
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

318 | P a g e  

www.ijacsa.thesai.org 

Risk Diffusion Modeling and Vulnerability 

Quantification on Japanese Human Mobility Network 

from Complex Network Analysis Point of View 

Kiyotaka Ide, Hiroshi Sato, Tran Quang Hoang Anh, and Akira Namatame 

Department of Computer Science 

National Defense Academy of Japan 

Yokosuka, Japan 

 

 
Abstract—The human mobility networks are vital 

infrastructure in recent social systems. Many efforts have been 

made to keep the healthy human mobility flows to maintain 

sustainable development of recent well-connected society. 

However, the inter-connectivity sometimes raises unintended 

diffusion and amplification of the intrinsic risks, which is difficult 

to forecast because of the complexity of the underlying networks. 

Therefore, it is believed that modeling and simulation of the risk 

diffusion in the human mobility networks are suggestive and 

meaningful. Also, recent improvement of usability of individual-

level human mobility data and capabilities of high-performance 

computing technologies enable us to employ the data-driven 

approaches. In this paper, the risk diffusion dynamics is modeled 

based on the SIS epidemic model and the vulnerability index is 

defined to quantify the node-level easiness of suffering risks. We 

also conduct the link removal test to find the better risk 

mitigation methods. 

Keywords—Human mobility network; Risk analysis; Complex 

network analysis; SIS model 

I. INTRODUCTION 

Analyzing the human mobility networks is essential for 
making economically efficient and socially resilient social 
systems. It can be applied to various fields such as urban 
planning, public policy, and epidemic control. Maintaining the 
healthy flows on human mobility networks is also vital for 
sustaining modern society. At the same time, the complex 
connectivity and mobility in our society bring intrinsic risks. 
For example, the outbreak of Ebola virus disease from 2014 in 
West Africa has spread through the global human mobility 
networks to five other countries in the region and a few cases 
were found even outside the continent including several 
countries in Europe and the U.S. Because of the various 
factors, such as increment of the number of travelers, longer 
distances of their trips, diversification of the means of 
transportations, urbanization, and uneven distribution of 
population, the analysis of the actual dynamics on the human 
mobility networks becomes more difficult. Therefore, 
modeling and simulation of the risk diffusion on the human 
mobility networks are the practical options and meaningful 
approaches. Also, recent improvement of usability of 
individual-level human mobility data renders researchers’ 
interests toward the data-driven approach, which is also 
promoted by the dramatical improvement of capabilities of 
high-performance computing technologies. Recent efforts to 

open the governmental statistical data to public enable us to 
utilize highly credible and authorized dataset. 

So far, there exist a large number of previous works which 
analyze regional human mobility networks based on real data. 
For example, about ground transportation networks such as 
railway network and subway network, Latora and Marchiori 
(2002) analyze the subway network in Boston [1], Sen et. al. 
(2003) studied Indian railway network [2], Sienkiewicz et al. 
(200) analyze the public transportation networks in Poland [3], 
De Montis et al. (2007) examined the inter-urban commuting 
network among the 37 municipalities in the Sardinia region, 
Italy [4], Li et al. (2007) investigated Chinese railway network 
[5], and Soh et al. (2010) studied the bus and railway network 
in Singapore [6]. About the airline networks, many researchers 
have analyzed the world airline network (WAN) from the 
complex network analysis point of view [7-10] as well as for 
regional or domestic airport networks [11-13]. The analysis of 
the human mobility networks show several commonly shared 
characteristics. For example, as shown in most of the complex 
network analysis results, the weight distribution as well as 
degree distribution in large-scale networks tends to show scale-
free property. Also, some studies reported that the networks 
show small world property, such as in the studies on airport 
network [7, 9]. 

In this paper, the analytical results of the risk diffusion 
dynamics on Japanese domestic human mobility network 
(JDHMN), Japanese airline network (JDAN), and world airline 
network (WAN) using the real human mobility data are stated. 
Our analysis can be applied to various fields such as diffusion 
of disease, rumors, and political disturbance which are spread 
along with the human mobility. The human mobility networks 
are often applied to the researches of meta-population epidemic 
diffusion model in which the human mobility networks, 
especially WAN, are utilized as paths connecting with the 
areas where the epidemic happens [14-23]. Moreover, K.J. 
Mizgier et al. (2013) recently applied the probabilistic 
approach to model the diffusion of the influence caused by the 
disruption in the supply chain and conducted the vulnerability 
assessment in the supply chain analysis [24]. 

In this paper, the link removal test in JDHMN, JDAN, and 
WAN for efficient control of risk diffusion are implemented, 
which imitates restricting the human flows on certain routes 
instead of restricting traffics at certain nodes. This approach 
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can assess the influences to the risk diffusion dynamics when 
shutting some routes in the human mobility networks. There 
exist some related works about the link removal tests. 
Marcelino et al. (2012) evaluate the effect of the link removal 
in the top 500 international airports network when they 
simulate the SEIR meta-population epidemic model using the 
actual data of the outbreaks of influenza A (H1N1) in 2009 [2]. 
Hossain et al. (2013) investigate the resilience of the Australian 
Airports Network from a complex network analysis point of 
view [13]. They examined the resilience measures including 
the size of the largest component and reachability when closing 
the links following the certain ranking criteria of the links. 
Also, Verma et al. (2014) investigated the connectivity in the 
WAN as removing links following the ranking based on their 
weight. They found that the WAN is resilient when the links 
having large weight are cutting down since these links tend to 
connect between high degree nodes and there are many 
alternative paths between them. Conversely, they found that 
the closing the links having low weight damages the 
connectivity of the network [26]. 

In the rest of this paper, the chapter II introduces the 
datasets for the JDHMN, JDAN, and WAN. Also, the networks 
created from the datasets are analyzed from the stand point of 
the complex network analysis. In the chapter III, assuming the 
risks are propagate probabilistically through the links of the 
networks, the risk analysis on these human mobility networks 
are discussed.  Also, the link removals for the risk mitigation 
are investigated to propose the effective risk mitigation 
methods. Finally, the chapter IV concludes this paper. 

II. HUMAN MOBILITY NETWORK 

A. Japan domestic human mobility network 

In this work, the openly available public datasets which are 
published by the Ministry of Land, Infrastructure, Transport 
and tourism (MLIT) of Japan are utilized. The datasets include 
the amounts of passengers passing the borders between 
prefectures in Japan with several means of transportations, 
such as cars, trains, busses, airlines, and ships 
(http://www.mlit.go.jp/sogoseisaku/soukou/sogoseisaku_souko
u_fr_000008.html). The datasets include the information of the 
passengers’ purposes of travels, genders, and ages. The values 
of the human mobility data are estimated based on the results 
of the questionary based random sampling surveys to the 
passengers and the activity reports provided from the operators 
of the transportation services. In order to consider the 
overlapping when integrating the number of passengers of 
multiple means of transportation, the dataset is adjusted based 
on the credibility of the data. Also, the dataset does not include 
the human mobility data between the prefectures within the 
Kanto region (Tokyo, Kanagawa, Chiba, and Saitama), Kinki 
region (Osaka, Kyoto, Hyogo, and Nara,), and Chukyo region 
(Aichi, Gifu, and Mie). These three are largest regions in Japan 
which are the critical areas for our analysis. Therefore, the 
lacking data for these regions are complemented by another 
public dataset (http://www.mlit.go.jp/k-toukei/cgi-
bin/search.cg). This dataset only includes the passengers’ travel 
data counted by the transportation service operators. Fig.1 
shows the visualization of the JDHMN. The locations of the 
nodes indicate the locations of the local governmental offices 

of each prefecture. The connections between these nodes 
represent the human mobility flows between the connecting 
prefectures. The color, width, and transparency of the links 
represent the relative significance of the volume of human 
mobility. 

 
Fig. 1. Visualization of the weighted network of Japan domestic human 

mobility (JDHM) derived from the openly available public data. The locations 

of the nodes in these networks are corresponding with the locations of the 
prefectural governmental offices. The link between the nodes represents the 

human mobility between the prefectures. The color, width, and transparency of 

the links represent the relative amounts of the human mobility on the link 

B. Airline networks; Japanese domestic and world airline 

network 

In this work, the public open datasets of the JDAN in 2014 
are used. The datasets are published by the MLIT annually and 
they contain the information of monthly and yearly flight 
number, the number of passengers, and weights of freights. We 
also analyze the dataset of the WAN whose data is provided by 
openflights.org (http://openflights.org/data.htm) as open data. 
The datasets include the data of the world-wide airports 
network and the information of the airline company operating 
the routes. The largest strongly connected cluster from the 
WAN which consists of 3,34 airports are extracted. 

Fig.2 (a) shows the network structure of JDAN where the 
relative number of passengers is used to weight the links. Fig.2 
(b) is the structure of WAN from openflight.org. 

C. Airline networks; Japanese domestic and world airline 

network 

Firstly, the JDHMN are analyzed from the complex 
network analysis point of view. Fig.3 shows the distributions of 
the link’s weights (i.e. amounts of people) of JDHMN. Since, 
if we do not consider the weighted on the links, the network 
structures are almost complete network, the distributions of the 
links’ weights in each network are investigated. In these figures, 
the red plots represent the frequency for every 10,000 travelers. 
The fitting lines in the figures were computed utilizing the data 

between the links’ weights from 0 to 10
6
 people which show 

the power law distributions with the power exponents within 
the range of 1.3 ± 0.1. 

Next, the community detection which finds the hidden 
community structures (i.e. the clusters of densely connected 
components) in the networks are conducted. 
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Fig. 2. Visualization of the airline networks; (a) Japan domestic airline 

network (JDAN) in 2014 in which the color, width, and transparency represents 
the relative number of passengers and (b) world airline network (WAN) from 

the website of openflights.org (http://openflights.org/data.html) 

We utilized the infoMAP algorithm [27] for the community 
detection. The infoMAP algorithm solves the problem of 
optimally compressing the information of a random walk 
occurs on the network. The optimally compressed information 
can be recovered to the original information as closely as 
possible when the compressed information is decoded, which 
can be considered as the problem of finding the optimal 
partition of the clustered structures. The infoMAP algorithm is 
applicable into detecting community structures in the directed 
and weighted networks. Also, it is reported that the best 
performance of community detection is attained in the 
comparison tests on the benchmark networks comparing in the 
several well-known community detection algorithms [28]. 

Table.1 shows the results of the community detection on 
JDHMN, JDAN and WAN. The first row of the table shows 
the numbers of the detected communities in each network 
when the weighted modularity Qw for each network is 
maximized. In the community detection algorithms, the 
partition of the network is optimized so that the value of Qw is 
maximized. Therefore, higher the value of the optimal 
modularity Qw, better the partition of the network is. The 
weighted modularity Qw can be computed by the following 
equation [27], 

where w indicates the total weights of the links in the 
network, wii represents the total weights of the links in a 

detected module i,   
   is the total weights of the inward links 

coming into the module i, and   
    is the total weights of the 

outward links departing from the module i, and m denotes the 
number of the detected modules. It is generally known that, 
when the optimal modularity Qw > 0.3, the network can be 
considered having community structures. Therefore, as can be 
seen in Table.1, the JDHMN and WAN have the community 
structure, meanwhile, JDAN shows almost zero optimal 
modularity Qw, which means JDAN does not have community 
structure. 

 
Fig. 3. Distribution of the links’ weights of several JDHMN; (a) for full 

means of transportation, (b) cars, (c) trains, and (e) bus. The red plots represent 
the frequency for every 10,000 travelers. The linear regression curves show the 

links’ weight distributions follow power law with the power exponent within 

the range of 1.3 0.1 

TABLE I.  RESULTS OF THE COMMUNITY DETECTION OF JDHMN AND 

JDAN AND WAN BY INFOMAP ALGORITHM 

 
Fig.4 shows location of the communities which was 

detected from the networks of the full means of transportation 
in the JDHMN. The each colored region on map corresponding 
with 10 communities which are detected by the community 
detection shown in Table.1 This separation is well fit with the 
traditionally used regions of Japan, such as Tohoku region, 
Kanto region and Kinki region etc., which is another evidence 
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that supports the network can be divided into the community 
structures and the infoMAP algorithm shows excellent 
performance. 

 
Fig. 4. The ten community structures detected from the network of the full 

means of transportation of JDHM by the infoMAP algorithm. Each colored 

region corresponds with the detected communities of prefectures. The black 
solid separation line on the map represents the borders between the prefectures 

The network assortativity is one of the conventionally used 
network properties to quantify the tendency that each node in 
the network tend to connect to the nodes which have similar 
degree, which can be computed by a correlation function of 
degrees of nodes connected each other [29]. When the network 
assortativity is positive, the nodes in the network tend to 
connect with the nodes with similar degree, meanwhile, when 
it is negative, the nodes in the network tend to connect with the 
nodes having different degree. 

The following equation is the definition of the network 
assortativity r [29], 

where F(ϕ) represents the set of connecting pair of two 
nodes, ϕ denotes the identification number of links connecting 
the pairs, M denotes the number of links in the network, ki 
denotes the degree of the node i. Then, this concept was 
extended to the weighted assortativity [30] as defined below, 

where ϖϕ denotes the weight of ϕ
th
 link, H represents the 

sum of the weights in the network. 

Table.2 shows the weighted assortativity r
w
 of the JDHMN, 

JDAN, and WAN. 

TABLE II.  WEIGHTED ASSORTATIVITY OF THE NETWORKS 

 

Local assortativity was firstly proposed by Piraveenan et al. 
(2008) [31], and improved by themselves by removing a bias 
towards low-degree nodes as unbiased local assortativity [32]. 
The concept of the unbiased local assortativity is to calculate 
the contribution from each node in network assortativity 
defined by Eq.(2) so that the sum of the values of the local 
assortativity of each node is equal to the network assortativity. 

Eq.(4) shows the definition of the unbiased local assortativity 
of node i [32], 

where M represents the number of links in the network, the 
excess degree j means the number of links except the link 
which is used to reach the nodes, therefore it can be calculate di

－1 when di denotes the degree of node i,  ̅ denotes the means 

of the excess degree, σq represents the standard deviation of the 
network’s excess degree distribution q(k), and μq denotes the 
expectation of the excess degree distribution q(k). 

However, the unbiased local assortativity  ̂  is a relative 
measure, and it can quantify the relative contributions of each 
node to the network assortativity. Therefore, it works only 
when comparing within the focal network. Only considering 
the local value itself on a node, we cannot judge the node is 
assortative or disassortative. Therefore, recently, 
Thedchanamorthy and Piraveenan et al. (2014) proposed 

alternative approach to compute the local assortativity [33]. 

Their new definition of the local assortativity δi is as follows, 

where λ is a scaling factor computed as follows, 

where r denotes network assortativity derived from Eq.(1), 
and N denotes the number of nodes. 

  ̅  in Eq.(7) is the relative average neighbor difference 
which computed as follows, 

Network

JDHMN

JDAN WAN
Full Car Bus Train Ship
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Assortativity
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where di denotes the degree of node i. dj represents the 
degree of neighbor node j of node i. The relative average 
neighbor difference means the relative values that quantify the 

relative dis-assortativity of each node so that the sum of   ̅ = 1. 

This concept of the local assortativity δi is extended to the 
weighted network and proposed the local weighted 
assortativity   

 . The proposed definition of the local weighted 
assortativity is as follows, 

where the scaling factor λ
w
 can be calculated by just using 

weighted network assortativity r
w
 instead of the normal 

network assortativity r as follows, 

and the relative average neighbor difference in terms of 

weight,   ̅
 , can be computed as follows, 

where     
   represents weight of the inward link from the 

neighbor nodes j of the node i to the target node i. The node k 
represents the neighbor nodes of the node j 

Fig.5 shows the distribution of the local weighted 
assortativity   

  for the JDHMN and JDAN, and Fig.6 shows 
distribution of   

  for WAN. The blue circles indicated the 
nodes which have the negative local weight assortativity, 
meanwhile, the red circles show the nodes with the positive 
local weight assortativity. The size of these circles indicated 
the significance of the node strength (i.e. weighted indegree) 
and the transparency represents the significance of the absolute 
values of the weighted local assortativity   

 .  

The locations of the nodes in Fig.5 are corresponding with 
the locations of the local government offices in each prefecture 
in Japan. As can be seen in these figures, in the JDHMN of the 
full means, car, bus, and train and JDAN, remarkably large and 
thick blue circle locates at Tokyo, which indicates that Tokyo 
is the hub in which a large number of travelers’ mobility 
concentrated on and the average difference of travelers’ flows 
between the neighbor prefectures’ is extremely large.  

In the JDHMN of the full means, car, bus, and train, Osaka 
and Aichi are the second and the third largest hubs. In ship 
networks, the hub-like nodes are located at several prefectures 
in west part of Japan as well as around Tokyo. 

 

Fig. 5. Distribution of the local weight assortativity   
  for JDHMN for 

several means of transportation and JDAN 

 

Fig. 6. Distribution of the local weight assortativity   
  for WAN 

III. RISK ANALYSIS OF HUMAN MOBILITY NETWORKS 

A. Risk diffusion model 

In this section, the risk diffusion in the human mobility 
networks is analyzed. To model the risk diffusion in the 
networks, the epidemic model (the susceptible-infected-
susceptible (SIS) model) [34-38] is applied.  
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(f) JDAN(e) JDHM_Ship
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It is assumed that risk propagates through the links, and the 
diffusion probability on each link is proportional with the 
relative weights of each links. 

The risk diffusion probability matrix M is defined as 
follows, 

where the (i, j) element in the relative propagation 
probability matrix W can be computed by the link weight wi,j 
from node i to node j divided by the maximum link weight 
wmax as follows, 

Then, the risk diffusion probability from node i to node j is 
given by the β×wi,j ⁄ wmax. Here, β is the weighting parameter to 
control the significance of risk transition, and δ represents the 
risk removal probability which is set to a fixed value. 

The risk propagation dynamics over time is them given as 
follows, 

where p(t) is the risk probability vector in which the i
th
 

element represents the risk probability of node i at time t, and 
p(0) denotes the initial risk probability vector. 

B. Vulnerability index 

The vulnerability index (VI) which can quantify the node-
level easiness of being suffered from the risk is proposed. The 
VI is defined by the accumulative probability of being suffered 
from the risks when each node is selected as the initially 
infected node in turn. The following equation shows the 
equation to compute the VI vector vVI, 

where e denotes the all-one vector which represents the 
initial attack assigned to all nodes in the network, namely p(0) 
= e. Then, to remove the influences from the initial attack to all 
nodes and consider the differences of the size of the network, 
the normalized VI vector v’VI is suggested as follows, 

However, Eq.(14) can work only when the risk diffusion 
probability matrix M are sufficiently small and converge to 
zero matrix at the infinite time. Therefore, the relative 
vulnerability index  ̂VI is proposed as follows, 

where T is a sufficient large positive integer and T = 100 is 

used for our computations.  ̂  is a matrix in which each 
element of M

x
 is divided by the sum of the elements mi,j of M

x
 

as follows, 

We compare the relationships between the relative 
vulnerability index  ̂VI and the weighted in-degree (i.e. node 
strength) vector win, weighted out-degree vector wout, weighted 
eigenvector centrality vector     

 , weighted closeness 
centrality vector    

 , weighted betweenness centrality vector 
   
 , and weighted PageRank vector    

 . win is a vector in 
which the i

th
 element consists of the sum of the weights of the 

inward links to the i
th
 node. wout is a vector in which the i

th
 

element consists of the sum of the weights of the outward links 
directing from to the i

th
 node.     

  is the largest eigenvector of 
the weighted matrix.    

  considers the path with the minimal 
weights as shortest path, and computes the inverse of the sum 
of the weights of the weighted shortest path. c   

  is a vector in 
which the i

th
 element considers the path with the minimal 

weights as a shortest path and computes the relative value of 
the number of the weighted shortest paths which pass through 
the node i.    

  uses the weighted matrix to compute the 
transition probability matrix M, and the weight on a link 
between node i and node j, wij, is used instead of aij of the 
adjacency matrix. Table.3 shows the correlation coefficients 
between the six weighted centrality measures and relative 
vulnerability index v  VI for each human mobility networks, 
JDHMN, JDAN, and WAN. As can be seen in this table,     

  
shows very high correlation with   ̂VI. 

Fig.7 shows the correlation diagram between the relative 
vulnerability index  ̂VI and the weighted eigenvector centrality 

    
  in the seven human mobility network when β=0.5 and 

δ=1. The red circles represent the node having the positive 
local weighted assortativity and the blue triangles represent the 
nodes having the negative local weighted assortativity. The 
size of the plots indicates the absolute significance of the local 
weighted assortativity of each node. Since the weights of each 
nodes are basically different (except the special case like the 
homogeneously weighted network), the positive local weighted 
assortativity means that the averaged absolute difference 
between the weight of the target node and the weights of its 
neighbor nodes is relatively small, which is achieved when the 
target node is connected to both of higher and lower weight 
neighbor nodes evenly, or when the weights with connected 
neighbor nodes are similar, which is sometimes occur at the 
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peripheral nodes. As can been seen in Fig.7,  ̂VI shows positive 

correlation with the weighted eigenvector centrality     
 .  

As can be seen in these figures, the nodes having high 
relative vulnerability index and high     

  have very large 
negative local weighted assortativity. 

 

 

 

 
Fig. 7. Relationship between the elative vulnerability index  ̂VI and     

w . in 

the JDHMN of (a) Full, (b) Train, (c) Car, (d) Bus, (e) Ship, (f) JDAN and (g) 

WAN when 𝛽 = 0.5 and δ = 1. The red circles represent the node having the 
positive local weighted assortativity and the blue triangles represent the nodes 
having the negative local weighted assortativity. The size of the plots indicates 

the absolute significance of the local weighted assortativity of each node 

C. Mitigation of risk diffusion 

How to control risk diffusion in real networks is important 
concern. In this section, the effects of the link removals as the 
methods to mitigate the risk diffusion are investigated. The 
effects when links in the human mobility networks are cut 
based on a specific ranking strategy. Some approaches have 
been proposed to control the risk diffusion dynamics in 
networks.    The node removal approach is straightforward to 
apply the real world situation, for example shutting down an 
airport in the airline network, but this approach needs to close 
all the routes connecting to the removed node, which might not 
be a cost-effective manner. Therefore, the link removal 
approach is employed. In this section, the four strategies to 
rank the candidates for link removal, namely i) link-
betweenness-based removal, ii) link-weights-based removal, 
iii) weighted link-salience-based removal and iv) random-
choice-based removal are employed. Then, the links are cut as 
following one of these four ranking strategies and observe the 
evolution of the average of the normalized VI in each human 
mobility network as increasing the fraction of the link removal. 

The link salience proposed by Grady et al. (2012) is one of 
the measures to quantify the relative importance of each link 
[39]. The link salience is computed as follows, at the first step, 
the effective distance of each link which is an inverse of the 
link’s weight is computed. Then, we can search the shortest 
pass from an arbitral node to another node as minimizing the 
sum of the effective distance on the path. This enables us to 
compute the shortest path tree from an arbitral node to all the 
other nodes. In this step, even if any links were chosen several 
times in a shortest path trees, we do not consider the overlaps 
of the links (i.e. every shortest path tree can be represented by 
the N×N adjacency matrix). After we computed the shortest 
path trees from every node and summing up the shortest path 
tree matrix, the link salience s on each link is obtained by 
dividing by the number of nodes. Fig. 8 shows the distribution 
(histogram) of the link salience in the JDHMN, JDAN and 
WAN. As can be seen, about 50% of links in JDAN, WAN, 
and JDHMN of ship are found to be no salience with 0, and 
about 20% of links have salience of 1. This means that, in these 
networks, the 20% of links are always chosen in the shortest 
path trees, meanwhile 0% of links are not used at all. In the 
networks of JDHMN-Full, JDHMN-Car, JDHMN-Train, and 
JDHMN-Bus, about 90% of links has the link salience of 0 and 
only a few percent of links shows the link salience of 1, which 
means that only a few nodes with high salient links are very 
critical to attain the effective connection in the networks. Fig.9 
shows the distribution of link salience on a map. The color 
gradation of the links shows the significance. Then, the 
evolution of the averaged normalized vulnerability index v’ave 
with each link removal strategies is examined as changing the 
link removal ratio from 0.01 to 0.09 by 0.01. Fig. 10 shows the 
comparison results of the link removal tests for JDHMN and 
JDAN when β=0.5 and δ=1. 
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TABLE III.  THE CORRELATION COEFFICIENTS BETWEEN THE SIX WEIGHTED CENTRALITY MEASURES AND RELATIVE VULNERABILITY INDEX V  VI FOR EACH 

HUMAN MOBILITY NETWORKS

 

The plots in these figures show the relative averaged v’ave to 
the maximum averaged v’ave for each fraction of link removal. 
As shown in these figures, in the JDHMN, the strategy ranking 
with the link weight is the most effectively reduce the averaged 
v’ave. Only the 1%-removal of the links reduced the averaged 
v’ave by 74.3% in average.  

The strategy of random removal is the worst strategy which 
reduces the v’ave almost linearly to the fraction of link removal. 
However, in JDHMN_Car and JDHMN_Ship, the 
effectiveness of the 1%-link removal are only 72.1% and 
28.6%, which can be considered because these two networks 
have comparatively higher optimal modularity as shown in 
Table.1. 

  

Fig. 8.  Distribution of the local weight assortativity   
  for WAN.of the link 

salience 

 
Fig. 9. Distribution of the link salience on a map for (a) JDHM-Full 
and (b) JDAN. The color gradation in (a) and (b) represents the 
significance of the link salience on the links 

IV. CONCLUSION 

In this paper, the network for each mean of the JDHMN as 
well as JDAN and WAN are analyzed firstly. The link weight 
distribution shows the power low with the power exponent of 
1.3 0.1 in the JDHMN. Also, the community detection results 
that the community structures found in the human mobility 
networks except the JDAN. Moreover, the local weighted 
assortativity are defined and computed for each human 
transportation network. We also model the risk diffusion 
dynamics based on the SIS epidemic model and the simulation 
results show that the vulnerability index on each node has the 
strong positive correlation with the weighted eigenvector 
centrality. Furthermore, the link removal tests are implemented 
with comparing the link removal strategy. The comparison 
results of the effects of 1%-link removal show that, when we 
employ the link removal strategy based on the links’ weights, 
the average risk can be reduced by 74.3% in average in the 
JDHM, but only 72.1% and 28.6% in JDHMN_Car and 
JDHMN_Ship both of which have strong modular structures. 
For future works, we need to carefully consider the cost of link 
removal to model more practical scenarios. Also, the human 
mobility networks are not static network but the dynamically 
evolving networks. Therefore, it will be necessarily to care 
about the influence from the temporal evolution of networks. 
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Correlation 

coefficient
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Pearson 0.9425 0.9428 0.9111 0.5920 0.8973 0.9432 0.9501

Spearman 0.8036 0.8976 0.6630 0.8892 0.8191 0.9603 0.8100

Pearson 0.9346 0.9430 0.8444 0.5960 0.7016 0.9445 0.9500

Spearman 0.8047 0.8983 0.6649 0.8922 0.8229 0.9579 0.8078

Pearson 0.9975 0.9999 0.9965 0.9738 0.9532 0.9999 0.9997
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Pearson 0.5193 0.4846 0.3289 0.0796 0.2875 0.8755 0.6799

Spearman 0.4712 0.0872 0.1459 0.5880 0.4701 0.2441 0.2456
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Fig. 10. Comparison results of the link removal tests when β=0. and 
δ=1 for (a) JDHM-Full, (b) JDHM-Car, (c) JDHM-Train, (d) JDHM-
Bus, (e) JDHM-Ship, and (f) JDAN. The plots show the averaged v’ave 
divided by the maximum averaged v’ave as changing the fraction of 
link removal from 0.01 to 0.09 by 0.01 
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