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Abstract—this paper presents an approach for evaluating and 

confirming the quality of the external software documentation 

using topic modeling. Typically, the quality of the external 

documentation has to mirror precisely the organization of the 

source code. Therefore, the elements of such documentation 

should be strongly written, associated, and presented. In this 

paper, we use Latent Dirichlet Allocation (LDA) and 

HELLINGER DISTANCE to compute the similarities between 

the fragments of source code and the external documentation 

topics. These similarities are used in this paper to improve and 

advance the existing external documentation. Furthermore, these 

similarities can also be used for evaluating the new documenting 

process during the evolution phase of the software. The results 

show that the new approach yields state-of-the-art performance 

in evaluating and confirming the existing external 

documentations quality and superiority. 

Keywords—Software Documentation; LDA; Clusters; 

HELLINGER DISTANCE; and Information Retrieval 

I. INTRODUCTION 

Modern software often consists of thousands of software 
development artifacts, such as external documents, design 
documents, code, bug reports, and test cases. These different 
kinds of documents are used by different kinds of people, such 
as developers, testers and also the end customers or clients. 
Therefore, writing these documents in a clear, easy, and 
understandable way is considered as an attribute for ideal 
software development and maintenance processes. 

Typically, Software Documentation faults and oversights 
can increase the errors caused by software engineers. 
Moreover, it wastes developer’s time and increases 
maintenance costs. For that reason, software engineers should 
pay much attention to documentation process. Moreover, 
Software Documentation quality is as significant as program 
quality. Any missing information about how to use the system, 
or how the system works, will cause the system to be degraded 
[1-3]. 

The external documentation describes each feature of the 
program, and assists the user in realizing these features, 
specially the new ones. Moreover, the external documentation 

can also go thus far as to supply thorough troubleshooting 
support. Generally, the external documentations are helpful in 
software engineering for development, maintenance, and 
evolution processes. Therefore, the external documentation 
should not be confusing, and they should be up to date. The 
assumption here is that external superiority documentation has 
to mirror precisely the organization of the source code. 
However, the external documentation and, where necessary, 
the system design and implementation, should be ideally 
modified and structured, so that changes can be easily 
documented and considered via external documentation 
correspondingly. 

In this paper, a new methodology is presented that can be 
used to confirm the existing external documentation quality 
and superiority. The new approach for document assessment 
and confirmation consists of building models for source code 
and models for source code external documents using LDA. 
We compute the similarity between the documents distribution 
of the two models using Hellinger Distance. 

Thus, we improve the techniques that were developed to 
deal with documentation quality assessment by integrating 
topic modeling with structural similarity measures to assess 
the quality of existing documentation. 

In order to provide a base for our new external 

documentation confirming approach, we will now give more 

details about LDA modeling as well as a brief introduction to 

Hellinger Distance. 

II. EXTRACTING TOPICS WITH LATENT DIRICHLET 

ALLOCATION 

Latent Dirichlet Allocation (LDA) [4] is a popular 
technique for getting probabilistic topic models from textual 
corpora by means of a generative process. LDA model is 
based on a fully generative model; for each document in the 
entire corpus, LDA represents it as a mixture of linguistic 
topics. 

That is, LDA use the probability distribution over the 
gained topics to represent each document. In other words, 

http://en.wikipedia.org/wiki/Troubleshoot


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

201 | P a g e  

www.ijacsa.thesai.org 

each document is modeled using LDA as multi-membership 
mixture of K-topics. Moreover, each topic is also represented 
as multi-Membership mixture of the corpus terms that exist in 
the vocabulary. 

Using LDA, the corpus can be represented by a set of 
topics, and each document in the corpus can also be described 
by more than one of these topics. Moreover, each term from 
the corpus can be included in more than one of these topics. 
Therefore, any of corpus documents is not limited to being 
associated with a single topic, but as an alternative, it is 
modeled in a way that considers the possibility that document 
may address multiple topics. 

Given S documents containing k topics stated over u 
unique words (w) the distribution of i-th topic to i over u 
words can be represented by φi and the distribution of j-th 
document ,document i (doc i ) over k topics can be represented 
by θj. 

The LDA assumes the following generative process for 
each document doc i in a corpus D: 

- Choose N ~ Poisson distribution (ξ) 
- Choose θ ~ Dirichlet distribution (α) 
- For each of the N words wi: 

 Choose a topic (k) tok ~ Multinomial (θ). 

 Choose a word wi from P(wi|zn,β), a multinomial 
probability conditioned on topic tok. 

As conclusion, given a corpus of documents, LDA tries to 
discover the following: 

- Recognizing a set of topics. 
- Relates a set of words with a topic 
- Specifies an exact mixture of these topics for each 

document in the corpus.  

 
Fig. 1. LDA model. K is the number of topics; N is the number of 

documents; Nd is the number of word tokens in document d 

For more details regarding LDA model, we refer the 
readers to Blei et al. work [4]. As mentioned before, LDA 
permits a document to have a combination of topics as we see 
in Figure 1. Moreover, the LDA model allows a document to 
exhibit multiple topics to different degrees, thus being more 
flexible than the cluster based techniques. 

III. HELLINGER DISTANCE 

Using HELLINGER DISTANCE with LDA modeling is 
our main contribution, as it achieves promising results. Using 
LDA proved its performance in locating and modeling any 
software artifacts, on the other hand, HELLINGER 
DISTANCE is also used in the literature as one of the standard 
methods that can compute the similarities between any 
dissimilar clusters probability distribution [5]. The main idea 
of our approach is to use the HELLINGER DISTANCE 
between document topics distributions to find the most likely 
similar and relevant topics from the two corpuses (SC and 
ED): 

 (     )  √
 

 
∑  

 

   
(√     √    )  

IV. DOCUMENTATION ASSESSMENT AND CONFIRMING WITH 

LDA AND HELLINGER MODELING 

The proposed methodology is based on a set of parallel 
and sequential steps, which are partially automated: 

STEP1. Extracting source code artifacts 

STEP2.Extracting documents from external 
documentation. 

STEP3. Building a corpus for source code artifacts 

STEP4.Building a corpus for external documentation 

STEP5. Extracting source code corpus topics (SC) 

STEP6.Extracting external documentation corpus topics 
(ED) 

STEP7. Computing the HELLINGER DISTANCE 
between the documents of SC and ED 

STEP8. Analyzing the topics documents similarities 

As shown in Figure 2, the process is done in pipeline 
architecture, in other words, the output from one phase 
constitutes the input for the next phase. The source code 
artifacts and the external documentation are used to create the 
corpuses that are used to generate the semantic space for 
Information Retrieval (IR) (see steps 1, 2, 3, and 4). The 
semantic topics produced from LDA for both corpuses are 
automatically generated in phases 5 and 6. More details about 
this step can be found in [2, 5, 6]. Once the topics of both 
corpuses are generated, the HELLINGER DISTANCE 
between the two corpuses documents is computed. As a final 
phase, we analyze the topics documents similarities, we use 
the similarities between source code topics and documents to 
infer missing associations or cross-references between existing 
sections of a documentation or suggest relations for the new 
documentation and source code. 

In the following paragraphs, we present with details the 
corpuses building steps, the topics generating procedure, and 
the HELLINGER DISTANCE method. 
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Fig. 2. Steps of Documentation Assessment with LDA and HELLINGER 

Modeling Approach 

STEP 1: as an initial step for building source code corpus, 
we prepare the collections of artifacts which make up the 
corpus that LDA can process and infer. This is achieved by 
extracting all the textual information associated with a given 
source code; all  the words used in comments or identifiers 
inside the method, class or package are extracted using our  
efficient corpus builder which was implemented in C++ to 
extract these important elements from source code that in 
XML format. 

It takes less than 30 seconds to build both corpuses 
(corpora for of the two systems we used in the experiments). 
We use SrcML [7] tool to transform the C++ source code to 
XML format. 

STEP 2: The same steps mentioned above for extracting 
source code artifacts are performed here to prepare the 
artifacts of the external documentation which make its corpus 
that LDA can infer. This is also done by extracting all the 
natural language information associated with a given source 
code; all the words used in include user documents (e.g., 
HTML,XML/docbook, LaTeX and Doxygen), build 
management documents (automake, cmake, and makefile), 
HowTo guides (e.g., FAQs), release and distribution 
documents (e.g.,ChangeLogs, whatsNew, README, and 
INSTALL guides), progress monitoring documents (TODO 
and STATUS), and extensible mechanisms (e.g., Python, 
Ruby, and Pearl bindings for an API) [2, 8, 9]. 

STEP 3: For both corpuses, we preprocess the words that 
can be found in both corpuses, starting by running them 
through a tokenizer. This allows us to split identifier names 
written with camel case or underscores (i.e., CamelCase or 
under_score) into their component words, giving us a better 
idea of what natural language topics and words are used in 
implementation. 

STEP 4: In this step, we get rid of a set of reserved 

keywords and some other words that are very commonly used, 
such as “the” and “get”. Our approach allows the developer to 
specify easily any other stop words list. 

STEP 5: The next step taken is stemming the words that 
make up our corpuses. Stemming includes removing the 
endings from words in order to recognize any corpus word 
despite what grammatical usage it appears in. We use porter 
default English stemmer [6]. 

STEP 6: After completing the previous steps, we are now 
able to generate and compute the topics with LDA. We use the 
LDA implementation provided by the Gensim library. 
Subsequently here, we choose the parameters to use in the 
computation, and then we extract topics from the documents. 
More details about this step are covered later in the following 
sub-sections. 

STEP 7: In order to extract relevancy between the two 
corpuses linguistic topics, we use HELLINGER DISTANCE 
approach in two manners; in the first one, we compute the 
similarity between the topic i from ED topics and all the SC 
topics, while in the other one, we compute the similarities 
between all ED topics and all SC topics at the same query. 
Thus, we propose the following two methods for extracting 
and computing the two corpuses topics similarities: multi-
topic and single-topic. 

A. Single- Topic (LDA-S) 

The LDA model is built based on all of the training 
documents of the source code. Given an ED test topic, we 
measure the HELLINGER DISTANCE between this topic 
distribution and the distributions of all SC topics. The SC 
topics with the lowest mean distance are returned as the most 
likely relevant SC topics to the taken ED topic. That is, the ED 
topic is queried over SC topics to retrieve the most similar 
topics. 

B. Multi- Topic (LDA-M) 

Here, the similarities between all SC and ED topics are 
measured, the result of this step is a ranked list that contains 
and shows any of SC and ED topics that have the maximum 
similarity percentage. Once the list is retrieved, the developer 
can distinguish and locate the related topics from both 
corpuses. 

V. EXPERIMENTS SETUP AND DATASETS 

In this section, we describe the experimental setup and 
datasets used in our experiments, followed by the evaluation 
of our new approach. 

We conducted our experiments over KDE/KOFFICE open 
source system. We performed LDA topics modeling for both 
of KDE/KOFFICE source code system and over its external 
documentation. The evaluation of the new approach is done by 
comparing  how many relevant topics from both corpuses 
were retrieved as relevant in the retrieved list, and the number 
of traceability links that exist between the two corpuses, which 
we found in our previous work [10]. 

Table I, shows the elements and the attributes for both of 
the two corpuses we built for KDE/KOFFICE system. 
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TABLE I.  ARTIFACTS OF THE KDE/KOFFICE SYSTEM 

KDE/KOffice Count Documents 

Source Code 

Files 
1057 11492 

Non-Source 

Code Files 
89 102 

Total of External Documents 11594 

Vocabulary 12839 _ 

   

The goal in [10], was to uncover traceability between 
source code and other artifacts using the TraceLab [11]. As 
mentioned before, this includes:  user documents (e.g., 
HTML,XML/docbook, LaTeX and Doxygen), build 
management documents (automake, cmake, and makefile), 
How To guides (e.g., FAQs), release and distribution 
documents (e.g.,ChangeLogs, whatsNew, README, and 
INSTALL guides), progress monitoring documents (TODO 
and STATUS), and extensible mechanisms (e.g., Python, 
Ruby, and Pearl bindings for an API). 

We performed the required preprocessing of the input 
texts. Both of the source code and the external documentation 
need to be broken up into the proper granularity to define the 
corpuses documents, which will be represented as vectors [2, 
9, 12-14]. Therefore, we split up the source code into 
documents with function granularity level. As a result, each 
function has a corresponding document in the corpus of source 
code; this document contains the function name, local 
variable, global variable, function calls, and the internal 
comment of that function. 

For external documentation, the paragraph is used as the 
granularity level. Table I contains the size of the system, as 
well as the dimensionality used for the LDA subspace and the 
determined vocabulary. For the LDA parameters, we can 
change the number of topics to be generated, as well as other 
LDA parameters, such as a number of iterations used and 
values of alpha and beta. 

Typically, LDA model takes two parameters Alpha and 
Beta, where Alpha controls the division of documents into 
topics and Beta controls the division of topics into words. 
Larger values of Beta yields coarser topics, and larger values 
of Alpha yields coarser sharing of document into topics. For 
this reason the correct values of Alpha and Beta are required 
to obtain fine quality topics and to link topics to the original 
documents. A number of LDA implementations estimate these 
values on-the-fly while other implementations rely on the user 
to provide appropriate values [6, 15, 16]. 

We followed the recommendations in Gensim 
documentation, and set the Dirichlet hyper parameters to 
Alpha= min (0.1, 50/T) and Beta = 0.01, varying only the 
number of topics T. We ran the Gensim sampling process for S 
= 1000 iterations, and based the document representations on 
the last sample. 

VI. EVALUATION AND DISCUSSION 

The results are evaluated using categorization accuracy, 
i.e., the percentage of test documents topics that were 
correctly assigned to its corresponding source code topics. 
Moreover, we employ diverse accuracy series in the figures 
that reflect our results for precision of presentation. 

The results show that using the LDA topic modeling along 
with the HELLINGER DISTANCE for confirming and linking 
the external documentation to its related source code 
fragments is working efficiently. As mentioned before, these 
outcomes have been proved using the already uncovered 
traceability links as shown in Table II. 

In other words, for each of the extracted ED topics, we 
measured the HELLINGER DISTANCE between each of 
them and all of SC topics. We consider that a topic x from SD 
topics is related to set of topics from ED if the HELLINGER 
DISTANCE between them is the smaller. Thus, The SC topics 
with the lowest mean distance with respect to ED topic are 
returned as the most likely related topics. We called the related 
two topics as a pair. Next, we compared the pairs we have 
with the uncovered traceability links we found in our previous 
work [10]. 

TABLE II.  DISCOVERED LINKS AND RECALL USING COSINE VALUE 

THRESHOLD 

Cosine 

threshold 

Total Links 

Recovered 
Recall 

0.60 184 84.2% 

0.70 95 61.79% 

   

In some cases, part of the documentation may refer to 
more than one source-code document, or a source-code 
document may be described by more than one external 
document. This fact has been proved in the results here, 103 
ED topics based on the distance measure appear to be relevant 
to more than one SC topics, and this result confirms the 
efficiency of the proposed approach in spotting the relevancy 
between the source code fragments and between the 
significant external documentation. 

 
Fig. 3. Results of LDA-S and LDA-M 
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One notable result here, that 45 ED topics have poor 
relevancy with respect to all of SD topics. When investigating 
those topics, we found that most of them refer to authorship 
information and non-functional requirement information such 
as security recommendations. We argue here that labeling the 
external documentations that have such kind of information 
would be very efficient for developer’s progression. For our 
experiments, we ran our LDA+Hellinger alternatives with 20, 
40, 60 . . ., 300 and 400 topics. For LDA-M, the best accuracy 
we obtain is when the number of topics equal 400 as shown in 
Figure 3. However, LDA-S yielded a much higher accuracy 
than LDA-M. 

Table III, shows the accuracy of investigated pairs 
matching compared with the recovered links. The second 
column in the table represents the number of pairs that were 
investigated, and the third column represents the percentage of 
accepted investigated pairs with respect to uncovered links. As 
we see in the table, LDA-S performs better accuracy that 
LDA- M with 226 investigated pairs. However, LDA-M only 
performs 0.30 as accuracy despite of the huge number of pairs 
that were retrieved within the specified threshold. 

TABLE III.  THE ACCURACY FOR BOTH TECHNIQUES (LDA-S AND LDA-
M) WITH 0.25 AS THRESHOLD 

Mechanisms 
Number of Retrieved 

Pairs 
Accuracy 

LDA- S 226 0.80 

LDA- M 391 0.30 

   

When comparing the results of the two mechanisms (LDA-
S and LDA-M), we note that LDA-S gives high precision even 
when only few topics are used, as we see in Table IV, The 
second column (Total links retrieved) represents the total 
number of recovered links (correct + incorrect), the third 
column (K value) represents number of topics that gives the 
best accuracy for each mechanism. 

As we see the in the table, the difference between LDA-S 
and LDA-M is statistically significant. As we see, LDA- S 
discovered 181 traceability links, where LDA-M discovered 
117 traceability links. The Table also shows the best K 
(number of topics) value where each mechanism gives the best 
accuracy. 

TABLE IV.  THE TOTAL NUMBERS OF LINKS WHICH DISCOVERED USING 

LDA-HELLINGER. K EQUALS THE NUMBER OF TOPICS THAT GIVES THE BEST 

ACCURACY FOR EACH MECHANISM 

Mechanisms 
Total Links Recovered 

via Matched Pairs 
K- Value 

LDA- S 181 300 

LDA- M 117 420 

   

An advantage of LDA-S over LDA-M is that LDA-S 
requires much less time to classify a test document when 
many SD per ED are available. However, this improvement in 
runtime may come at the punishment of accuracy and 
precision. The reason that LDA-M do better when more topics 
are considered may be that some important source code 
concepts are distributed to longer documents. That is, one 
concept/feature of source code fragments can be described by 
one or more external documentation. Furthermore, one source 
code concept/feature can usually be implemented by different 
parts of source code. 

VII. RELATED WORKS 

Several approaches have been developed in the past two 
decades to assist developers in obtaining an overview of the 
source code artifacts including the fragments of code, and the 
internal and the external documentation. However, the 
previous research in this area is limited. IR methods are 
considered as one of the most successful approaches in this 
field of research i.e., LSA and LDA [2, 8, 17]. 

There is a substantial amount of research which illustrates 
the relevance and the importance of documentation quality in 
the context of software evolution and development. Chen et al 
[18] presented the documentation quality problems as a major 
key problem in the domain of software engineering along with 
the main principles for writing the documentation for any 
software. 

In [19], the author presented an automated quality 
assessment approach for software documentation using a 
developed document quality analysis framework and software 
document quality rules and principles. 

Another framework for assessing documentation adequacy 
is also presented in [20], the authors mainly used a predefined 
taxonomic structure to assess a project documentation which 
funded by Naval Surface Warfare Systems (NSWC). Based on 
their findings of the authors, there is a need for a tool and 
method that can automatically evaluate any software 
documentation quality especially for large systems. 

LDA was utilized for the first time to locate concepts in 
source code Linstead et al [21] by extracting the source code 
topics using LDA.  Their approach can extract the concepts 
exist within the identifiers and the comments in the source 
code. Baldi et al [22] proposed a theory that software concerns 
are equivalent to the latent topics found by statistical topic 
models. They applied their approach to identify the global set 
of topics in many large systems. 

In [16], LDA was utilized with the goal of enhancing and 
improving the process of analyzing the process of software 
evolution. Based on the results of the paper, the evolution 
process of software is more comprehendible when using the 
topics generated by LDA. 

In [5], the authors use the HELLINGER DISTANCE 
between document topic distributions to find the most likely 
author of a specific document. Maskeri et al [23] considered 
the usage of the topics extracted with LDA from a software 
system.  
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Moreover, Classifying software systems into related 
groups in automatic way using LDA has been presented by 
Tian et al [24]. LDA was utilized to find traceability links 
between bug reports and program code by Lukins et al [25], 
their evaluation showed that LDA often drastically 
outperforms LSI. 

In [8], Latent Semantic Indexing (LSI) was applied and 
utilized in order to find the similarities between fragments of 
code, the proposed approach aided the programmers when 
comprehending source code by clustering the similar and 
related fragments of source code. Moreover, LSI was also 
used in [13], the authors utilized and enhanced the usage of 
LSI to be used as a mapping technique for the concepts which 
expressed in natural language by relating them to their related 
fragments of code. 

Topic Modeling was employed by the authors in [26], they 
used LSI to semantically cluster the artifacts which have 
similar or common vocabulary. The yielded clusters or groups 
are then linked based on the similarity between them along 
with visualization for these clusters. Moreover, labels are 
retrieved automatically for each cluster and for the linked 
ones. The visualization which provided by the authors can 
help greatly in program comprehension process. 

A study on software documentation quality in practice was 
conducted and presented in [27]. The authors presented a 
survey which categorizes the current state of software 
documentation quality and employed analysis approaches for 
achieving software documentation quality checking process. 
Based on their findings, they confirm that the most significant 
quality characteristics for the documentation quality are 
precision, clearness, constancy, and readability. 

VIII. CONCLUSION 

In this paper, an approach to evaluate and confirm the 
existing external documentation quality and superiority is 
presented. The new approach uses Latent Dirichlet Allocation 
(LDA) along with HELLINGER DISTANCE to compute the 
similarities among the source code artifacts and its external 
documentation. A set of experiments was presented and the 
results validated by comparing them with uncovered links 
extracted in previous work over KDE/Koffice system. 

The results show clearly that the new approach proved its 
efficiency in classifying and confirming the quality of source 
code external documentation. Moreover, based on the results, 
we argue here that labeling and grouping the external 
documentation would impact positively on the quality of the 
documentation. Based on the results we found, the needs for 
tools that can assess the software documentation quality in an 
automatic way are highly demanded. 
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