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Abstract—Process model guidance is an important feature by 

which the software process is orchestrated. Without complying 

with this guidance, the production lifecycle deviates from 

producing a reliable software with high-quality standards. 

Usually, teams break the process deliberately or impulsively. 

Application Lifecycle Management (ALM) tools log what teams 

do even if they break the process. The log file could be a key to 

discover the behavior of the undertaken process against the 

targeted process model. Since the date of its introduction, Process 

Mining techniques have been used in business process domains 

with no focus on the software engineering processes. This 

research brings the Process Mining techniques to the software 

engineering domain. The research shows a conclusive effort that 

used a Scrum adapted process model as an example of Agile 

adoption. This research has applied Process Mining discovery 

techniques to capture the actually implemented process by the 

Scrum team. This application clarifies the gap between the 

standard process guidance and the actually implemented one. 

The research’s results showed that Process Mining techniques 

have the ability to discover and verify the deviation on both 

levels; the process itself as well as the work items state-machine 

workflows. 

Keywords—Process Mining; Process Models Discovery; 

Software Engineering; Agile; and Scrum 

I. INTRODUCTION 

Software engineering process has become an integral part 
of any software production lifecycle definition. Without a 
model that governs the state-machine of the process phases, 
software engineering process will not be clearly defined. 
Software factories choose one of the available process models 
according to a set of aspects e.g. product team preparation, 
customer type, project development period, etc. 
Correspondingly, contemporary ALM tools have been 
developed to provide sort of automation, collaboration, and 
process model guidance. 

In late 1970s, computer scientists focused on efficient data 
retrieval and storing. Nevertheless, this was inadequate, 
because any business is not only composed of data but also a 
process. A good start was in the nineties, where processes' 
representation, monitoring, and visualization drew computer 
scientists’ attention as an essential block for extending the 
capabilities of information systems to enforce business 
processes. This type of information systems is denoted by 

Business Process Management (BPM) systems [1]. Business 

process management systems examples are Staffware, 

MQSeries, Microsoft Work Flow, COSA, and FLOWer [2, 3, 
4, 5]. Despite BPM systems do straighten many deviations, 
deviations do occur. Therefore, a methodological solution is 
needed to identify these deviations after they happened and 
logged, then analyze these deviations. Since information 
system records all that happened, an event log can be prepared 
–if it was not originally prepared, and use it to identify the 
actual process that the event log depicts [6]. This identification 
phase is denoted by Discovery. In addition, discovery can lead 
to process analysis. To check what rules are applied and what 
is neglected or overwritten that is denoted by Conformance 
Checking [7]. In order to check process conformance and 
analyze it, a discovery phase has to be applied to the recorded 
event log. Using both discovery and conformance checking 
the current process can be enhanced, considering the 
deviations are exceptions or unknown cases that are not 
handled by the process model. The result of enhancement is 
repairing or extending the current applied process model [8]. 
Discovery, Conformance Checking, and Enhancement are the 
Process Mining types. Fig. 1 depicts the need and positions the 
Process Mining from organizational process models' 
interaction with current systems, and rectification of the 
current process models. 

II. LITERATURE ON PROCESS MINING 

A. Review of Process Mining algorithms and techniques 

In [9, 10] α-algorithm and α
+
-algorithm discuss the most 

common discovery algorithm with test datasets for testing the 
capabilities of the algorithm at the edge. Then, in [11] a 
HeuristicsMiner algorithm is introduced to discover the 
process and identify the noise in the process. The used dataset 
was hospital information system of patients. Then, in [12, 13] 
a Fuzzy Mining algorithm was built upon the HeuristicsMiner 
algorithm introduced in [11]. This algorithm is built to 
discover the unstructured logged processes. The datasets used 
were machinery test and usage logs, development process 
logs, hospital patient treatment logs, and logs of case handling 
systems and web servers. Then, a more mature framework was 
introduced in [14], which introduced a sound and complete 
solution for discovering structured processes that has 
compliance with the four quality dimensions introduced in 
[15]. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

280 | P a g e  

www.ijacsa.thesai.org 

Fig. 1. Process Mining occurrence in organizational process models 

In [14] the framework was applied on CoSeLoG project 
that used municipalities' data in Netherlands. These quality 
dimensions were studied to show how crucial are they and 
how important to implement them in [16].The evaluation 
criteria depends on the four quality dimensions. These quality 
dimensions are 1: Fitness, 2: Precision, 3: Generalization, and 
4: Simplicity. Fitness is represented by this question, is the 
observed behavior captured by the model? I.e. How many 
cases can be replayed from the event log over the extracted 
model?  Precision is represented by this question: How precise 
the process model describes the observed behavior? The less 
behavior the process model allows that is not observed in the 
event log, the more precise the process model describes the 
behavior. Generalization is represented by this question: Does 
the model allow for more behavior than encountered in 
reality? Simplicity is represented by this question: How 
simple, or human-readable, is a process model? [17] A 
comparison shows the differences between discovery 
algorithms is shown in TABLE 1 [14]. The tilde (~) sign in 
the table represents algorithm finish with remaining work. A 
sound (correct) process models can be produced with ETMd 
algorithm as shown in the last row in TABLE I. . ETMd 
algorithm is a part of ETM (Evolutionary Tree Miner) 
framework, which is built using an evolutionary algorithm, 
genetic programming specifically. The best part of 
evolutionary algorithms is that it finds a solution as long as 
you have the time to wait for its solution, unless you defined 
an early exit criterion. In general, Process Mining has a set of 
characteristics, guiding principles and challenges [18]. ETM 
framework has covered seven challenges out of eleven 
challenges mentioned in the manifesto. A full list of 
challenges that ETM framework has overcome can be read 
from here [14]. An important challenge is “Improving the 
Representational Bias Used for Process Discovery”, as 
mentioned by the process mining manifesto, or “Separation of 
Visualization and Representational Bias”, as mentioned by 
[14]. ETM framework uses Process Trees to overcome this 

challenge. In order to have a deeper sense of this challenge, it 
should be considered that process models have standard 
notations like Petri nets, business process management 
notation (BPMN) [19], and event-driven process chain (EPC) 
[20]. The discovery algorithms do not mostly use these 
standards –as mostly each uses its own notation, which makes 
it hard to business users to read and use such algorithms, 
which make their own notation. Examples of such algorithms 
are fuzzy models [13, 12], casual nets [21], and heuristics nets 
[11, 22]. The crucial point of ETM framework considering the 
representation challenge is the usage of process tree as it is 
mentioned before. Process trees notation by itself is not 
considered a common notation to business people, but process 
tree notation can be easily converted to a plethora of other 
common processes modeling notations like Petri nets, EPC, 
YAWL, casual net, heuristic net, fuzzy model and process 
algebra. This paper is going to use ETMd as the research's 
discovery algorithm; in addition, this paper will show the 
discovered process model using the α-algorithm. This research 
is going to use software engineering data, based on Scrum 
process specifically. In fact, up to the moment, software 
engineering domain is considered a virgin domain for 
applying Process Mining techniques. The research's results 
will be visualized using three different forms: process tress,  

 Petri nets, and BPMN as the OMG standard notation. 

The rest of this section discusses the research motivation in 

subsection C. The process tree notation is showed in 

subsection D. In addition, the dataset collection and 

preparation that the research was based on is discussed in 

section II. Moreover, in section II, this literature has a 

subsection discussing the Scrum process definition template. 

Discovery of the both process levels is discussed in section III. 

The results are compared to the process definition template in 

section IV. Finally yet importantly, a quick summary is 

showed in section V. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

281 | P a g e  

www.ijacsa.thesai.org 

TABLE I.  PROCESS DISCOVERY ALGORITHMS COMPARISON FROM [14] 

B. Process Tree Notation 

Process trees have six different operators:  sequence (→), 
the reversed sequence (←), exclusive-choice (×), parallelism 
(∧), non-exclusive choice (∨) and the loop ( ) [11]. Sequence 
operator (→) forces the mentioned sequence of child nodes 
from left to right and vice versa considering the reversed 
sequence operator (←). Exclusive-choice operator (×) of child 
nodes a, b, and c results in one of the following combinational 
sequence <a>, <b>, or <c>.  

Parallelism operator (∧) of child nodes a, b, and c results in 
the set of {a, b, c} in all possible orders, i.e. the result can be 
one of the following combinational sequences <a, b, c>, <a, c, 
b>, <b, a, c>, <b, c, a>, <c, a, b>, or <c, b, a>. Nonexclusive 
choice operator (∨) of child nodes a, and b results in one of the 
following combinational sequences <a>, <b>, <a, b>, or <b, 
a>. On one hand, any of the previous operators could have any 
number of nodes starting from two nodes – of course; one 
child node has no meaning since it should be cloned to its 
parent. On the other hand the loop operator ( ) has, at least, 
three child nodes. Loop operator ( ) of –specifically ordered, 
child nodes a, b, and c results in one the following 
combinational sequences <a, c>, <a, b, c>, <a, b, a, c>, <a, b, 
b, b..., c>. 

III. RESEARCH MOTIVATION 

No previous research effort tried to use the aforementioned 
Process Mining techniques and algorithms in order to be used 
in the software engineering domain. According to Forrester's 
State of Agile 2015 report, 40% of the developed software is 
doing wrong things due to deviations from applying the 
lifecycle process [23]. In 59% of cases, the major impediment 
that prevents a correct Agile process adoption is the lack of 
skilled people [23]. If there were an intelligent way to 
discover these deviations in the applied lifecycle process, this 
would give the software factories the opportunity to bring 
their development back to the track. Thus, decreasing the 
possibility of producing the incorrect thing. This research 
utilizes Process Mining techniques to discover the deviation of 
the actually implemented software engineering process. Since, 
86% of the Agile, teams are using Scrum [23]; this research 
was applied on a project log file of a team that is supposed to 
be working using the Microsoft Scrum process template 
definition. 

 

 

Fig. 2. Scrum Process Work Items Workflow in Petri Net 

IV. RESEARCHED DATASET ACQUISITION 

 Scrum process categorizes all work in the project life 
cycle into six categories applied by the Microsoft Visual 
Studio Scrum 3.0. These six categories are feature, product 
backlog item (PBI), task, test case, bug, and impediment. Each 
one of them is called work item (WI) and has its own 
workflow states’ model. Altogether, they formulates the 
software engineering Scrum process. According to the held 
data, this study is going to concentrate on subset of these WIs, 
which are feature, product backlog item, bug, and task. The 
Scrum process as defined by Microsoft is shown in Figure 2. 
The workflow model of each one of them is depicted in Fig. 3 
[24]. The CASE tool used to capture the team’s data and apply 
the desired process is Microsoft Team Foundation Server 
(TFS) 2013.  
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TFS data resides in Microsoft SQL Server. In order to 
discover the generated the event log, this study used ProM 
tool for generating the event logs, and discovering process off 
the data [25]. This research used SQL queries to extract the 
required process attributes and data, and then it used XESame 
to generate event logs in order to able to discover the process 
using discovery algorithms implemented in ProM. XESame is 
an integrated software in ProM responsible for extracting 
event it uses JDBC. XESame generates the event logs in 
defined formats with extensions (.XES), and the event log 
should be composed of events, cases, traces, and attributes.  

For example, if you have two product backlog items, so, 
each one of them is called a case. Each case is composed of a 
set of chronologically ordered events using timestamp, called 
a trace. Each PBI has a team member changes its state. Both 
timestamp and the team member are called attributes. From 
TABLE II.  and TABLE III. you can see how the event logs 
are composed. For the extraction phase, in order to discover 
the workflow of each work item this research defined the work 
item type and work item ID as the case, and this research 
defined work item state as the event transition life cycle. Data 
is filtered for the WIs workflow that is a single process too, 
which composes of 1482 cases, 12 event types, and event's 
frequency of 8609. In addition, to discover the life cycle of the 
scrum process, iteration ID is selected as the case, and work 
item types is selected as the event transition life cycle. Data is 
filtered for the lifecycle of the scrum process that is a single 
process, which composes of 500 cases, 5 event types, and 
event's frequency of 2496. After this step, it is capable of 
extracting the two XES files to discover each of their process 
models. 

A. Scrum Process WI's Petri Net Discussion 

In Figure 2 depictes the work item's (WI) process. The 
black transitions called siltent transitions. This literature used 

this transitions to be able to depict PBI WI, Bug WI, and Test 
Case WI can come as the first transition. In addition, PBI WI 
can come after Feature WI. Test Case WI can be the child of 
the PBI WI as well as the Task WI. Task WI's parent can be 
also a Bug WI. Bug WI's parent can be Test Case WI. Any 
case happens other than the mentioned cases is a clear 
devision from the definition template. An example of the 
deviation is a Task WI is a child of Feature WI. 

V. DISCOVERY OF THE ACTUALLY APPLIED PROCESS 

MODEL 

The most common and well-known discovery algorithm is 
α-algorithm [9]. Using 'Mine for a Petri Net using Alpha-
algorithm' plug-in from ProM, which implements the α-
algorithm and applying it over the extracted XES file that 
contains the data of different work items workflows, and 
visualize the discovered in petri net. Fig. 4 depicts the 
discovered workflow of different work items. Fig. 4 
consolidates all work items workflows in single petri net. 

Another way to discover this event log is using 'Mine a 
Pareto Front with ETMd' plug-in from ProM. Pareto Front is 
multi-objective optimization technique that offers a set of the 
best-optimized solutions. The trade-off between objectives in 
this study is the four quality dimensions. The plug-in offers a 
set of process models of Pareto fitness equals to 0.991326, 
which means that most of the offered solutions are feasible. 
Pareto fitness is the average fitness of the whole Pareto Front.  

For the research's experiment, it has only two models of 
fitness equals to one. In this paper, only one model is 
presented –out of 193 models, of replay-fitness equals to one. 
This plug-in has the power of visualizing its discovered 
process model as BPMN as default as depicted in Fig. 5. In 
addition, the plug-in provides the process tree string, and the 
string is depicted in Fig. 6. 

TABLE II.   DETAILED EVENT LOG

TABLE III.  TWO-WAYS SUMMARIZED EVENT LOG 

Case Trace of Events 

PBI (1) N, A, C 

PBI (2) N, A, N 
  

Trace Occurrence Count 

N, A, C 1 

N, A, N 1 

WI Type State Timestamp Changed By 

PBI (1) New (N) Day (1) Team Member A 

PBI (1) Approved (A) Day (2) Team Member A 

PBI (2) New (N) Day (2) Team Member A 

PBI (2) Approved (A) Day (3) Team Member B 

PBI (1) Committed (C) Day (3) Team Member B 

PBI (2) New (C) Day (4) Team Member A 
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Fig. 3. Scrum Work Items Workflow [24] 

 
Fig. 4. Discovered Petri Net for Scrum WIs workflows 
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Fig. 5. Discovered Pareto Front as BPMN for Scrum WIs workflows 

VI. RESULTS DISCUSSION 

The discovered Pareto Front model's quality dimensions 
values are 1: Fitness = 1.0, 2: Precision = 0.771, 3: 
Generalization = 0.579, and 4: Simplicity = 0.906. These 
quality dimensions’ values reflect the logged events are all 
applicable by the discovered model that is a positive aspect, 
the discovered process model describes the log well but it can 
allow much more behavior than recorded that is a down side, 
and the discovered process model is readable. Comparing the 
discovered model with Fig. 3 a huge gap away of the standard 
process model definition is still noticed. This can be deduced, 
because the scrum team is not adhering to the process 
definition as it is obviously discovered from the two 
algorithms. On one hand, the discovered PBI WI, Task WI, 
and Feature WI states are highly correlate to the process 
definition in Figure 3. On the other hand, it is found that the 
discovered Case WI and Bug WI states are not correlating 
with Figure 3 at all. 

After discovering a detailed view of the WIs workflows, it 
is needed to know if conformance to the Scrum process as 
whole occurs. This study used α-algorithm [9] by applying 
'Mine for a Petri Net using Alpha-algorithm' plug-in from 

ProM. The output result is visualized in the petri net of Fig. 7. 
Obviously, the discovered model is away from conformance 
to the Scrum process model depicted in Fig. 2. This 
nonconformance may be mainly due to the same reason 
mentioned for the WIs workflow that is the team overlooks the 
defined process is still applicable for noncomplying the Scrum 
process. The overlook here can reflect the team's lack of 
knowledge by the purpose of work item types and the 
workflow that organizes them. Deviations can be categorized 
into two categories. The first is fatal deviation, the second one 
is some events may still in progress so you can see it in the 
discovered model as deviated, this can be called slight 
deviations. Considering the fatal deviations, results showed in 
the discovered model that the PBI WI's parent is Bug WI as 
depicted in Figure 6 while in the template definition in Figure 
2 PBI's parent is the Feature WI. In addition, Bug WI's child is 
Task WI according to the template definition not PBI as 
discovered. Considering the slight deviations, Feature WI has 
no child PBI WI. Bug WI has no child Task WI. Test Case WI 
has no PBI WI parent. There is no Bug WI generated from a 
Test Case WI, this point could not be considered a deviation 
as bugs could not be generated from the defined test cases but 
from just exploratory testing [26]. 
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Fig. 6. Discovered Pareto Front as Process Tree for Scrum WIs workflows 

VII. FUTURE WORK 

We target applying conformance checking algorithms to 
acquire detailed knowledge about the deviations positions 
concerning software engineering domain. In addition, we are 
planning to apply enhancements algorithms to provide some 
recommendation in order to advise the team to conform to the 
process definition. 

 
Fig. 7. Discovered Petri-Net for Scrum Process workflow 

VIII. CONCLUSION 

Research proved that Process Mining could unveil the 
deviation from the standard process and define the currently 
applied of the mostly applied Agile technique that is Scrum 
[23]. Software Engineering is considered an industry [27, 28, 
29]. Investment in this industry is enormous and a process 
follow-up is needed in order to overcome any costly 
deviations. The study showed a significant gap between the 
actually applied process model and the standard process 
definition, which is obviously helpful. To discover the actual 
process model the research used ETMd Pareto Front algorithm 
[14] and α-algorithm [9]. In addition, this research used Petri 
nets, BPMN, and process trees to visualize the discovered 
models, which proves the overcome of the representational 
bias by separating representation and visualization. 
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