
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

279 | P a g e

www.ijacsa.thesai.org

The Discovery of the Implemented Software

Engineering Process Using Process Mining

Techniques

Zayed, Mostafa Adel

Information Systems Department,

Faculty of Computers and Information,

Helwan University, Egypt

Ahmed Bahaa Farid

Information Systems Department,

Faculty of Computers and Information,

Helwan University, Egypt

Abstract—Process model guidance is an important feature by

which the software process is orchestrated. Without complying

with this guidance, the production lifecycle deviates from

producing a reliable software with high-quality standards.

Usually, teams break the process deliberately or impulsively.

Application Lifecycle Management (ALM) tools log what teams

do even if they break the process. The log file could be a key to

discover the behavior of the undertaken process against the

targeted process model. Since the date of its introduction, Process

Mining techniques have been used in business process domains

with no focus on the software engineering processes. This

research brings the Process Mining techniques to the software

engineering domain. The research shows a conclusive effort that

used a Scrum adapted process model as an example of Agile

adoption. This research has applied Process Mining discovery

techniques to capture the actually implemented process by the

Scrum team. This application clarifies the gap between the

standard process guidance and the actually implemented one.

The research’s results showed that Process Mining techniques

have the ability to discover and verify the deviation on both

levels; the process itself as well as the work items state-machine

workflows.

Keywords—Process Mining; Process Models Discovery;

Software Engineering; Agile; and Scrum

I. INTRODUCTION

Software engineering process has become an integral part
of any software production lifecycle definition. Without a
model that governs the state-machine of the process phases,
software engineering process will not be clearly defined.
Software factories choose one of the available process models
according to a set of aspects e.g. product team preparation,
customer type, project development period, etc.
Correspondingly, contemporary ALM tools have been
developed to provide sort of automation, collaboration, and
process model guidance.

In late 1970s, computer scientists focused on efficient data
retrieval and storing. Nevertheless, this was inadequate,
because any business is not only composed of data but also a
process. A good start was in the nineties, where processes'
representation, monitoring, and visualization drew computer
scientists’ attention as an essential block for extending the
capabilities of information systems to enforce business
processes. This type of information systems is denoted by

Business Process Management (BPM) systems [1]. Business

process management systems examples are Staffware,

MQSeries, Microsoft Work Flow, COSA, and FLOWer [2, 3,
4, 5]. Despite BPM systems do straighten many deviations,
deviations do occur. Therefore, a methodological solution is
needed to identify these deviations after they happened and
logged, then analyze these deviations. Since information
system records all that happened, an event log can be prepared
–if it was not originally prepared, and use it to identify the
actual process that the event log depicts [6]. This identification
phase is denoted by Discovery. In addition, discovery can lead
to process analysis. To check what rules are applied and what
is neglected or overwritten that is denoted by Conformance
Checking [7]. In order to check process conformance and
analyze it, a discovery phase has to be applied to the recorded
event log. Using both discovery and conformance checking
the current process can be enhanced, considering the
deviations are exceptions or unknown cases that are not
handled by the process model. The result of enhancement is
repairing or extending the current applied process model [8].
Discovery, Conformance Checking, and Enhancement are the
Process Mining types. Fig. 1 depicts the need and positions the
Process Mining from organizational process models'
interaction with current systems, and rectification of the
current process models.

II. LITERATURE ON PROCESS MINING

A. Review of Process Mining algorithms and techniques

In [9, 10] α-algorithm and α
+
-algorithm discuss the most

common discovery algorithm with test datasets for testing the
capabilities of the algorithm at the edge. Then, in [11] a
HeuristicsMiner algorithm is introduced to discover the
process and identify the noise in the process. The used dataset
was hospital information system of patients. Then, in [12, 13]
a Fuzzy Mining algorithm was built upon the HeuristicsMiner
algorithm introduced in [11]. This algorithm is built to
discover the unstructured logged processes. The datasets used
were machinery test and usage logs, development process
logs, hospital patient treatment logs, and logs of case handling
systems and web servers. Then, a more mature framework was
introduced in [14], which introduced a sound and complete
solution for discovering structured processes that has
compliance with the four quality dimensions introduced in
[15].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

280 | P a g e

www.ijacsa.thesai.org

Fig. 1. Process Mining occurrence in organizational process models

In [14] the framework was applied on CoSeLoG project
that used municipalities' data in Netherlands. These quality
dimensions were studied to show how crucial are they and
how important to implement them in [16].The evaluation
criteria depends on the four quality dimensions. These quality
dimensions are 1: Fitness, 2: Precision, 3: Generalization, and
4: Simplicity. Fitness is represented by this question, is the
observed behavior captured by the model? I.e. How many
cases can be replayed from the event log over the extracted
model? Precision is represented by this question: How precise
the process model describes the observed behavior? The less
behavior the process model allows that is not observed in the
event log, the more precise the process model describes the
behavior. Generalization is represented by this question: Does
the model allow for more behavior than encountered in
reality? Simplicity is represented by this question: How
simple, or human-readable, is a process model? [17] A
comparison shows the differences between discovery
algorithms is shown in TABLE 1 [14]. The tilde (~) sign in
the table represents algorithm finish with remaining work. A
sound (correct) process models can be produced with ETMd
algorithm as shown in the last row in TABLE I. . ETMd
algorithm is a part of ETM (Evolutionary Tree Miner)
framework, which is built using an evolutionary algorithm,
genetic programming specifically. The best part of
evolutionary algorithms is that it finds a solution as long as
you have the time to wait for its solution, unless you defined
an early exit criterion. In general, Process Mining has a set of
characteristics, guiding principles and challenges [18]. ETM
framework has covered seven challenges out of eleven
challenges mentioned in the manifesto. A full list of
challenges that ETM framework has overcome can be read
from here [14]. An important challenge is “Improving the
Representational Bias Used for Process Discovery”, as
mentioned by the process mining manifesto, or “Separation of
Visualization and Representational Bias”, as mentioned by
[14]. ETM framework uses Process Trees to overcome this

challenge. In order to have a deeper sense of this challenge, it
should be considered that process models have standard
notations like Petri nets, business process management
notation (BPMN) [19], and event-driven process chain (EPC)
[20]. The discovery algorithms do not mostly use these
standards –as mostly each uses its own notation, which makes
it hard to business users to read and use such algorithms,
which make their own notation. Examples of such algorithms
are fuzzy models [13, 12], casual nets [21], and heuristics nets
[11, 22]. The crucial point of ETM framework considering the
representation challenge is the usage of process tree as it is
mentioned before. Process trees notation by itself is not
considered a common notation to business people, but process
tree notation can be easily converted to a plethora of other
common processes modeling notations like Petri nets, EPC,
YAWL, casual net, heuristic net, fuzzy model and process
algebra. This paper is going to use ETMd as the research's
discovery algorithm; in addition, this paper will show the
discovered process model using the α-algorithm. This research
is going to use software engineering data, based on Scrum
process specifically. In fact, up to the moment, software
engineering domain is considered a virgin domain for
applying Process Mining techniques. The research's results
will be visualized using three different forms: process tress,

 Petri nets, and BPMN as the OMG standard notation.

The rest of this section discusses the research motivation in

subsection C. The process tree notation is showed in

subsection D. In addition, the dataset collection and

preparation that the research was based on is discussed in

section II. Moreover, in section II, this literature has a

subsection discussing the Scrum process definition template.

Discovery of the both process levels is discussed in section III.

The results are compared to the process definition template in

section IV. Finally yet importantly, a quick summary is

showed in section V.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

281 | P a g e

www.ijacsa.thesai.org

TABLE I. PROCESS DISCOVERY ALGORITHMS COMPARISON FROM [14]

B. Process Tree Notation

Process trees have six different operators: sequence (→),
the reversed sequence (←), exclusive-choice (×), parallelism
(∧), non-exclusive choice (∨) and the loop () [11]. Sequence
operator (→) forces the mentioned sequence of child nodes
from left to right and vice versa considering the reversed
sequence operator (←). Exclusive-choice operator (×) of child
nodes a, b, and c results in one of the following combinational
sequence <a>, , or <c>.

Parallelism operator (∧) of child nodes a, b, and c results in
the set of {a, b, c} in all possible orders, i.e. the result can be
one of the following combinational sequences <a, b, c>, <a, c,
b>, <b, a, c>, <b, c, a>, <c, a, b>, or <c, b, a>. Nonexclusive
choice operator (∨) of child nodes a, and b results in one of the
following combinational sequences <a>, , <a, b>, or <b,
a>. On one hand, any of the previous operators could have any
number of nodes starting from two nodes – of course; one
child node has no meaning since it should be cloned to its
parent. On the other hand the loop operator () has, at least,
three child nodes. Loop operator () of –specifically ordered,
child nodes a, b, and c results in one the following
combinational sequences <a, c>, <a, b, c>, <a, b, a, c>, <a, b,
b, b..., c>.

III. RESEARCH MOTIVATION

No previous research effort tried to use the aforementioned
Process Mining techniques and algorithms in order to be used
in the software engineering domain. According to Forrester's
State of Agile 2015 report, 40% of the developed software is
doing wrong things due to deviations from applying the
lifecycle process [23]. In 59% of cases, the major impediment
that prevents a correct Agile process adoption is the lack of
skilled people [23]. If there were an intelligent way to
discover these deviations in the applied lifecycle process, this
would give the software factories the opportunity to bring
their development back to the track. Thus, decreasing the
possibility of producing the incorrect thing. This research
utilizes Process Mining techniques to discover the deviation of
the actually implemented software engineering process. Since,
86% of the Agile, teams are using Scrum [23]; this research
was applied on a project log file of a team that is supposed to
be working using the Microsoft Scrum process template
definition.

Fig. 2. Scrum Process Work Items Workflow in Petri Net

IV. RESEARCHED DATASET ACQUISITION

 Scrum process categorizes all work in the project life
cycle into six categories applied by the Microsoft Visual
Studio Scrum 3.0. These six categories are feature, product
backlog item (PBI), task, test case, bug, and impediment. Each
one of them is called work item (WI) and has its own
workflow states’ model. Altogether, they formulates the
software engineering Scrum process. According to the held
data, this study is going to concentrate on subset of these WIs,
which are feature, product backlog item, bug, and task. The
Scrum process as defined by Microsoft is shown in Figure 2.
The workflow model of each one of them is depicted in Fig. 3
[24]. The CASE tool used to capture the team’s data and apply
the desired process is Microsoft Team Foundation Server
(TFS) 2013.

Algorithm

E
r
ro

r
-F

r
ee

?

R
e
p

la
y

 F
itn

e
ss

P
r
ec

isio
n

G
en

e
ra

liza
tio

n

S
im

p
licity

α-algorithm Yes ~ Yes No No

Genetic miner ~ ~ ~ No No

Heuristics miner ~ No Yes No No

ILP miner ~ Yes No Yes No

Inductive miner Yes Yes No Yes Yes

Language-based region theory Yes No No No No

Multi-phase miner ~ Yes No No No

State-based region theory Yes Yes No No No

ETMd Yes Yes Yes Yes Yes

Product

Backlog Item

Feature

Task

Bug

Test Case

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

282 | P a g e

www.ijacsa.thesai.org

TFS data resides in Microsoft SQL Server. In order to
discover the generated the event log, this study used ProM
tool for generating the event logs, and discovering process off
the data [25]. This research used SQL queries to extract the
required process attributes and data, and then it used XESame
to generate event logs in order to able to discover the process
using discovery algorithms implemented in ProM. XESame is
an integrated software in ProM responsible for extracting
event it uses JDBC. XESame generates the event logs in
defined formats with extensions (.XES), and the event log
should be composed of events, cases, traces, and attributes.

For example, if you have two product backlog items, so,
each one of them is called a case. Each case is composed of a
set of chronologically ordered events using timestamp, called
a trace. Each PBI has a team member changes its state. Both
timestamp and the team member are called attributes. From
TABLE II. and TABLE III. you can see how the event logs
are composed. For the extraction phase, in order to discover
the workflow of each work item this research defined the work
item type and work item ID as the case, and this research
defined work item state as the event transition life cycle. Data
is filtered for the WIs workflow that is a single process too,
which composes of 1482 cases, 12 event types, and event's
frequency of 8609. In addition, to discover the life cycle of the
scrum process, iteration ID is selected as the case, and work
item types is selected as the event transition life cycle. Data is
filtered for the lifecycle of the scrum process that is a single
process, which composes of 500 cases, 5 event types, and
event's frequency of 2496. After this step, it is capable of
extracting the two XES files to discover each of their process
models.

A. Scrum Process WI's Petri Net Discussion

In Figure 2 depictes the work item's (WI) process. The
black transitions called siltent transitions. This literature used

this transitions to be able to depict PBI WI, Bug WI, and Test
Case WI can come as the first transition. In addition, PBI WI
can come after Feature WI. Test Case WI can be the child of
the PBI WI as well as the Task WI. Task WI's parent can be
also a Bug WI. Bug WI's parent can be Test Case WI. Any
case happens other than the mentioned cases is a clear
devision from the definition template. An example of the
deviation is a Task WI is a child of Feature WI.

V. DISCOVERY OF THE ACTUALLY APPLIED PROCESS

MODEL

The most common and well-known discovery algorithm is
α-algorithm [9]. Using 'Mine for a Petri Net using Alpha-
algorithm' plug-in from ProM, which implements the α-
algorithm and applying it over the extracted XES file that
contains the data of different work items workflows, and
visualize the discovered in petri net. Fig. 4 depicts the
discovered workflow of different work items. Fig. 4
consolidates all work items workflows in single petri net.

Another way to discover this event log is using 'Mine a
Pareto Front with ETMd' plug-in from ProM. Pareto Front is
multi-objective optimization technique that offers a set of the
best-optimized solutions. The trade-off between objectives in
this study is the four quality dimensions. The plug-in offers a
set of process models of Pareto fitness equals to 0.991326,
which means that most of the offered solutions are feasible.
Pareto fitness is the average fitness of the whole Pareto Front.

For the research's experiment, it has only two models of
fitness equals to one. In this paper, only one model is
presented –out of 193 models, of replay-fitness equals to one.
This plug-in has the power of visualizing its discovered
process model as BPMN as default as depicted in Fig. 5. In
addition, the plug-in provides the process tree string, and the
string is depicted in Fig. 6.

TABLE II. DETAILED EVENT LOG

TABLE III. TWO-WAYS SUMMARIZED EVENT LOG

Case Trace of Events

PBI (1) N, A, C

PBI (2) N, A, N

Trace Occurrence Count

N, A, C 1

N, A, N 1

WI Type State Timestamp Changed By

PBI (1) New (N) Day (1) Team Member A

PBI (1) Approved (A) Day (2) Team Member A

PBI (2) New (N) Day (2) Team Member A

PBI (2) Approved (A) Day (3) Team Member B

PBI (1) Committed (C) Day (3) Team Member B

PBI (2) New (C) Day (4) Team Member A

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

283 | P a g e

www.ijacsa.thesai.org

Fig. 3. Scrum Work Items Workflow [24]

Fig. 4. Discovered Petri Net for Scrum WIs workflows

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

284 | P a g e

www.ijacsa.thesai.org

Fig. 5. Discovered Pareto Front as BPMN for Scrum WIs workflows

VI. RESULTS DISCUSSION

The discovered Pareto Front model's quality dimensions
values are 1: Fitness = 1.0, 2: Precision = 0.771, 3:
Generalization = 0.579, and 4: Simplicity = 0.906. These
quality dimensions’ values reflect the logged events are all
applicable by the discovered model that is a positive aspect,
the discovered process model describes the log well but it can
allow much more behavior than recorded that is a down side,
and the discovered process model is readable. Comparing the
discovered model with Fig. 3 a huge gap away of the standard
process model definition is still noticed. This can be deduced,
because the scrum team is not adhering to the process
definition as it is obviously discovered from the two
algorithms. On one hand, the discovered PBI WI, Task WI,
and Feature WI states are highly correlate to the process
definition in Figure 3. On the other hand, it is found that the
discovered Case WI and Bug WI states are not correlating
with Figure 3 at all.

After discovering a detailed view of the WIs workflows, it
is needed to know if conformance to the Scrum process as
whole occurs. This study used α-algorithm [9] by applying
'Mine for a Petri Net using Alpha-algorithm' plug-in from

ProM. The output result is visualized in the petri net of Fig. 7.
Obviously, the discovered model is away from conformance
to the Scrum process model depicted in Fig. 2. This
nonconformance may be mainly due to the same reason
mentioned for the WIs workflow that is the team overlooks the
defined process is still applicable for noncomplying the Scrum
process. The overlook here can reflect the team's lack of
knowledge by the purpose of work item types and the
workflow that organizes them. Deviations can be categorized
into two categories. The first is fatal deviation, the second one
is some events may still in progress so you can see it in the
discovered model as deviated, this can be called slight
deviations. Considering the fatal deviations, results showed in
the discovered model that the PBI WI's parent is Bug WI as
depicted in Figure 6 while in the template definition in Figure
2 PBI's parent is the Feature WI. In addition, Bug WI's child is
Task WI according to the template definition not PBI as
discovered. Considering the slight deviations, Feature WI has
no child PBI WI. Bug WI has no child Task WI. Test Case WI
has no PBI WI parent. There is no Bug WI generated from a
Test Case WI, this point could not be considered a deviation
as bugs could not be generated from the defined test cases but
from just exploratory testing [26].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

285 | P a g e

www.ijacsa.thesai.org

Fig. 6. Discovered Pareto Front as Process Tree for Scrum WIs workflows

VII. FUTURE WORK

We target applying conformance checking algorithms to
acquire detailed knowledge about the deviations positions
concerning software engineering domain. In addition, we are
planning to apply enhancements algorithms to provide some
recommendation in order to advise the team to conform to the
process definition.

Fig. 7. Discovered Petri-Net for Scrum Process workflow

VIII. CONCLUSION

Research proved that Process Mining could unveil the
deviation from the standard process and define the currently
applied of the mostly applied Agile technique that is Scrum
[23]. Software Engineering is considered an industry [27, 28,
29]. Investment in this industry is enormous and a process
follow-up is needed in order to overcome any costly
deviations. The study showed a significant gap between the
actually applied process model and the standard process
definition, which is obviously helpful. To discover the actual
process model the research used ETMd Pareto Front algorithm
[14] and α-algorithm [9]. In addition, this research used Petri
nets, BPMN, and process trees to visualize the discovered
models, which proves the overcome of the representational
bias by separating representation and visualization.

ACKNOWLEDGMENT

Authors of this paper would like to thank the team
members contributed ProM (www.ProcessMining.org)
development, and (TU/e) for its support for such great tool.
We also would like to thank the contributors who are
implementing the extension plug-ins to broaden the utilization
of Process Mining in their life.

This work has been done as part of the research and
development efforts of CompuPharaohs software engineering
team.

REFERENCES

[1] W. M. P. v. d. Aalst, A. H. M. t. Hofstede and M. Weske, "Business
Process Management: A Survey," in International Conference on
Business Process Management, Berlin, 2003.

[2] W. v. d. Aalst and K. v. Hee., Workflow Management: Models,
Methods, and Systems, MIT press, Cambridge, MA, 2002.

V

×

Product Backlog

Item->Done

×

Test Case-> Design

V

Product Backlog

Item->New

Product Backlog

Item->Approved

Product Backlog

Item->Committed

×

Task->To Do Bug->New

Task->In Progress ×

Task->Done ^

Feature->In

Progress

Feature->Done Feature-> New

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

286 | P a g e

www.ijacsa.thesai.org

[3] S. Jablonski and C. Bussler, Workflow Management: Modeling
Concepts, Architecture, and Implementation, London, UK: International
Thomson Computer Press, 1996.

[4] D. Marinescu, Internet-Based Workflow Management: Towards a
Semantic, A. Y. Zomaya, Ed., New York: Wiley Interscience, 2002.

[5] W. v. d. Aalst and P. Berens, "Beyond workflow management: product-
driven case handling," in International ACM SIGGROUP Conference on
Supporting Group Work (GROUP 2001), New York, 2001.

[6] W. v. d. Aalst, Process Mining - Discovery, Conformance and
Enhancement of Business Processes, Springer, 2011.

[7] A. Adriansyah, B. v. Dongen and W. v. d. Aalst, "Towards Robust
Conformance," in BPM 2010 Workshops, Proceedings of the 6th
Workshop on Business Process Intelligence, Berlin, 2011.

[8] W. v. d. Aalst, "Mediating between modeled and observed behavior:
The quest for the "right" process: Keynote," in Research Challenges in
Information Science (RCIS), Paris, 2013.

[9] W. v. d. Aalst, A. Weijters and L. Maruster, "Workflow Mining:
Discovering Process Models from Event Logs.," IEEE Transactions on
Knowledge and Data Engineering (TKDE), 2003.

[10] A. d. Medeiros, B. v. Dongen, W. v. d. Aalst and A. Weijters, "Process
Mining: Extending the α-algorithm to Mine Short Loops," International
Journal Of Engineering And Computer Science (IJESC), 2004.

[11] A. Weijters, W. v. d. Aalst and A. d. Medeiros, Process mining with the
heuristics miner-algorithm, Technische Universiteit Eindhoven, 2006.

[12] C. Günther and W. v. d. Aalst, "Fuzzy mining - adaptive process
simplification based on multi-perspective metrics," in Business Process
Management (BPM), Lecture Notes in Computer Science, Brisbane,
Australia, 2007.

[13] C. Günther, Ph.D. thesis: Process Mining in Flexible Environments.,
Eindhoven University of Technology, 2009.

[14] J. Buijs, Flexible Evolutionary Algorithms for Mining Structured
Process Models, Eindhoven: Technische Universiteit Eindhoven, 2014.

[15] A. Rozinat, A. A. d. Medeiros, C. Gunther, A. Weijters and W. v. d.
Aalst, "The Need for a Process Mining Evaluation Framework," in
Business Process Management Workshops, Berlin, 2008.

[16] J. Buijs, B. v. Dongen and W. v. d. Aalst, "Quality dimensions in
process discovery: The importance of fitness, precision, generalization
and simplicity," 2014.

[17] W. M. v. d. Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes, Springer, 2011.

[18] Technische Universiteit Eindhoven (TU/e), "Process Mining Manifesto,"
2012. [Online]. Available:
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared%3Aprocess_minin
g_manifesto. [Accessed December 2015].

[19] OMG, "Business Process Model and Notation (bpmn) version 2.0,"
Object Management Group, 3 January 2011. [Online]. Available:
http://www.omg.org/spec/BPMN/2.0/PDF. [Accessed December 2015].

[20] A. Scheer, Business Process Engineering, Reference Models for
Industrial Enterprises, Berlin: Springer-Verlag Berlin Heidelberg, 1994.

[21] W. v. d. Aalst, A. Adriansyah and B. v. Dongen, "Causal nets: A
modeling language tailored towards process discovery," in CONCUR,
2011.

[22] A. Weijters and J. Ribeiro, "Flexible heuristics miner (FHM)," in
Computational Intelligence and Data Mining (CIDM), 2011.

[23] D. L. Giudice, "The 2015 State Of Agile Development," Forrester
Research, 2015.

[24] Microsoft, "Scrum process work item types and workflow | VS 2013,"
2013. [Online]. Available:
https://msdn.microsoft.com/library/jj920147%28v=vs.120%29.aspx.
[Accessed December 2015].

[25] TU/e, "ProM," Process Mining Group, Math&CS department,
Eindhoven University of Technology., 2015. [Online]. Available:
http://www.processmining.org/prom/start. [Accessed December 2015].

[26] C. Kaner, A Tutorial in Exploratory Testing, 2008.

[27] C. Baum, The system builders: The story of SDC, System Development
Corp, 1981.

[28] M. Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog:
A History of the Software Industry, The MIT Press, 2003.

[29] M. A. Cusumano, Microsoft Secrets: How the World's Most Powerful
Software Company Creates Technology, Shapes Markets and Manages
People, Touchstone, 1998.

