
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

429 | P a g e

www.ijacsa.thesai.org

Constructing Relationship Between Software Metrics

and Code Reusability in Object Oriented Design

Manoj H.M

Research Scholar

Jain University, Bangalore.

Karnataka, India

Dr. Nandakumar A.N

HoD

Information Science & Engineering,

New Horizon College of Engineering,

Bangalore, India

Abstract—The role of the design pattern in the form of

software metric and internal code architecture for object-

oriented design plays a critical role in software engineering

regarding production cost efficiency. This paper discusses code

reusability that is a frequently exercised cost saving methodology

in IT production. After reviewing existing literature towards a

study on software metrics, we found that very few studies are

witnessed to incline towards code reusability. Hence, we

developed a simple analytical model that establishes a

relationship between the design components of standard software

metric and code reusability using case studies of three software

projects (Customer Relationship Management project, Supply

Chain Management project, and Enterprise Relationship

Management project). We also testify our proposal using

stochastic based Markov model to find that proposed system can

extract significant information of maximized values of code

reusability with increasing level of uncertainties of software

project methodologies.

Keywords—Analytical Modeling; Code Reusability; Design

Pattern; Software Methodologies

I. INTRODUCTION

In today’s world, every sector of industry or services is
dependent on the computer-based applications. To improve
performance and gain a competitive edge, quality of the
software has become a crucial factor. Developing and
outsourcing of software service is a major and rapidly growing
industry in many parts of the world [1]. The process of
software development is described through the term software
engineering that refers to the usage of a systematic procedure
in context to a standard set of goals for performing analysis,
designing, implementation, and testing as well as maintenance
of the software. The software thus developed must be reliable,
usable, efficient, modifiable, testable, maintainable,
interoperable, portable and accurate [2]. In the process of
software development, object oriented design is considered as
one of the important features to evaluate the quality of software
[3]. Irrespective of the size of the organization, the object-
oriented design methodology is majorly adopted for software
development in any organization. Therefore, object oriented
designs are considered as standard through which system
objects can have particular features and also necessary
characteristic. The reason behind the adoption of object-
oriented methodologies is that it allows to visualize the
problem and acquire a solution in all macro and micro level in
related to objects and also ensuring better reliability,

adaptability, flexibility and reusability [4]. Currently, software
engineers use software metrics to evaluate design component
and necessary resources of a certain software project. The
advantage of software metric is that it allows the evaluation of
design pattern through the better platform as well as assistance
in performing the testing of application in a quantitative
manner. Through such testing, the reliability of the software
can be demonstrated. In general, when a company receives a
new requirement from a client, initially they will formulate a
design of the requirement. This confirmed design from the
architect was sent for production. On completion of coding, the
product is dispatched to the customers. Although it is unethical
to reuse the code of earlier client to develop an application for
the new client [5], code reusability also deals with security of
intellectual property. A production team has to go for a fresh
development starting from the scratch, which not only requires
effort but also a considerable amount of time and money. The
majority of the large organization now use design pattern
which is subjected to reuse without the ethical issues. The main
objective of the design reuse is to assist the developer to use it
in the new production, which helps in cutting down the new
development cost starting from scratch. However when reusing
the design care should be taken so that the design is optimally
reused for the current as well as the future client. Adopting
design reuse will also help in ensuring the timely production
and delivery process. Design reuse does not imply that the
entire design is used; it might be like some percentage of the
current design is used in the new or future similar project.
Hence, the focus of the design team should be such that, the
design is not only focused on existing client, but it should be
able in providing a minimum proportion of reusable design for
future clients also. But in reality, it is not easy since the future
requirement of the client is unpredictable.

In Section II gives an overview of the software metrics.
Section III highlights about the CK Metric key points. Section
IV discusses the related work. Followed by Problem
identification in Section V. Section VI discusses proposed
system. Section VII discusses the research methodology.
Section VIII provides the outcome and result in the analysis of
the proposed system, and Finally Section IX provides
conclusion and future work.

II. ABOUT SOFTWARE METRICS

In this era of IT revolution, software development as
emerged has a crucial requirement in every phase of the day to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

430 | P a g e

www.ijacsa.thesai.org

day life. From academics to public service, healthcare to
banking, entertainment to sports, the use of the software is
involved in one or other way contributing to the advancement
of the domain. Various factors that have contributed to the
advancement of software development are its key features like
flexibility, portability, design reusability, software metrics and
so on. Design reusability plays a vital role in software
development, since it is not only involved in the development
of current work but also lays a blueprint for future requirement
of the current as well as new projects. Design reusability will
also help in reducing the cost of production and reducing
required manpower and development time by providing a
framework that consists of the design which can be reused over
a period. Another significant factor in software development is
the software metric, which defines the standard degree of
measure to which the process or software system will possess
certain property. In software engineering, different metrics are
available to measure different parameters such as process is
measured using process measurement, a project using project
measurement and product metric to measure product metrics.

In our work, since object –oriented deign is involved the
paper will highlight few things related to Object-oriented
metrics. To develop metric for the object-oriented design,
seven different measurable qualities are listed below [6].

 Complexity: Analyzed by assessing the way classes are
related to each other.

 Coupling: It is the physical connection between the
object-oriented elements.

 Sufficiency: Its defines the degree to which the
abstraction should possess the features needed by it.

 Cohesion: It is determined by analyzing the group of
properties posses by the class being the part of problem
domain or design domain.

 Primitiveness: Used to indicate the degree of atomic
level of operation.

 Similarity: It is used to identify the similarity between
the classes in the term of behavior, structure, purpose or
function.

 Volatility: used to define the probability of happening
of change in object oriented design.

 Size: Using four different perspectives such as volume,
length, population and functionality.

The measurement of the population is done by evaluating
the total number of OO entities, which is in the form of classes
or operations. Measurement of the volume is achieved
dynamically at any instance of time. Functionality denotes the
value provided to the user by the object oriented application.
Using inter connected design like the depth of inheritance tree
length is measured. Object oriented design metrics
concentrates on measurement that applies to class and design
characteristic. Through these measurements designers are
permitted to access software in early process phase, allowing
making changes that minimize complexity and enhances the
continuing ability of design [7].

III. CK METRIC

In 1994, Chidamber and Kemerer introduced standard
software metric for object-oriented programs. CK metrics plays
a vital role in knowing the design aspects of software and
improving the software quality. The main objective of the CK
metric is to provide an in detail measurement of cumulative
quality of the software programs to every class level. Metric is
associated with each and every tiny segment of the software
providing the overall information of the software quality. In
CK metric, six classed based metric for object-oriented
programs as follows:-

1) Weighted Methods per Class (WMC)

2) Reponses for a Class (RFC)

3) Depth of Inheritance Tree (DIT)

4) Number of Children(NOC)

5) Coupling between Object Classes (CBO).

6) Lack of Cohesion of Methods (LCOM)

1) Weighted Methods per Class: Used to define, the sum

of complexity in class. In whole it represents the complexity

of the class and this measure can be utilized for indicating

development and maintenance effort for class.

2) Response for class: This metric represents a number of

growing methods within a set, which can be called in response

to a message sent to an object performing the certain task.

3) Depth of Inheritance Tree: This is one of the frequently

used metrics; it is used to estimate the extent of depth in the

hierarchy of class. It is also used in evaluating maintainability

and reusability.

4) Number of Children: This is a measure of number

classes that are associated with a particular class with the

assistance of inheritance relationship. Class with many

children implies a bad class with bad design.

5) Coupling between Object Classes: This defines the

number of all another set of classes for which it is coupled.

CBO is advantageous in determining the complexity in testing

and reusability.

6) Lack of Cohesion of Methods: It is the difference

between the number of methods in which the similarity is zero

and the number of methods in which the similarity is non-zero.

The similarity between the two methods is the number of

features that is being used in common. A zero in LCOM does

not signify cohesiveness as well a high value does not

represent any inference. In LCOM, it is difficult to define a

unit and to measure quality. LCOM is not recommended for

accurate measurement since it does not quantify quality

properly.
Object-oriented metrics are being successfully used in

different domains and programming languages in different
parts of the world. These metrics have consistently illustrated
the relationship to quality factors like reuse, defects, cost as
well as maintainability and relationship which may go beyond
the size. The evaluation of these metric is achieved through
certain tools like metal mill [8], metric 1.3.6 [9], Analyst 4J
[10], OOmeter [11] and Dependency Finder.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

431 | P a g e

www.ijacsa.thesai.org

IV. REVIEW OF LITERATURE

This section discusses the prior literature where various
approaches of metric software design and its contribution have
been introduced. Many approaches have been developed over
the years to address the problem of detecting and correcting
design flaws in an Object Oriented (OO) software system using
metrics. Moreover, with the ever-increasing number of
software metrics being introduced, the project managers find it

hard to interpret and understand the metric scores. As Object
Oriented Metrics require a very good understanding of Object-
Oriented concepts and moreover, there is no single metric
present which gives all features of Object-Oriented Software
System. Table.1 shows the existing survey on a design flaws in
an object-oriented (OO) software system using metrics. Table 1
will highlight the tabulated discussion of various problems and
respective techniques used to enhance the performance of
software metrics in software engineering.

TABLE I. EXISTING STUDIES TOWARDS SOFTWARE METRICS

Authors Problem Focused Techniques used
Performance

parameters

Basili

et al. [12]

examined the suite of Object-Oriented proposal metrics presented by

Chidamber & Kemerer.
Empirical validation

C&K OO metrics

gives better
predictor than

conventional

metrics.

Anna
et al. [13]

to measure the reusability and maintainability degrees of aspect-oriented
systems.

Empirical and quantitative analysis,

Aspect-oriented software

development (AOSD).

Degrees of

complexity,

diverse domains.

Kaur
et al. [14]

To exploring structural factors for software components.
Software metrics using neural
networks.

exhibit an
efficient model

targeted for

software
programmers.

Kaur

et al. [15]
classification and assessment of various reusability metrics.

K-Nearest Neighbor-based

technique.

Kumari

et al. [16]
To compare C++ and Java programs.

Statistical inference techniques,

Object-oriented metrics.
More realiability.

Linda

et al. [17]
To analyze the different metric suites for object oriented schems.

 Development of a software

prototype like “Class Break point
Analyzer (CBA)”

Software quality,

realiability.

Wu

Et al. [18]

To do comparative analysis on on C++, C#, and Java programs by using

object-oriented

Metrics.

Comparative study on software

metric reusability in software

engineering.

Reusability and

Realiability.

Srinivasan
 et al. [19]

To analyze and reviews the most referred object-oriented metrics in software
measurement.

Done Comprehensive Review on

object oriented metrics using for

software measurement.

Scotto

 et al.[20]
To evaluate the effectiveness of the metrics. Web Metrics for SQL queries.

Singh

 et al.[21]
To estimate the reuse of software matric. LMT (Logistic Model Trees). reusability

Subramanyam
et al. [22]

To reduce the computational complexities in object-oriented programs for

identifying defects
object-oriented programming

Good
enhancement,

complexities.

Shaik
 et al. [23]

To itemize and maintenance of software. Object Oriented Software Systems
The effort,
 different metrics

 Zahara

et al. [24]

To examine the competence and effectiveness of machine learning regression

techniques.

 Multi-linear regression, “Standard

instance-based learning IBk with no

distance weighting”

Software crisis,

software quality,

productiviey.

Manoj

et al. [25]
To contemplate about software metrics.

An extensive literature survey on
ranking code reusability in software

engineering.

Cost effecitve,
quality, design

complexity.

Oberoi
et al.[26]

Analyzing CK metric values of component-based software

 Software component design

patterns,
 Self-Organizing Map and empirical

evaluation.

Optimized metric
values.

Goyal

Et al. [27]
To find out the reusability value for software. Unsupervised neural network.

Reuability,

complexity,

 Jayalakshmi

Et al. [28]
To measure quality in terms of software performance and reliability.

Functional parameters and non-

functional parameters.

complexity,

reliability and
robustness of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

432 | P a g e

www.ijacsa.thesai.org

software

Hudly

Et al. [29]

To evaluate the main features of object oriented like Polymorphism,

Encapsulations, Data abstraction, Inheritance and classes.

Two kinds of metrics: classes and

to measure the class design

configuration of the program.

complexity,

reliability

Liu

Et al. [30]
The gap between quality measurement and design of these metrics. Object Oriented Designs software.

Safety,

complexity.

Paliwal

Et al. [31]
To increase the productivity and maintainability of any software. Reusable module.

Module

Reusability,

Dependencies,
Class size.

Chauhan

Et al.[32]
 to assess software quality at design level.

14 Java Parser, Eclipse with

Metrics 1.3.6

quality of

software.

Gupta
et al. [33]

a comparative study of many software quality estimation methods.
Fuzzy Logic techniques, artificial
neural network (ANN),

Better quality of
software

Alcalá

et al. [34]
Improving the performance and flexibilyzing the model structure.

Linguistic model structure using
weighted double-consequent fuzzy

rules.

complexity,

reliability

V. PROBLEM IDENTIFICATION

Software engineering has played a significant role in
successfully delivering the quality-oriented project. The
existing literature discussed in prior section discusses various
techniques for enhancing the crude performance of software
metrics. It is found that majority of the techniques uses
quantitative, empirical, tree-based techniques. Some of the
unique evolutionary techniques e.g. neural network, fuzzy
logic etc. has also been used. All these above techniques have
possible advantages as well as disadvantages too. This section

We will discuss the problems being identified after
reviewing the existing system as follows,

A. Lack of Benchmarked Research

Except CK-metrics introduced during the 90s, we have not
come across any robust discussion of software metrics,
especially for object-oriented programming. Although there is
presence of massive volumes of papers in internet media, few
authors have been found to introduce any novelty in their ideas.
Some of the ideas were to implement CK metric or introduce a
new mathematical formula over the old equations of
parameters e.g. DIT, WMC, NOC, etc. Also, we have not come
across any research model which was found to use or followed
by other researchers much towards code reusability.

B. No studies towards CK Metric Relationship

100% of all the papers introduced towards software metrics
suites have their formulations. The authors normally check for
problems associated with CK metrics and attempt to introduce
new software metric suite. However, there was no significant
attempt in the past to investigate the relationship among the
CK metrics towards code reusability, which is very common
operation in any IT industry or any production company.

C. Lack of focus on Code Reusability

Code reusability is the common practice in any IT
production. However, it has received very less attention among
the research communities worldwide. Studies towards code
reusability on its possible relationship with the software
metrics are a less-explored topic.

These above problems are addressed in this paper in the
form of a simple formula with an aid of case study. The next
section discusses the proposed system that enhances the
performance of the code reusability and enables the user to
visualize enough statistics between software metrics and code
reusability.

VI. PROPOSED SYSTEM

The proposed study aims to develop an analytical
framework which establishes a relationship in between
different type of CK-Metrics components with code
reusability. The proposed system includes two different type
of experimental prototyping which are i) modeling for the
estimation of code reusability and ii) frame work to evaluate
the impact of design metrics on code reusability. The proposed
study has been highly motivated by all the studies that have
been carried out in past which represents that the improvement
in the software quality can be achieved through performing
efficient code reusability, and implementation of various
measurement is driven modules. The modeling for estimation
of code reusability index considers a flow of processes where
CK metric data from design and code artifacts and domain
knowledge and experience are further processed through
empirical analysis. The CK-Metrics data can be acquired from
UML (Unified Modeling Language) class diagrams or the
equivalent Java codes. There various processing tools like
Rational Rose etc, which are used to extract the metric data
from code artifact’s and anticipated to bridge a relationship in
between the CK-Metrics components such as WMC (Weighted
Methods per Class), DIT (Depth of Inheritance Tree), NOC
(Number of Children), CBO (Coupling Between Object
Classes), RFC (Response Set for Class), LCOM (Lack of
Cohesion in Methods) etc. The empirical analysis generates
data for the influence of property on code reusability and
establishes a relation between various multifunctional
estimation equations belong to the different type of CK-
Metrics components and maps them with code reusability.
Finally, a software framework for estimation of code
reusability has been implemented using GQM paradigm and
weighted factors from design metrics. The code reusability
model has been further processed through a framework which
calculates the different type of CK-Metrics components using
static class diagram and dynamic sequential diagrams. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

433 | P a g e

www.ijacsa.thesai.org

proposed model also evaluates a data related empirical analysis
and the analysis further generates the influence of individual
metrics on code reusability, the linear combination of
coefficients on individual design metrics. The proposed system
also takes CK-Metrics data as input and evaluates the code
reusability index which can be further mapped into CK-Metrics
components during a software development lifecycle. There
are various existing conventional studies which are based on
code reusability design metrics using empirical prototyping.
The relationship between various CK-Metric components and
the code reusability has been developed based on framing
following conventional myth as follows,

1) It can be seen that classes with higher Depth of

Inheritance Tree values will have a higher probability of code

reusability.

2) Classes with low cohesion result better software design

and code reusability.

3) Class which consists of higher values of WMC and

NOC extends the code reusability in the dynamic scenario of

software development.

4) Classes with higher CBO and RFC values increase the

computational complexity and maximize the code reusability.
The proposed model also introduces a framework for code

reusability which has been evaluated using deep empirical
analysis and data modeling. The Empirical model considered
two different types of medium-high-level projects where an
experimental analysis has been carried out considering a huge
number of classes to investigate the code reusability of the
designed metrics. The classes associated with each project
configured and grouped regarding different metrics values to
avoid the intellectual property issues. The proposed study
developed an effective and computationally efficient
framework. The contribution of the proposed study includes i)
ensuring the estimation of code reusability on heterogeneous
object-oriented software modules, ii) calculating the linear
combination of weighted polynomial equations, iii)
formulating an efficient relationship in between the CK-
Metrics components and the code reusability. The performance
metrics associated with the empirical model has been evaluated
which ensures the effectiveness of the proposed system. The
next section will discuss the research methodology which
formulates the relationship between design quality metrics and
code reusability in detail.

VII. RESEARCH METHODOLOGY

The proposed system is designed with an aid of analytical
modeling approach as a standard of research methodology. The
design of the proposed system is based on code reusability
concept using the CK-metric suite. Fig.1 highlights the
modeling of the code reusability where the extraction of CK
metric data is done from UML. Multiple forms of Java-related
cases can be used for obtaining CK metric. Various industry-
related tools like Metamill, Metric 1.3.6, rational rose, etc. can
be utilized in this regards to get the components of CK-metrics.
However, class diagram can be manually used for estimating
the number of classes. There are various parameters that can be
evaluated with an aid of static classes e.g. DIT, WMC, and
NOC, whereas various forms of the sequential diagram can be
used for evaluation other metrics e.g. RFC and CBO.

However, it is quite imperative that LCOM couldn’t be
assessed or evaluated from the design patterns e.g. UML
directly. However, sophisticated industry-based automated
tools can be used for the same reason.

Software Metric

Empirical Analysis

Data for Code

Reusability

Constructing

Relationship between

Code Reusability and

Software Metrics

Stochastic Assessment

Model

Evaluate Trend of

Code Reusability

Design Parameters

Weighted Factors for

Design Metrics

Fig. 1. Schematic Diagram of Code Reusability

To assess such design-related issues i.e. code reusability,
we consider sample projects developed in Java with a
significant number of classes. The proposed system targets to
understand how individual components of CK-metrics affect
code reusability. We develop a simple function to establish a
relationship between metrics and code reusability. We use the
concept of weighted coefficient as well as a linear approach for
assessing the possible impact analysis of CK-metrics over code
reusability. We also use the concept of GQM (Goal-Question-
Metric) as the core part of the research methodology that
allows formulating the conceptual level of code reusability
based on operational level and quantitative level.

VIII. HYPOTHESIS DESIGN

As discussed earlier that proposed study intends to
understand the underlying relationship between components of
CK metrics with code reusability, hence, an appropriate
hypothesis is constructed for this purpose. The study performs
analytical assessment on various ERP (Enterprise Resource
Planning) and SCM (Supply Chain Management) related
software projects on Java and following null hypothesis is
being constructed.

 Ho1: Better code reusability can be retained by
moderate value of DIT in every class.

 Ho2: The complexity in code design and reusability
decreases for maximized values of RFC.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

434 | P a g e

www.ijacsa.thesai.org

 Ho3: Code reusability degrades for increasing values of
NOC present in class.

 Ho4: The hypothesis is increased CBO values doesn’t
have much impact over code reusability

 Ho5: Code reusability declines for increasing values of
WMC in every class.

 Developing Analytical Modelling : The development of
the proposed system is carried out using analytical
modelling approach for testing the hypothesis. The
system also applies simple mathematical estimation
techniques to investigate the possible relationship
between the components of CK metrics and code
reusability. The proposed system considers a case
study of ERP and SCM related software projects
developed in Java. The total number classes
considered for ERP software project is 220. There are
around 180 bases classes in it. Similarly, there are
around 570 total classes and approximately 380
maintainable classes for SCM software project.
Although, our technique could include number of
software projects, we choose to consider using only
ERP and SCM software projects. The components of
the CK metric have multiple values which can be
arranged or structured more appropriately. The
proposed system performs simple analytical modeling
for code reusability in the form of,

 (1)

The above equation (1) represents mathematical
representation of code-reusability, where α is considered as
total amount of classes available in every CK metric, whereas β
is the component of CK-metric that corresponds to amount of
classes newly designed by incorporating code reusability. This
will mean that higher the value of Cr, higher is the extent of
code-reusability. The evaluation of the α and β parameter is
carried out manual as well as recording the same over
spreadsheet. However, the values considered for discussion in
result analysis is approximated to get contrastive outcome for
investigating the effect of components of CK metrics over code
reusability in software engineering. Finally, the analytical
modelling is also testified with respect to presence of
uncertainty.

IX. RESULT ANALYSIS

The analysis of the proposed study was carried out over
SPSS [35] tool. We perform both numerical analysis as well as
graphical analysis to assess the effectiveness of the outcome.
Table 1 shows the numerical outcomes of the considered case
study of ERP and SCM software projects, where the necessary
CK metric components were closely observed and computed
for code reliability using the simple equation (1) illustrated in
prior section. Following are the discussion of the graphical
outcomes of proposed system.

A. Effect of DIT on Code Reusability:-

The outcome shown in Fig.2 highlights that there is a
significant improvement of code reusability for the DIT values.
A closer look at the numerical values of DIT shows that with
increasing trends in the value of parameters α and β, the code
reusability enhances significantly. The increasing number of
levels of DIT will represent a little bit of complexity in
computation; however, it is productive to make the code more
reusable. It is also suggested that for massive objective
oriented design, it is quite possible that a number of classes
drastically increases, which also increases the possibility of
DIT values. However, using the proposed system, using
moderate values of DIT can retain better trends in code
reusability. Therefore, the null hypothesis stating that “Better
code reusability can be retained by the moderate value of DIT
in every class” is found to be accepted and true.”

Fig. 2. Affect of DIT on Code Reusability

B. Effect of RFC on Code Reusability:-

Fig.3 shows some interesting trends of code reusability.
Although, the trend of Cr is found to be increasing the trend is
not smooth enough in the preliminary values of RFC metric.
The basic trends explored here is that with an increase of α and
β parameters has witnessed enhanced code reusability factor.
However, it also brings complexity in the major ranges of
metric values (1-7), which will mean that although code
reusability increases it also brings significant complexity over
design. For our analysis purpose, we use two forms of data to
generate the graphical outcomes. The first data is synthetic data
and can be seen in the RFC row in Table 1, where the
parameters α and β are maintained in a combination of both
increasing and decreasing order. The outcome shows an
increase of code reusability. However, it is less likely that for
complex ERP and SCM projects, the values of α and β are
usually in increasing order. Hence, we plot a graph by using
the increasing order to α and β to investigate the possible
impact on code reusability.

 100
rC

0.00

50.00

100.00

150.00

1 2 3 4 5 6
A

ff
ec

t
o
f

 D
IT

 o
n

C
o
d
e

R
eu

sa
b

il
it

y

Metric Value of DIT

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

435 | P a g e

www.ijacsa.thesai.org

Fig. 3. Affect of RFC on Code Reusability (Synthetic)

Fig. 4. Affect of RFC on Code Reusability (Original)

Fig.3 shows the outcome of the synthetic data where the
parameters are kept in random state, which is less likely to
happen in complex software projects. Although the outcome
shows an increase in code reusability, there could be possibly
latent perspective of the outcome. Hence, we use original data
from our ERP and SCM project where RFC parameters (α and
β) were structured in increasing order. The outcome shows that
there is a significant drop in code reusability. Therefore, the
outcome stated in Fig.4 is within the agreement of the
hypothesis that “The complexity of code design and reusability
decreases for maximized outcomes of RFC.”

C. Effect of NOC on Code Reusability:-

Fig.5 highlights the effect of NOC over code reusability.
The outcome shows that code reusability has significantly
improved with the numerical values mentioned in Table 1. A
closer look at the numerical values will show that parameters
(α and β) are in the same trend of maximization order.
Therefore, overall it can be said that increase in NOC has
resulted in improved code reusability. The prime reason behind
this is larger values of NOC will represent maximized amount
of base classes that results in significant code reusability.

Therefore, the null hypothesis stating “Code reusability
improves for increasing values of NOC present in class” is
found accepted.

Fig. 5. Affect of NOC on Code Reusability

D. Effect of CBO on Code Reusability:-

It is said that higher values of CBO are not good for
software engineering as excessive coupling can turn the design
evaluation quite difficult and complex. But, software projects
using object-oriented may more likely have CBO values than
expected. Hence, it is found that proposed system can
drastically enhance the code reusability even if the software
projects do have higher CBO values. Fig.6 shows that with
increasing CBO values for any forms of object-oriented codes,
it is feasible to get more values of code reusability. Hence, the
hypothesis stating that “Increased CBO values doesn’t have
much impact over code reusability” is accepted.

Fig. 6. Affect of CBO on Code Reusability

E. Effect of WMC on Code Reusability:-

Theoretically, it is expected that increased values of WMC
may result in design complexity. However, when we
performed our evaluation using proposed technique, we found
no much adverse effect on code reusability for certain initial
rounds. A closer look at the outcomes shown in Fig.7 will
highlight that although code reusability increases due to
exposure to various methods used to the classes, code
reusability increases, at the same time, the performance is
found to be degrading for further increment in (α and β)
parameters of WMC. Hence, the null hypothesis stating “Code
reusability declines for increasing values of WMC in every
class” is found accepted in proposed system.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 3 5 7 9 11

A
ff

ec
t

o
n
 R

F
C

 o
n
 C

o
d
e

R
eu

sa
b
il

it
y

Metric Value of RFC

0.00

50.00

100.00

150.00

200.00

250.00

300.00

1 2 3 4 5 6 7 8 9 1011

A
ff

ec
t

o
f

R
F

C
 o

n
 C

o
d
e

R
eu

sa
b
il

it
y

Metric Value of RFC

0.00

100.00

200.00

300.00

1 2 3 4 5 6A
ff

ec
t

o
f

N
O

C
 o

n

C
o

d
e

R
eu

sa
b

il
it

y

Metric Value of NOC

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10A
ff

ec
t

o
f

C
B

O
 o

n
 C

o
d
e

R
eu

sa
b
il

it
y

Metric Value of CBO

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

436 | P a g e

www.ijacsa.thesai.org

Fig. 7. Affect of WMC on Code Reusability

A closer look at the cumulative outcome of the study will
show that code reusability increases for some CK metric
parameters and degrades for some other CK metric parameter.
Our observation encounters more processing and analysis time
to carry out testing. Our work was in the direction of enhanced
cohesion between the significant methods as well as to ensure
that there is a minimal coupling between the potential objects.

This condition has ensured to retain better code reusability by
ensuring higher cohesion among the classes. If the intensity of
the coupling is more than we found such cases to be quite non-
supportive of code reusability. Moreover, it is also explored
that inclusion of number of methods in ERP projects causes the
design class to incur more computational complexity and
thereby leads to inferior design patterns. Internal callbacks and
communication for message more than 150 cause degradation
in the code reusability.

From the result discussed in this section, it can be seen that
there are various factors of CK metric that directly impacts the
code reusability process. During working on the new set of the
code, it is essential that new components and classes designed
should have to be within the anticipated outcomes to claim for
reusable codes. Hence, our proposed technique can present a
framework that can be used to measure the relationship
between the CK metric and code reusability. The design to be
incorporated into the new set of the code must have a
permissible limit of code reusability, which the designer can
easily set up during the formal verification process. The
proposed system is highly extensible for various forms of
software projects other than ERP and SCM.

TABLE II. NUMERICAL OUTCOMES OF STUDY

ERP Project (C: 220, MC: 120) SCM (C:570, MC: 380)

Metric Value α β Cr α β Cr Avg

DIT

1 26 3 11.54 32 3 9.38 10.46

2 36 9 25.00 59 15 25.42 25.21

3 63 35 55.56 84 46 54.76 55.16

4 33 24 72.73 121 90 74.38 73.55

5 36 31 86.11 132 113 85.61 85.86

6 18 18 100.00 112 110 98.21 99.11

RFC

5 11 1 9.09 3 1 33.33 21.21

10 12 2 16.67 9 2 22.22 19.44

20 8 2 25.00 4 2 50.00 37.50

34 27 4 14.81 6 2 33.33 24.07

48 7 1 14.29 21 5 23.81 19.05

65 5 1 20.00 34 11 32.35 26.18

85 13 7 53.85 63 37 58.73 56.29

100 41 26 63.41 81 54 66.67 65.04

140 25 18 72.00 97 76 78.35 75.18

165 31 24 77.42 119 100 84.03 80.73

200 33 31 93.94 92 89 96.74 95.34

NOC

0 209 1 0.48 530 1 0.19 0.33

1 3 1 33.33 2 2 100.00 66.67

2 4 1 25.00 3 3 100.00 62.50

3 5 2 40.00 4 4 100.00 70.00

4 5 2 40.00 3 5 166.67 103.33

6 6 1 16.67 1 5 500.00 258.33

CBO

1 3 1 33.33 9 1 11.11 22.22

3 9 2 22.22 10 2 20.00 21.11

4 7 2 28.57 13 2 15.38 21.98

5 18 4 22.22 15 3 20.00 21.11

8 42 11 26.19 21 7 33.33 29.76

10 23 8 34.78 60 25 41.67 38.22

14 27 18 66.67 76 49 64.47 65.57

19 24 21 87.50 88 69 78.41 82.95

21 34 31 91.18 131 111 84.73 87.95

24 31 29 93.55 119 107 89.92 91.73

WMC

3 13 4 30.77 2 1 50.00 40.38

5 20 4 20.00 5 2 40.00 30.00

8 22 5 22.73 16 4 25.00 23.86

10 15 5 33.33 28 10 35.71 34.52

14 22 11 50.00 57 28 49.12 49.56

0.00

50.00

100.00

150.00

1 2 3 4 5 6 7 8 9 10

A
ff

ec
t

o
fW

M
C

 o
n

C
o
d
e

R
eu

sa
b
il

it
y

Metric Value of WMC

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

437 | P a g e

www.ijacsa.thesai.org

18 23 13 56.52 88 48 54.55 55.53

30 15 10 66.67 51 49 96.08 81.37

50 37 28 75.68 69 51 73.91 74.79

80 24 30 125.00 44 60 136.36 130.68

100 31 38 122.58 184 164 89.13 105.86

F. Outcome Assessment

To validate the proposed system, we have developed a
simple assessment model. The prime theme of this validation
model is to understand the effect of increasing uncertainty in
the three types of software projects towards code reusability
(Fig.8). The assessment model is designed over Matlab, which
takes the empirical values of metric software suite from
Customer Relationship Management project, Supply Chain
Management project, and Enterprise Relationship Management
project. Using the introduced equation of code reusability, the
system performs the computation. The outcome of the code
reusability will be subjected to various levels of uncertainties.
We define uncertainties as various hidden parameters like skill
gap, requirement volatility, ignorance of complying with
software development life, project slippage, etc., which is
beyond the control of any human. We like to understand that in
the case of hidden or unforeseen circumstances in any project
management team, what is the performance of code reusability
in that case? Hence, we apply the mathematical approach in
this regard by using Markov model [36]. Applying Markov
modeling, it becomes possible to map all the real-time
uncertainties into an empirical parameter and apply it to the
proposed code reusability model to understand its behavior.

Software Projects

CRM ERP SCM

DIT WMC NOC CBO RFC

Calculate Code Reusability

Use Markov

Model

Develop

Uncertainty
Assess Code Reusability Trends

Fig. 8. Model for Assessing Proposed System

Fig. 9. Comparative Analysis of Software Projects

Fig.9 shows the comparative analysis of the three different
software projects based on object-oriented designs using a
scattered diagram. The outcome shows dominancy of ERP
projects, where the code reusability is found to be quite
significantly increase with the increase of uncertainty.
However, the adverse side of this outcome is that such
dominant result is only visible till 0.01-0.04 levels of
uncertainty values. Better than ERP project, SCM project was
found with sparse but increasing values of code reusability. A
closer look at the scattered plot will show that there is a
significant increase in code reusability from 0.01-0.08 values
of uncertainties. However, owing to the inclusion of a
maximum number of classes and methods, the values of DIT
and WMC increases resulting in design complexities. This is
the main reason code reusability for SCM can be evaluated in a
sparse manner and slower pace, but with better accuracy
compared to ERP projects. We have also testified the
assessment model with a middle-sized CRM project. Normally,
the amount of design complexities CRM projects is highly
increased in multifold. However, using the proposed equation,
we testified our hypothesis and found that code reusability to
be significantly enhanced for CRM project in spite of massive
design complexities involved in project architecture.

X. CONCLUSION

At present, we have drawn a relationship between the most
standard software metrics and code reusability. We have
testified it on three complex software projects of object-
oriented designs and found that our model can significantly
calculate code reusability for any extent of complexities even it
is very much uncertain. Using mathematical and stochastic
approach of Markov Modelling, we proved that our model can
extract more data of code reusability on increasing
uncertainties. Design pattern plays an important role in
software engineering. With the increasing demands of the
customers, the IT industries and software project developers
are increasingly seeking consultation to minimize the cost of
production from more than a decade. In the form of various
cost-cutting procedures, code reusability is the most prominent
one and requires a highly skilled technical architecture to take a
decision. A code reusability deals with two challenging aspects
i.e. i) deciding which part of the code to be retained same and
ii) deciding which part of the code will need to be designed
from scratch. In the first challenging aspect, a developer can
easily decide on what part of the code will be required to be
retained based on the client’s requirement. However, the
difficult part is to make a decision related to the new code that
is required to be built from the base. Normally, depending on
an experienced architecture, the new set of the code that needs
to be programmed is designed in such a way that it should
posses a certain level of code reusability for the future client,
which is unpredictable. An unpractical design, in this case, will
go to complete loss of production and may not meet the
reusability factor for new projects. Hence, our future direction
of study will focus on estimating the level of code reusability
for complex software projects. We anticipate that our design

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

438 | P a g e

www.ijacsa.thesai.org

concept will highly encourage and motivate the stakeholder to
consider it as most cost-effective tool to date.

REFERENCES

[1] J. Mishra, A. Mohanty , “Software Engineering", Pearson Education
India, Electronic books, pp. 387, 2011

[2] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A.
Wesslén, "Experimentation in Software Engineering: An Introduction",
Springer Science & Business Media, pp. 204, 2012

[3] S. K. Dubey, A. Rana, A Comprehensive Assessment of Object-
Oriented Software Systems Using Metrics Approach, International
Journal on Computer Science and Engineering, vol. 02, no. 8, pp.2726-
2730, 2010

[4] N. Mohammed, A. Govardhan, Comparison between Traditional
Approach and Object-Oriented Approach in Software Engineering
Development, International Journal of Advanced Computer Science and
Applications, vol. 2, no. 6, 2011

[5] B.Jalender, A.Govardhan, P.Premchand, Designing code level reusable
software components, International Journal of Software Engineering &
Applications (IJSEA), vol.3, no.1, 2012

[6] “Classification of Software Metrics in Software Engineering”,
http://ecomputernotes.com/software-engineering/classification-of-
software-metrics, Retrived, 10th Dec, 2012

[7] M. Sarker, “An Overview of Object Oriented Design Metrics”, Master
Thesis Department of Computer Science, Umea University , Sweden,
2005

[8] “Metamil”, http://www.metamill.com/, Retrived, 10th Dec, 2015

[9] “Sourceforge”, metrics.sourceforge.net, Retrived, 10th Dec, 2015

[10] “Codeswat Custom Solutions”, http://codeswat.com/, Retrived, 10th
Dec, 2015

[11] J. Alghamdi, R. Rufai, and S. Khan. Oometer: A software quality
assurance tool. Software Maintenance and Reengineering, 2005. CSMR
2005. 9th European Conference, pp. 190–191, 2005

[12] V. R. Basili, L. Briand and W.L. Melo, “A Validation Of Object-
Oriented Design Metrics As Quality Indicators”, Technical Report,
Univ. of Maryland, Dep. of Computer Science, College Park, MD,
20742 USA. April 1995.

[13] C.N.S.Anna, A.F.Garcia, C.V.F.G. Chavez, C.J.P.d. Lucena, A.V. Staa,
“On the Reuse and Maintenance of Aspect-Oriented Software:An
Assessment Framework”, PUC-RioInf.MCC26/03 Agosto, 2003.

[14] P.S,Kaur, and A. Singh.,”Modeling of Reusability of Object Oriented
Software System”, World Academy of Science, Engineering and
Technology, vol. 56, pp.162. 2009.

[15] M. Kaur, M. Mahajan, P.S. Sandhu, “A k-NN based approach for
Reusability Evaluation of Object-Oriented Based Software Components,
International Conference on Information and Communications Security,
2011

[16] U. Kumari, S. Bhasin. Application of object-oriented metrics to C++ and
Java: A comparative study. ACM SIGSOFT Software Engineering
Notes, vol. 36(2), pp.1-10, 2011

[17] P. Edith Linda, E. Chandra and J. Sharmila, “An Approach to Evaluate
Object Oriented Class Structure using Score Carding Framework”,
International Journal of Software Engineering and Its Applications, vol.
9, No. 3, pp. 9-16, 2015.

[18] D. Wu, L.Chen, Y. Zhou and B. Xu, "A metrics-based comparative
study on object-oriented programming languages", State Key Laboratory
for Novel Software Technology at Nanjing University, Nanjing, China,
DOI reference number: 10.18293/SEKE2015-064, 2015.

[19] K.P. Srinivasan And T. Devi, “A Comprehensive Review And Analysis
On Object-Oriented Software Metrics In Software Measurement”,
International Journal on Computer Science and Engineering (IJCSE),
vol. 6, no.07, 2014..

[20] M. Scotto, A. Sillitti, G. Succi, T. Vernazza, “A relational approach to
software metrics”, ACM Symposium on Applied Computing, pp.1536-
1540, 2004.

[21] S. Singh, P. Singh, N. Mohan, P.S. Sandhu, “Logistic Model Trees
based Approach for Prediction of Reusability of Object Oriented
Software Components”, International Journal of Research in

Engineering and Technology, vol. 1, No. 3, 2012

[22] R. Subramanyam, M.S. Krishnan, “Empirical Analysis of CK Metrics
for Object-Oriented Design Complexity: Implications for Software
Defects”, IEEE Transactions on Software Engineering, vol. 29, no. 4.
2003.

[23] A. Shaik, C.R.K. Reddy, B. Manda, C. Prakashini and K. Deepthi,
"Metrics for Object Oriented Design Software Systems: A
Survey",Journal of Emerging Trends in Engineering and Applied
Sciences (JETEAS), vol. 1(2), pp.190-198, 2010.

[24] S. I. Zahara, M. Ilyas and T. Zia, “A Study of Comparative Analysis of
Regression Algorithms for Reusability Evaluation of Object Oriented
Based Software Components", International Conference on Open Source
Systems and Technologies (ICOSST), 2013.

[25] H.M. Manoj and A.N. Nandakumar, “A Survey on Modelling of
Software Metrics for Ranking Code Reusability in Object Oriented
Design Stage", International Journal of Engineering Research &
Technology (IJERT), vol. 3, Issue. 12, 2014.

[26] A. Oberoi and D. Arora,"Quality Model For Analysis And Implentation
Of CK Metrics Through Neural Networks: International Journal of
Engineering Research and Applications (IJERA) ISSN: 2248-
9622.National Conference on Advances in Engineering and Technology,
AET, 2014.

[27] N.Goyal and D. Gupta, "Reusability Calculation of Object Oriented
Software Model by Analyzing CK Metric",International Journal of
Advanced Research in Computer Engineering & Technology
(IJARCET), vol. 3 Issue. 7, 2014.

[28] N.Jayalakshmi and Nimmati Satheesh," Software Quality Assessment in
Object Based Architecture",International Journal of Computer Science
and Mobile Computing, vol.3, issue.3, pg. 941-946, 2014.

[29] A.V. Hudli and R.V. Hoskins: “Software metrics for OOD”, IEEE
International conference, 2002.

[30] H.Lilu, K.Zhou and S.Yang: “Quality metrics of OOD for Software
development and Re-development”, First Asia-Pacific Conference on
Quality Software, 2002.

[31] N. Paliwal, V.Shrivastava and K. Tiwari, "An Approach to Find
Reusability of Software Using Objet Oriented Metrics", International
Journal of Innovative Research in Science, Engineering and Technology,
vol. 3, issue 3, 2014.

[32] N. Chauhan and M. V.Gupta, "Evaluation Of Metrics And Assessment
Of Quality Of Object Oriented Software", IJRET: International Journal
of Research in Engineering and Technology, vol. 03, special issue: 14,
2014.

[33] D. Gupta, V. K. Goyal and H. Mittal, Comparative Study of Soft
Computing Techniques for Software Quality Model, International
Journal of Software Engineering Research & Practices, vol.1, issue: 1,
2011.

[34] R. Alcalá, J. Casillas, O.Cordón, and F. Herrera, “Linguistic modeling
with weighted double-consequent fuzzy rules based on cooperative co-
evolutionary learning”, Integrated Computer-Aided Engineering, vol.
10, no. 4, pp. 343-355, 2003

[35] "SPSS software", http://www-01.ibm.com/software/analytics/spss/,
Retrieved 10th Dec, 2015

[36] M. Stamp “A revealing introduction to hidden Markov models”,
Department of Computer Science San Jose State University, 2004.

