEM

KDE/KOffice Count Documents

Source Code

Files
1057 11492

Non-Source

Code Files
89 102

Total of External Documents 11594

Vocabulary 12839 _

The goal in [10], was to uncover traceability between
source code and other artifacts using the TraceLab [11]. As
mentioned before, this includes: user documents (e.g.,
HTML,XML/docbook, LaTeX and Doxygen), build
management documents (automake, cmake, and makefile),
How To guides (e.g., FAQs), release and distribution
documents (e.g.,ChangeLogs, whatsNew, README, and
INSTALL guides), progress monitoring documents (TODO
and STATUS), and extensible mechanisms (e.g., Python,
Ruby, and Pearl bindings for an API).

We performed the required preprocessing of the input
texts. Both of the source code and the external documentation
need to be broken up into the proper granularity to define the
corpuses documents, which will be represented as vectors [2,
9, 12-14]. Therefore, we split up the source code into
documents with function granularity level. As a result, each
function has a corresponding document in the corpus of source
code; this document contains the function name, local
variable, global variable, function calls, and the internal
comment of that function.

For external documentation, the paragraph is used as the
granularity level. Table I contains the size of the system, as
well as the dimensionality used for the LDA subspace and the
determined vocabulary. For the LDA parameters, we can
change the number of topics to be generated, as well as other
LDA parameters, such as a number of iterations used and
values of alpha and beta.

Typically, LDA model takes two parameters Alpha and
Beta, where Alpha controls the division of documents into
topics and Beta controls the division of topics into words.
Larger values of Beta yields coarser topics, and larger values
of Alpha yields coarser sharing of document into topics. For
this reason the correct values of Alpha and Beta are required
to obtain fine quality topics and to link topics to the original
documents. A number of LDA implementations estimate these
values on-the-fly while other implementations rely on the user
to provide appropriate values [6, 15, 16].

We followed the recommendations in Gensim
documentation, and set the Dirichlet hyper parameters to
Alpha= min (0.1, 50/T) and Beta = 0.01, varying only the
number of topics T. We ran the Gensim sampling process for S
= 1000 iterations, and based the document representations on
the last sample.

VI. EVALUATION AND DISCUSSION

The results are evaluated using categorization accuracy,
i.e., the percentage of test documents topics that were
correctly assigned to its corresponding source code topics.
Moreover, we employ diverse accuracy series in the figures
that reflect our results for precision of presentation.

The results show that using the LDA topic modeling along
with the HELLINGER DISTANCE for confirming and linking
the external documentation to its related source code
fragments is working efficiently. As mentioned before, these
outcomes have been proved using the already uncovered
traceability links as shown in Table II.

In other words, for each of the extracted ED topics, we
measured the HELLINGER DISTANCE between each of
them and all of SC topics. We consider that a topic x from SD
topics is related to set of topics from ED if the HELLINGER
DISTANCE between them is the smaller. Thus, The SC topics
with the lowest mean distance with respect to ED topic are
returned as the most likely related topics. We called the related
two topics as a pair. Next, we compared the pairs we have
with the uncovered traceability links we found in our previous
work [10].

TABLE II. DISCOVERED LINKS AND RECALL USING COSINE VALUE

THRESHOLD

Cosine

threshold

Total Links

Recovered
Recall

0.60 184 84.2%

0.70 95 61.79%

In some cases, part of the documentation may refer to
more than one source-code document, or a source-code
document may be described by more than one external
document. This fact has been proved in the results here, 103
ED topics based on the distance measure appear to be relevant
to more than one SC topics, and this result confirms the
efficiency of the proposed approach in spotting the relevancy
between the source code fragments and between the
significant external documentation.

Fig. 3. Results of LDA-S and LDA-M

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

204 | P a g e

www.ijacsa.thesai.org

One notable result here, that 45 ED topics have poor
relevancy with respect to all of SD topics. When investigating
those topics, we found that most of them refer to authorship
information and non-functional requirement information such
as security recommendations. We argue here that labeling the
external documentations that have such kind of information
would be very efficient for developer’s progression. For our
experiments, we ran our LDA+Hellinger alternatives with 20,
40, 60 . . ., 300 and 400 topics. For LDA-M, the best accuracy
we obtain is when the number of topics equal 400 as shown in
Figure 3. However, LDA-S yielded a much higher accuracy
than LDA-M.

Table III, shows the accuracy of investigated pairs
matching compared with the recovered links. The second
column in the table represents the number of pairs that were
investigated, and the third column represents the percentage of
accepted investigated pairs with respect to uncovered links. As
we see in the table, LDA-S performs better accuracy that
LDA- M with 226 investigated pairs. However, LDA-M only
performs 0.30 as accuracy despite of the huge number of pairs
that were retrieved within the specified threshold.

TABLE III. THE ACCURACY FOR BOTH TECHNIQUES (LDA-S AND LDA-
M) WITH 0.25 AS THRESHOLD

Mechanisms
Number of Retrieved

Pairs
Accuracy

LDA- S 226 0.80

LDA- M 391 0.30

When comparing the results of the two mechanisms (LDA-
S and LDA-M), we note that LDA-S gives high precision even
when only few topics are used, as we see in Table IV, The
second column (Total links retrieved) represents the total
number of recovered links (correct + incorrect), the third
column (K value) represents number of topics that gives the
best accuracy for each mechanism.

As we see the in the table, the difference between LDA-S
and LDA-M is statistically significant. As we see, LDA- S
discovered 181 traceability links, where LDA-M discovered
117 traceability links. The Table also shows the best K
(number of topics) value where each mechanism gives the best
accuracy.

TABLE IV. THE TOTAL NUMBERS OF LINKS WHICH DISCOVERED USING

LDA-HELLINGER. K EQUALS THE NUMBER OF TOPICS THAT GIVES THE BEST

ACCURACY FOR EACH MECHANISM

Mechanisms
Total Links Recovered

via Matched Pairs
K- Value

LDA- S 181 300

LDA- M 117 420

An advantage of LDA-S over LDA-M is that LDA-S
requires much less time to classify a test document when
many SD per ED are available. However, this improvement in
runtime may come at the punishment of accuracy and
precision. The reason that LDA-M do better when more topics
are considered may be that some important source code
concepts are distributed to longer documents. That is, one
concept/feature of source code fragments can be described by
one or more external documentation. Furthermore, one source
code concept/feature can usually be implemented by different
parts of source code.

VII. RELATED WORKS

Several approaches have been developed in the past two
decades to assist developers in obtaining an overview of the
source code artifacts including the fragments of code, and the
internal and the external documentation. However, the
previous research in this area is limited. IR methods are
considered as one of the most successful approaches in this
field of research i.e., LSA and LDA [2, 8, 17].

There is a substantial amount of research which illustrates
the relevance and the importance of documentation quality in
the context of software evolution and development. Chen et al
[18] presented the documentation quality problems as a major
key problem in the domain of software engineering along with
the main principles for writing the documentation for any
software.

In [19], the author presented an automated quality
assessment approach for software documentation using a
developed document quality analysis framework and software
document quality rules and principles.

Another framework for assessing documentation adequacy
is also presented in [20], the authors mainly used a predefined
taxonomic structure to assess a project documentation which
funded by Naval Surface Warfare Systems (NSWC). Based on
their findings of the authors, there is a need for a tool and
method that can automatically evaluate any software
documentation quality especially for large systems.

LDA was utilized for the first time to locate concepts in
source code Linstead et al [21] by extracting the source code
topics using LDA. Their approach can extract the concepts
exist within the identifiers and the comments in the source
code. Baldi et al [22] proposed a theory that software concerns
are equivalent to the latent topics found by statistical topic
models. They applied their approach to identify the global set
of topics in many large systems.

In [16], LDA was utilized with the goal of enhancing and
improving the process of analyzing the process of software
evolution. Based on the results of the paper, the evolution
process of software is more comprehendible when using the
topics generated by LDA.

In [5], the authors use the HELLINGER DISTANCE
between document topic distributions to find the most likely
author of a specific document. Maskeri et al [23] considered
the usage of the topics extracted with LDA from a software
system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

205 | P a g e

www.ijacsa.thesai.org

Moreover, Classifying software systems into related
groups in automatic way using LDA has been presented by
Tian et al [24]. LDA was utilized to find traceability links
between bug reports and program code by Lukins et al [25],
their evaluation showed that LDA often drastically
outperforms LSI.

In [8], Latent Semantic Indexing (LSI) was applied and
utilized in order to find the similarities between fragments of
code, the proposed approach aided the programmers when
comprehending source code by clustering the similar and
related fragments of source code. Moreover, LSI was also
used in [13], the authors utilized and enhanced the usage of
LSI to be used as a mapping technique for the concepts which
expressed in natural language by relating them to their related
fragments of code.

Topic Modeling was employed by the authors in [26], they
used LSI to semantically cluster the artifacts which have
similar or common vocabulary. The yielded clusters or groups
are then linked based on the similarity between them along
with visualization for these clusters. Moreover, labels are
retrieved automatically for each cluster and for the linked
ones. The visualization which provided by the authors can
help greatly in program comprehension process.

A study on software documentation quality in practice was
conducted and presented in [27]. The authors presented a
survey which categorizes the current state of software
documentation quality and employed analysis approaches for
achieving software documentation quality checking process.
Based on their findings, they confirm that the most significant
quality characteristics for the documentation quality are
precision, clearness, constancy, and readability.

VIII. CONCLUSION

In this paper, an approach to evaluate and confirm the
existing external documentation quality and superiority is
presented. The new approach uses Latent Dirichlet Allocation
(LDA) along with HELLINGER DISTANCE to compute the
similarities among the source code artifacts and its external
documentation. A set of experiments was presented and the
results validated by comparing them with uncovered links
extracted in previous work over KDE/Koffice system.

The results show clearly that the new approach proved its
efficiency in classifying and confirming the quality of source
code external documentation. Moreover, based on the results,
we argue here that labeling and grouping the external
documentation would impact positively on the quality of the
documentation. Based on the results we found, the needs for
tools that can assess the software documentation quality in an
automatic way are highly demanded.

ACKNOWLEDGEMENT

The authors would like to thank faculty of sciences and
information Technology, JADARA UNIVERSITY for support
funding to carry out this research project.

REFERENCES

[1] IEEE Standard for Software User Documentation. IEEE Std 1063-2001,
2001: p. 1-24.

[2] Marcus, A. and J.I. Maletic. Recovering documentation-to-source-code
traceability links using latent semantic indexing. in Software
Engineering, 2003. Proceedings. 25th International Conference on.
2003.

[3] Marcus, A. and J.I. Maletic, Recovering documentation-to-source-code
traceability links using latent semantic indexing, in 25th International
Conference on Software Engineering2003, IEEE Computer Society:
Portland, Oregon. p. 125-135.

[4] Blei, D.M., A.Y. Ng, and M.I. Jordan, Latent dirichlet allocation. J.
Mach. Learn. Res., 2003. 3: p. 993-1022.

[5] Seroussi, Y., I. Zukerman, and F. Bohnert, Authorship attribution with
latent Dirichlet allocation, in Proceedings of the Fifteenth Conference on
Computational Natural Language Learning2011, Association for
Computational Linguistics: Portland, Oregon. p. 181-189.

[6] Savage, T., et al. TopicXP: Exploring topics in source code using Latent
Dirichlet Allocation. in IEEE International Conference on Software
Maintenance (ICSM). 2010. IEEE Computer Society.

[7] Collard, M.L., M.J. Decker, and J.I. Maletic. Lightweight
Transformation and Fact Extraction with the srcML Toolkit. in IEEE
11th International Working Conference on Source Code Analysis and
Manipulation. 2011.

[8] Maletic, J.I. and A. Marcus. Using latent semantic analysis to identify
similarities in source code to support program understanding. in 12th
IEEE International Conference on Tools with Artificial Intelligence
(ICTAI) 2000.

[9] Alhindawi, N., et al., A TraceLab-Based Solution for Identifying
Traceability Links using LSI, in 7th ACM International Workshop on
Traceability in Emerging Forms of Software Engineering (TEFSE)2013:
California, USA. p. 79-82.

[10] Alhindawi, N., et al. LSI-Based Solution for Categorizing Software
Repositories Commits for Maintenance in Working Conference on
Reverse Engineering (WCRE). To Be Submmitted. 2013.

[11] Keenan, E., et al. TraceLab: An experimental workbench for equipping
researchers to innovate, synthesize, and comparatively evaluate
traceability solutions. in 34th International Conference on Software
Engineering (ICSE) 2012.

[12] Alhindawi, N., et al. Improving Feature Location by Enhancing Source
Code with Stereotypes. in International Conference on Software
Maintenance (ICSM) Submitted. 2013.

[13] Marcus, A., et al. An Information Retrieval Approach to Concept
Location in Source Code. in 11th Working Conference on Reverse
Engineering. 2004. IEEE Computer Society.

[14] Poshyvanyk, D. and A. Marcus. Combining Formal Concept Analysis
with Information Retrieval for Concept Location in Source Code. in
15th IEEE International Conference on Program Comprehension
(ICPC). 2007.

[15] Tian, K., M. Revelle, and D. Poshyvanyk. Using Latent Dirichlet
Allocation for automatic categorization of software. in 6th IEEE
International Working Conference on Mining Software Repositories
(MSR). 2009. IEEE Computer Society.

[16] Linstead, E., C. Lopes, and P. Baldi. An Application of Latent Dirichlet
Allocation to Analyzing Software Evolution. in Seventh International
Conference on Machine Learning and Applications. 2008. IEEE
Computer Society.

[17] Binkley, D. and D. Lawrie, Information Retrieval Applications in
Software Maintenance and Evolution, in Encyclopedia of Software
Engineering, P. Laplante, Ed.2010: Taylor & Francis LLC.

[18] Chen, J.-C. and S.-J. Huang, An empirical analysis of the impact of
software development problem factors on software maintainability. J.
Syst. Softw., 2009. 82(6): p. 981-992.

[19] Dautovic, A., Automatic assessment of software documentation quality,
in Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering2011, IEEE Computer Society. p. 665-
669.

[20] Arthur, J.D. and K.T. Stevens, Document quality indicators: A
framework for assessing documentation adequacy. Journal of Software
Maintenance: Research and Practice, 1992. 4(3): p. 129-142.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

206 | P a g e

www.ijacsa.thesai.org

[21] Linstead, E., et al. Mining Eclipse Developer Contributions via Author-
Topic Models. in Mining Software Repositories, 2007. ICSE Workshops
MSR '07. Fourth International Workshop on. 2007.

[22] Baldi, P.F., et al., A theory of aspects as latent topics, in Proceedings of
the 23rd ACM SIGPLAN conference on Object-oriented programming
systems languages and applications2008, ACM: Nashville, TN, USA. p.
543-562.

[23] Maskeri, G., S. Sarkar, and K. Heafield, Mining business topics in
source code using latent dirichlet allocation, in Proceedings of the 1st
India software engineering conference2008, ACM: Hyderabad, India. p.
113-120.

[24] Kai, T., M. Revelle, and D. Poshyvanyk. Using Latent Dirichlet
Allocation for automatic categorization of software. in Mining Software

Repositories, 2009. MSR '09. 6th IEEE International Working
Conference on. 2009.

[25] Lukins, S.K., N.A. Kraft, and L.H. Etzkorn. Source Code Retrieval for
Bug Localization Using Latent Dirichlet Allocation. in Reverse
Engineering, 2008. WCRE '08. 15th Working Conference on. 2008.

[26] Rousidis, D. and C. Tjortjis. Clustering Data Retrieved from Java Source
Code to Support Software Maintenance: A Case Study. in Software
Maintenance and Reengineering, 2005. CSMR 2005. Ninth European
Conference on. 2005.

[27] Plosch, R., A. Dautovic, and M. Saft. The Value of Software
Documentation Quality. in Quality Software (QSIC), 2014 14th
International Conference on. 2014.

