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Abstract—Bayesian network (BN) classifiers use different 

structures and different training parameters which leads to 

diversity in classification decisions. This work empirically shows 

that building an ensemble of several fine-tuned BN classifiers 

increases the overall classification accuracy. The accuracy of the 

constituent classifiers can be achieved by fine-tuning each 

classifier and the diversity is achieved using different BN 

classifiers. The proposed ensemble combines a Naive Bayes (NB) 

classifier, five different models of Tree Augmented Naive Bayes 

(TAN), and four different model of Bayesian Augmented Naive 

Bayes (BAN). This work also proposes a new Distance-based 

Diversity Measure (DDM) and uses it to analyze the diversity of 

the ensembles. The ensemble of fine-tuned classifier achieves 

better average classification accuracy than any of its constituent 

classifiers or the ensemble of un-tuned classifiers. Moreover, the 

empirical experiments present better significant results for many 

data sets. 
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I. INTRODUCTION 

Bayesian network classifiers are probabilistic models that 
encode the conditional independence relationships between the 
attributes in different ways. There are many learning 
algorithms to build TAN and BAN structure, such as TAN 
search, K2 search, Tabu Search, Hill Climber Search and 
Repeated Hill Climber Search.  These search algorithms yield 
different TAN and BAN classifiers. 

Building ensembles of classifiers is a powerful method for 
obtaining better classification accuracy through combining the 
classification of multiple classifiers [1]. Boosting [2] [3] and 
bagging [2] [3] are the two most commonly used methods for 
building ensembles of homogenous classifiers. On the other 
hand, stack generalization (stacking) [4] and ensemble 
selection [5] are suitable for building ensembles of 
heterogeneous classifiers. 

Diversity and the accuracy of the base classifiers are 
important factors to achieve a powerful ensemble of classifiers. 
It would be meaningless to combine several classifiers that 
make the same predictions. The intuition is that if many 
classifiers make errors on different instances, the combination 
of these classifiers can reduce the overall error and improve the 
performance of the ensemble system [6]. The main advantage 

of ensemble different BN classifiers is that it is unlikely that all 
classifiers will make the same mistake. It would also be 
meaningless to combine classifiers that are too weak. 
Therefore, in order to build ensemble of classifiers with better 
accuracy, we need to combine relatively accurate and diverse 
classifiers. 

The diversity of classifiers is achieved by using single 
learning algorithm with different in data sets (using sampling), 
training parameters, or subset of features [1] [7] [8]. These 
methods are considered homogenous methods because they use 
the same learning algorithm. On the other hand, an ensemble 
might consist of a group of classifiers, each built using the 
same training data but a different learning algorithm [7] [9]. 
Ensembles of heterogeneous classifiers might be more suitable 
if the learning algorithms are stable in the sense that a small 
change in the training data does not lead to a substantially 
different classifier. Heterogeneity might be more suitable at 
achieving diversity in this case. Naive Bayes (NB) and Tree 
Augmented Naive Bayesian (TAN) are known to be stable 
algorithms [10] [11]. 

We empirically show that ensemble several fine-tuned BN 
classifiers, namely: fine-tuned Naive Bayesian classifiers 
(FTNB) [12], fine-tuned TAN (FTTAN) [13] and BAN 
(FTBAN) classifiers, achieves better classification accuracy for 
many data sets, than an ensemble of un-tuned classifiers or any 
of its constituent classifiers. We also propose a Distance-base 
Diversity Measure (DDM) and use it to analyze our results.  
Since the error rate of different BN classifiers is below 50%, 
we expect that the ensemble classifier will yield better 
classification accuracy over the constituent classifiers. In this 
research, we achieve diversity by using different types of BN 
classifiers by using NB classifier, TAN classifier, and BAN 
classifier to construct an ensemble of classifiers. Moreover, we 
use different models of TAN and BAN by using different 
search algorithms to build its structure. Also, by using fine-
tuned classifiers [12] [13], we are constructing an ensemble of 
relatively accurate classifiers. This work improved the 
classification accuracy of BN classifiers by building three 
different ensemble classifiers:  1) the original un-tuned 10 BN 
classifiers (NB, five models of TAN and four models of BAN), 
2) the corresponding 10 fine-tuned BN classifiers, 3) a 
combination of all previous twenty BN classifiers. We also 
compared the results these three different ensembles of 
classifiers. 
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This work is structured as follows: in section II we review 
the related work on building ensembles of BN classifiers. In 
section III, we present our BN ensembles of classifiers. Section 
IV presents the experimental results and a comparison between 
the different ensembles. Section V is the conclusion. 

II. RELATED WORK 

Diversity among individual classifiers is important in order 
for an ensemble to achieve better accuracy than the accuracy of 
any of constituent classifiers. Usually diversity of the base 
classifiers is achieved by training single learning algorithm on 
different data sets (bootstrap resampling) [11] [14] [15] [16], 
different parameters [14], or different features [1] [7] [8]. 
However, some works achieve diversity by training different 
learning algorithms on the same data.  Ma and Shi [14] propose 
TAN learning algorithm called Random Tree-Augmented 
Naive Bayes (RTAN) that generates different TAN classifiers 
to be combined in an ensemble classifier. The algorithm builds 
TAN model by selecting the arcs whose conditional mutual 
information is larger than a certain threshold value. RTAN 
algorithm builds different TAN models by using different 
threshold values and different start edges. RTAN algorithm is 
trained on different training subsets, and then the different 
TAN classifiers to construct TAN ensemble classifier using a 
majority of votes. Their experimental results show that bagging 
Multi-TAN ensemble classifier has higher classification 
accuracy than the standard TAN classifier. Also, Shi et. al [11] 
used RTAN algorithm for boosting MultiTAN that shows 
higher classification accuracy than standard TAN classifier. 
Sun and Zhou [15] [16] used a boosting technique that is 
characterized by the way in which the hypothesis weights are 
selected, and by the instance weight update step. They used 
boosting to combine multiple TAN classifiers and compared it 
with Boosting-BAN classifiers. Their experimental results 
show that the Boosting-BAN has higher classification accuracy 
than Boosting-MultiTAN on noise-free data. Moreover, Sun 
and Zhou [17] built an ensemble combing Boosting-BAN and 
Boosting-MultiTAN using the sum voting methodology. The 
sum rule adds all confidence scores of sub-ensemble Prediction 
for each class and the class with the highest sum wins the 
election. They report that their proposed ensemble classifier is 
significantly more accurate than TAN, BAN, Boosting-BAN 
and Boosting-MultiTAN methods. Tsymbal et al. [8] 
developed an ensemble of NB classifiers that randomly 
samples the feature space. They found that the performance of 
their ensemble of classifiers performed better than a single 
naive Bayesian classifier. Lee and Cho [7]  combined three 
different classifiers to build an ensemble. They created a 
General Bayesian network (GBN) to identify the variables 
inside the Markov blanket of GBN’s class node, and then used 
those selected variables to create a GBN-assisted ensemble by 
combining GBN, decision tree, and/or SVM using voting and 
stacking combination strategies. They found that the ensemble 
systems generally improved the prediction accuracy. Sakkis, et 
al. [18] use stacked generalization approach to anti-spam 
filtering. They combined a memory-based classifier and a 
Naïve Bayes classifier in an ensemble classifier. Their 
experiments improved the performance of anti-spam filter and 
outperformed the two base classifiers. They report that the 
improvement of the ensemble of classifiers is due to the high 

diversity of the two base classifiers. Jing et al. [19] construct an 
ensemble Bayesian belief network (BBN) and exploit TAN 
learning algorithm to build a BBN structure. They combined 
parameter boosting and structure learning to improve the 
classification accuracy of BBN classifiers. Their algorithm 
goes through a fixed number of iterations and stops if the 
training error increases. At the beginning of each iteration a 
training set and its corresponding weights for the data points 
are given to the TAN algorithm to build a BBN Classifier. The 
TAN algorithm is used to build base classifier, it starts with an 
empty set and adds i edges with the highest mutual information 
to a naïve BBN. The training error of the resulting TAN 
classifier is then used to determine the weight of the test data 
points in subsequent iterations. According to their results, their 
boosted BBNs have comparable or reduced average testing 
error than NB and TAN. This work has an advantage over the 
previous works by using fine-tuned BN classifiers. Fine tuning 
process address the unreliable estimation of the attributes 
conditional probabilities due to the lack of data and improve 
BN classifiers accuracy by finding more accurate estimation of 
the probabilities terms. 

III. ENSEMBLE BAYESIAN NETWORK CLASSIFIERS 

In this work, we build an ensemble of BN classifiers. Each 
classifier in the ensemble is trained using the same data. 
Stacking [4] is employed to build three different ensembles. 
Stacking is employed to combine classifiers built by different 
learning algorithms. The main idea behind Stacking is to use 
the classifications of a set of base classifiers (level-0) estimated 
by using cross-validation, to learn a meta classifier (level-1) 
which gives the final prediction [20]. 

In this research, stacking splits the data set into two disjoint 
parts (using 10-fold Cross-Validation), then train all BN base 
learners on the first part. Then test the base learners on the 
second part. The predictions of all BN base classifiers are 
combined by using simple plurality voting to produce an 
ensemble of BN classifiers. Diversity is achieved by using 
three different types of BN (NB, TAN and BAN) classifiers. 
Moreover, we exploit the structure learning algorithms to build 
five different TAN classifiers and four different BAN 
classifiers. The search algorithms that were used to build 
different TAN classifiers are: TAN search, K2 search, Tabu 
Search, Hill climber Search and Repeated Hill Climber Search. 
The last four search techniques were used also to build four 
different BAN classifiers. We also, used their corresponding 
fine-tuned classifiers: fine-tune NB (FTNB) [12], fine-tune 
TAN (FTTAN) [13] and fine-tune BAN (FTBAN).  Three 
ensemble classifiers were built; the first one combines 10 BN 
classifiers (NB, five models of TAN and four models of BAN). 
The second ensemble classifier combines the 10 corresponding 
fine-tuned classifiers, and the last one combines all 20 BN 

classifiers (fine-tuned and un-tuned). 

A. Distance-Based Diversity Measure (DDM) 

Since the diversity of the base classifiers has direct effect 
on the ensemble's classification accuracy, there is a need to be 
able to measure it. Kuncheva and Whitaker [21] compared 
several measures of diversity and concluded that all measures 
had approximately equally strong relationships and they were 
strongly correlated. Some of their experiments revealed the 
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inadequacy of these measures to predict the accuracy of the 
ensemble. The low correlation between these measures on the 
one hand and the improvement in classification accuracy on the 
other hand, is discouraging. This work proposes a new 
distance-based diversity measure and uses it to analyze the 
relationship between the base classifiers diversity and the 
ensemble accuracy. 

We have M classifiers and C classes, if we ignore accuracy 
and the ideal diverse ensemble would give equal votes for each 
class. For example, if we have 10 classifiers and 5 classes, the 
ideal (most diverse) vote vector for the five classes would be 
(2, 2, 2, 2, 2). In other words, the vote vector in which each 
class would get M/C votes. The least diverse ensemble is the 
one that has all its constituent classifiers voting for the same 
class, while all remaining classes have zero votes. In our 
example, the vote vector for the five classes would be 
something like (0, 0, 0, 0, 10). A good diversity measure would 
be based on the distance between the ideal vote vector and the 
actual vote vector for all instances. The small distance indicates 
more diverse classifiers and large distance indicates less 
diverse classifiers. We can compute the distance for an instance 
i giving its voting vector    as follows: 

     (  )    ∑ |
 

 
   ( )|
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This distance should be computed for N instances in the 
training set. 
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Therefore, the maximum distances for all 
instances          . 

The Distance-Based Diversity Measure (DDM) is defined 
as follows: 
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   )

         
   (4) 

Thus, diversity ranges from zero to one, where zero 
indicates the lowest diversity and one indicates the highest 
diversity. 

IV. EXPERIMENTAL AND RESULTS 

In all experiments, we used 40 data sets, obtained from the 
UCI repository [22]. The BAN models used in our experiments 
had a maximum of three parents for each attribute node. All 
ordinal attributes were discretized using Fayyad et al.’s [23] 
supervised discretization method, as implemented in Weka. 
The missing values in the data sets were simply replaced by the 
most common values. Ten-fold cross validation was used in all 
experiments. All experiments were implemented in the Weka 

workframe and used as much of the Weka classes as possible. 
We built three ensembles of classifiers that are based on 
different types of BN classifiers (NB, TAN and BAN). The 
ensemble of classifiers uses a simple majority (plurality) voting 
technique to classify instances. 

We used classification formulas Eq. (5) for NB and Eq. (6) 
for TAN and BAN classifiers, as proposed by Friedman et al. 
[24]. 

                      ( ) ∏  (    )   (5) 

 (         )   ( )∏  (         (  )  )
 
        (6) 

We used Laplace estimator to estimate all probabilities 
values. 

 (   )  (        ) (         ) (7) 

Where K is the number of different values of x; and Alpha 
is a small positive value. In our experiments, we used Weka 
simple estimator with Alpha = 0.5 to estimate the conditional 
probability of NB (which is the default value used by Weka for 
NB) and we choose Alpha = 0.2 for TAN and BAN (which 
gave us best results). We experimented with different values 
for Alpha and 0.2 gave us the best results. 

The tables from 1 to 5 show the results of our three 
ensembles of BN classifiers. Also, it compares each ensemble 
BN classifier with its individual base classifiers.  The last four 
rows of each table show the average values (classification 
accuracy over the 10 folds and ensemble diversity), the number 
of data sets with better results, and the number of data set with 
significantly better results at the 95% and 90% confidence 
levels. A paired t-test with confidence levels of 95% and 90% 
was used to determine whether the differences were 
statistically significant. The better results are highlighted in 
bold in the tables. The significant results, at 95% confidence 
level, are highlighted in bold and underlined, while the 
significant results at 90% confidence level are double 
underlined. 

A. Stacking BN classifiers 

The first experiment combined ten BN classifiers, an NB, 
five TAN classifiers and four BAN classifiers. Different 
structure learning algorithms were used to build different TAN 
and BAN classifiers. The five different TAN classifiers are 
distinguished by using the name of the search algorithm used 
to build them as a postfix. Thus, we have TAN-TAN search, 
TAN-K2, TAN-tabuSearch, TAN-HillClimber and TAN-
RepeatedHillClimber. In the same way, we denoted the four 
different BAN classifiers (BAN-K2, BAN-tabuSearch, BAN-
HillClimber and BAN-RepeatedHillClimber). The Ensemble 
classifier of the ten BN classifiers is called (EBN-10). 

Table 1 shows the results of EBN-10 and the results of each 
of the constituent classifiers. It is obvious from the table that 
the average classification accuracy of EBN-10 is better than the 
average accuracy of any of the constituent classifiers. The 
average accuracy of the ensemble classifier is 71.69%, while 
the average accuracy of the constituent classifiers ranges from 
64.92% to 70.88%. Moreover, the ensemble classifier 
outperforms all constituent classifiers in terms of the number 
data sets for which it achieves better and significantly better 
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results, at the 95% confidence level. EBN-10 outperformed NB 
on 20 data sets; ten of them are significantly better results. 
Regarding the TAN models, EBN-10 outperformed TAN-TAN 
search, TAN-K2 and TAN-tabuSearch on 19 data sets, five, 
four and eight of them, respectively, are significant better 
results. Also, EBN-10 classifier outperforms TAN-HillClimber 
on 15 data sets; five of them are significant better results and 
outperforms TAN-RepeatedHillClimber on 21 data sets; seven 
of them are significant better results. The table also shows 
more obvious superior results of EBN-10 with BAN models. 
EBN-10 outperformed BAN-K2 and BAN-tabuSearch on 26 
data sets, 19 and 16 of them, respectively, are significant better 
results.  Moreover, EBN-10 classifier outperforms TAN-
HillClimber on 24 data sets; 18 of them are significant better 
results. Also, EBN-10 classifier outperforms TAN-
RepeatedHillClimber on 27 data sets, 19 of them are 
significant better results. 

B. Stacking Fine-Tuned BN Classifiers 

In second experiment, we constructed an ensemble of the 
same classifiers but after fine-tuning them. We used the fine-
tune NB (FTNB) [12], and its adapted (FTTAN) [13] version 
to fine-tune TAN learning algorithm and fine-tune BAN 
(FTBAN). Fine-tuning each classifier improves the 
classification accuracy by finding more accurate estimation of 
probabilities terms. The enhanced accuracy of BN classifiers 
encouraged us to build an ensemble of these fine-tuned 
classifiers. The ensemble of the 10 fine-tuned BN classifiers is 
called (EFTBN-10). 

Table 2 shows the results of EFTBN-10 and the results of 
the each of the constituent classifiers. The average 
classification accuracy of EFTBN-10 is better than all 
individual FTBN classifiers. The average accuracy of ensemble 
fine-tuned classifier is 72.48%, while the 10 FTBN classifiers 
average accuracy range between 66.08% and 72.01%. On other 
hand, the fine-tuned ensemble classifier outperform all 
individual FTBN classifiers in the number of better and 
significantly better number of data sets at the 95% confidence 
level. EFTBN-10 outperformed FTNB on 26 data sets; eight of 
them are significantly better results. Also, EFTBN-10 
outperformed FTTAN-TAN search for 23 better data sets, six 
of them are significantly better results. Moreover, EFTBN-10 
outperformed FTTAN-K2 and FTTAN-HillClimber search on 
18 data sets, four and six of them are significantly better 
results, respectively. Also, EFTBN-10 outperformed FTTAN-
TabuSearch and FTTAN-Repeated HillClimber on 22 better 
data sets, 10 and six of them are significantly better results, 
respectively. 

The improvements of EFTBN-10 are even more obvious 
compared with the fine-tuned BAN classifiers (FTBAN). 
EFTBN-10 is better than FTBAN-K2 for 27 data sets, 17 of 
them are significantly better results. EFTBN-10  also achieved 
results for 27 data sets than FTBAN-TabuSearch, 12 of them 
are significantly better results. Moreover, EFTBN-10 
outperformed FTBAN-HillClimber and FTBAN-
RepeatedHillClimber on 27 and 30 better data sets, 19 and 16 
of them are significantly better results, respectively. The 
superiority of EFTBN-10 is even more obvious at 90% 
confidence level (see the last row of Table 2). 

C. Stacking BN classifiers and their corresponding fine-tuned 

classifiers 

In the third experiment, we built an ensemble by combining 
the previous twenty BN classifiers (10 BN classifiers and their 
corresponding fine-tuned BN classifiers).We call this ensemble 
EBN-20. 

Table 3 and Table 4 show the results of EBN-20 compared 
to the result of each of the constituent classifiers. The result of 
this ensemble is a compromise of the previous two classifiers. 
The tables show that the average classification accuracy of 
EBN-20 is 71.56% which is better than the average accuracy of 
any of its 20 constituent classifiers, except for FTTAN-TAN 
and FTTAN-K2. The result not a surprising because TAN 
search and K2 search algorithms have exhibited excellent 
performance in data mining [25] [26] and the fine tuning 
process makes them even better. The degradation of EBN-20 
average accuracy is probably because EBN-20 combines fine-
tuned and non-fine-tuned classifiers, which reduces diversity, 
as the constituent classifiers are not very different classifiers. In 
the terms of number of better and significantly better data sets 
at 90% confidence level, EBN-20 outperformed all the 20 
individual classifiers. Also, EBN-20 outperformed all of the 20 
classifiers with respect to the number of data sets it achieves 
better and significantly better data sets at 95% confidence level 
except for FTTAN-K2 classifier where it wins on four data sets 
and loses on five data sets (see Tables 3 and 4 for more 
details). 

D. Comparing the Three Ensembles 

Table 5 shows the results of comparing the three 
ensembles: ENB-10, EFTBN-10, and EBN-20. The table also 
shows the diversity value for each ensemble. As can be seen in 
table, EFTBN-10 outperforms EBN-10 with respect to the 
average classification accuracy, and the number of data sets for 
which it achieves better and significantly better results. 
EFTBN-10 achieves on average 72.47% classification 
accuracy, while EBN-10 achieves 71.69%. EFTBN-10 also 
achieves significantly better results for 6 data sets and worse 
results for only 1 data set. EFTBN-10 outperforms EBN-10 
because its constituent classifiers, namely the fine-tuned 
classifiers, are more accurate than the constituent classifiers of 
EBN-10. In fact, the proposed diversity measure shows that 
both ensembles have the same average diversity of 0.44. 

Comparing EFTBN-10 with EBN-20 shows that EFTBN-
10 also outperforms EBN-20, which has an average 
classification accuracy of 71.56%. EFTBN-10 also achieves 
better results than EBN-20 for 13 datasets 3 of them are 
significantly better and 2 are significantly worse at 95% 
confidence level. At 90% confidence level, EFTBN-10 
achieves better results for 5 data sets and worse results for 2 
data sets. This result is a little bit surprising because EBN-20 
contains much more classifiers. It contains the same classifiers 
of EFTBN-10 in addition to their un-tuned counterparts. This 
indicates EBN-20 must have less diversity than EFTBN-10, 
which is expected because the fine-tuned classifiers and their 
un-tuned counterparts are not very different classifiers. The 
proposed diversity measure actually supports this analysis. The 
diversity measure shows that EBN-20 has less diversity than 
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EFTBN-10. EBN-20 has an average diversity of 0.13 while 
EFTBN-10  has an average diversity of 0.44. 

Although EBN-10 has more diversity than EBN-20, it 
achieves worse results. Its average classification accuracy is 
71.56, while the average accuracy of EBN-20 is 71.69. 
Moreover, EBN-20 achieves better results for 16 data sets, 6 of 

them are significantly better at 90% confidence level. While 
ENB-10 achieves better results for 11 data sets only 2 of them 
are significantly better at 90% confidence level. This result 
occurred because EBN-20 contains the 10 fine-tuned version of 
the BN classifiers (in addition to their un-tuned counterparts), 
while EBN-10 contains only the less accurate un-tuned 
classifiers.  

TABLE I.  EBN-10 ENSEMBLE CLASSIFIER COMPARED TO THE 10 INDIVIDUAL BN CLASSIFIERS 

Data sets 

C1  
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C2 
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10 

C3 
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EBN-

10 
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C6 

EBN-

10 
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EBN-

10 
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TAN-

TAN 

Searc
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TAN-

K2 

TAN-

Tabu 

Searc
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TAN-

Hill 

Clim

ber 

TAN-

Repe

ated 

Hill 

Clim

ber 

BAN-

K2 

BAN-

Tabu 

Searc

h 

BAN-

Hill 

Clim

ber 

BAN-

Repe

ated 

Hill 

Clim

ber 

abalone 25.65 25.82 24.62 25.82 25.92 25.82 25.58 25.82 25.85 25.82 25.65 25.82 25.00 25.82 26.98 25.82 26.23 25.82 26.06 25.82 

auto-mpg 65.00 72.92 72.08 72.92 72.92 72.92 73.75 72.92 73.75 72.92 67.50 72.92 70.42 72.92 61.25 72.92 72.92 72.92 63.33 72.92 

balance-scale 77.60 68.64 68.64 68.64 68.64 68.64 68.80 68.64 68.64 68.64 69.28 68.64 71.36 68.64 70.24 68.64 71.52 68.64 70.24 68.64 

echocardiogram 74.32 72.97 72.97 72.97 72.97 72.97 77.03 72.97 72.97 72.97 72.97 72.97 72.97 72.97 72.97 72.97 72.97 72.97 72.97 72.97 

breast-tissue-4class 59.43 59.43 62.26 59.43 59.43 59.43 59.43 59.43 59.43 59.43 62.26 59.43 59.43 59.43 50.94 59.43 53.77 59.43 48.11 59.43 

car 73.21 82.23 81.71 82.23 82.99 82.23 83.74 82.23 84.38 82.23 82.18 82.23 66.96 82.23 66.90 82.23 67.36 82.23 66.32 82.23 

cmc 41.14 42.57 44.26 42.57 42.36 42.57 44.06 42.57 44.13 42.57 44.13 42.57 40.19 42.57 37.95 42.57 39.92 42.57 39.65 42.57 

column_2c_weka 77.74 75.48 76.45 75.48 73.87 75.48 84.52 75.48 75.48 75.48 84.84 75.48 73.87 75.48 75.16 75.48 75.81 75.48 65.16 75.48 

column_3c_weka 60.32 60.32 63.23 60.32 61.29 60.32 35.16 60.32 46.13 60.32 68.71 60.32 60.32 60.32 53.87 60.32 26.77 60.32 60.00 60.32 

dermatology 98.09 98.36 98.36 98.36 97.27 98.36 98.09 98.36 97.81 98.36 92.35 98.36 95.36 98.36 96.99 98.36 95.63 98.36 88.80 98.36 

diabetes 78.26 78.13 77.60 78.13 77.34 78.13 78.52 78.13 78.13 78.13 77.60 78.13 77.60 78.13 79.17 78.13 78.91 78.13 77.08 78.13 

disease 30.00 50.00 10.00 50.00 10.00 50.00 50.00 50.00 60.00 50.00 40.00 50.00 20.00 50.00 60.00 50.00 60.00 50.00 50.00 50.00 

ecoli 80.65 79.46 79.17 79.46 79.76 79.46 79.17 79.46 79.46 79.46 79.46 79.46 80.65 79.46 80.06 79.46 79.46 79.46 81.25 79.46 

fertility 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 

glass 70.09 72.90 72.43 72.90 74.77 72.90 72.43 72.90 72.43 72.90 72.43 72.90 72.90 72.90 65.89 72.90 67.76 72.90 70.56 72.90 

GL 61.21 63.08 61.21 63.08 62.15 63.08 66.36 63.08 66.36 63.08 65.42 63.08 62.62 63.08 52.34 63.08 45.79 63.08 50.47 63.08 

graphic.tao.radial 76.80 84.90 87.50 84.90 84.90 84.90 76.54 84.90 84.90 84.90 84.90 84.90 84.90 84.90 76.54 84.90 84.90 84.90 84.90 84.90 

hay-train 60.86 60.59 58.98 60.59 59.25 60.59 58.98 60.59 58.98 60.59 58.98 60.59 52.82 60.59 53.62 60.59 52.82 60.59 53.89 60.59 

heart-h 83.33 81.97 83.67 81.97 82.99 81.97 82.65 81.97 82.65 81.97 82.31 81.97 80.61 81.97 80.27 81.97 75.85 81.97 76.19 81.97 

iris.2D 92.67 92.67 93.33 92.67 92.67 92.67 92.67 92.67 92.67 92.67 92.67 92.67 92.67 92.67 92.67 92.67 92.67 92.67 92.67 92.67 

iris 94.00 93.33 93.33 93.33 92.67 93.33 93.33 93.33 41.33 93.33 41.33 93.33 92.67 93.33 93.33 93.33 41.33 93.33 50.67 93.33 

landformidentification 98.33 99.00 98.33 99.00 99.00 99.00 98.33 99.00 98.33 99.00 99.00 99.00 99.00 99.00 99.00 99.00 98.33 99.00 98.00 99.00 

led 74.13 73.93 74.03 73.93 73.78 73.93 73.92 73.93 73.92 73.93 73.92 73.93 73.95 73.93 73.77 73.93 73.90 73.93 73.75 73.93 

lymph 84.46 86.49 87.16 86.49 87.16 86.49 89.86 86.49 87.84 86.49 83.78 86.49 70.27 86.49 85.14 86.49 70.27 86.49 67.57 86.49 

machine 87.08 87.08 88.52 87.08 86.12 87.08 84.69 87.08 87.08 87.08 83.73 87.08 84.69 87.08 78.47 87.08 77.99 87.08 81.34 87.08 

magic 76.54 82.00 82.22 82.00 81.39 82.00 82.52 82.00 82.74 82.00 82.74 82.00 41.21 82.00 73.48 82.00 72.47 82.00 76.55 82.00 

nursery 81.40 78.06 74.05 78.06 75.80 78.06 74.26 78.06 75.35 78.06 75.79 78.06 72.56 78.06 73.56 78.06 73.28 78.06 66.15 78.06 

pendigits 87.98 97.45 96.65 97.45 97.29 97.45 96.69 97.45 97.54 97.45 97.10 97.45 80.67 97.45 96.25 97.45 92.18 97.45 90.71 97.45 

power_supply 16.24 16.24 15.63 16.24 16.24 16.24 16.24 16.24 16.24 16.24 16.24 16.24 16.24 16.24 16.24 16.24 16.24 16.24 16.24 16.24 

primary-tumor 45.72 47.79 45.13 47.79 46.61 47.79 46.90 47.79 46.02 47.79 46.61 47.79 28.61 47.79 42.77 47.79 27.43 47.79 26.25 47.79 

sonar 83.17 84.13 79.81 84.13 83.17 84.13 82.69 84.13 83.65 84.13 79.81 84.13 78.85 84.13 84.13 84.13 85.10 84.13 82.21 84.13 

SPECT-Heart 68.91 69.66 68.91 69.66 69.66 69.66 69.29 69.66 67.42 69.66 68.16 69.66 65.54 69.66 68.54 69.66 65.92 69.66 63.67 69.66 

SyntheticDataFlow 57.54 60.86 60.93 60.86 60.93 60.86 60.47 60.86 60.94 60.86 60.94 60.86 16.58 60.86 25.55 60.86 15.71 60.86 15.71 60.86 

tae 28.48 28.48 28.48 28.48 28.48 28.48 19.21 28.48 28.48 28.48 28.48 28.48 28.48 28.48 24.50 28.48 28.48 28.48 28.48 28.48 

titanic 71.01 69.47 68.83 69.47 68.70 69.47 69.70 69.47 69.47 69.47 69.47 69.47 73.69 69.47 73.24 69.47 76.51 69.47 71.38 69.47 

V1 87.36 90.57 91.26 90.57 91.49 90.57 90.57 90.57 89.43 90.57 87.82 90.57 88.74 90.57 90.11 90.57 88.74 90.57 89.20 90.57 

waveform 81.60 86.49 82.43 86.49 85.71 86.49 85.89 86.49 86.00 86.49 85.97 86.49 79.97 86.49 83.66 86.49 78.63 86.49 81.43 86.49 

wine_quality 48.18 51.15 50.77 51.15 50.54 51.15 50.25 51.15 50.25 51.15 50.74 51.15 46.08 51.15 45.23 51.15 43.48 51.15 45.41 51.15 

yeast 59.38 58.81 59.00 58.81 58.71 58.81 58.81 58.81 58.90 58.81 58.81 58.81 56.02 58.81 56.02 58.81 56.02 58.81 56.40 58.81 

zoo2_x 95.05 96.04 96.04 96.04 96.04 96.04 96.04 96.04 96.04 96.04 91.09 96.04 86.14 96.04 98.02 96.04 92.08 96.04 90.10 96.04 

Average Accuracy 70.02 71.69 70.45 71.69 70.48 71.69 70.88 71.69 70.23 71.69 69.83 71.69 65.71 71.69 68.07 71.69 65.08 71.69 64.92 71.69 

# Better 12 20 14 19 9 19 11 19 11 15 9 21 4 26 7 26 7 24 4 27 

# Sig Better 95% 1 10 1 5 2 4 2 8 2 5 2 7 1 19 1 16 1 18 0 19 

# Sig Better 90% 3 12 4 9 3 8 4 10 4 9 3 9 3 19 4 18 2 21 0 20 
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TABLE II.  EFTBN-10 ENSEMBLE CLASSIFIER COMPARED TO THE 10 INDIVIDUAL FTBN CLASSIFIERS 

Data sets 

C1  

EFT

BN-

10 

C2 

EFT

BN-

10 

C3 

EFT

BN-

10 

C4 

EFT

BN-

10 

C5  

EFT

BN-

10 

C6 

EFT

BN-

10 

C7  

EFT

BN-

10 

C8 

EFT

BN-

10 

C9  

EFT

BN-

10 

C10 

EFT

BN-

10 
FTN

B 

FTT

AN-

TAN

Searc

h 

FTT

AN-

K2 

FTT

AN-

Tabu

Searc

h 

FTT

AN-

HillC

limbe

r 

FTT

AN-

Repe

ated

HillC

limer 

FTB

AN-

K2 

FTB

AN-

Tabu

Searc

h 

FTB

AN-

HillC

limbe

r 

FTB

AN-

Repe

ated

HillC

limbe

r 

abalone 25.10 26.03 24.73 26.03 26.40 25.82 25.62 26.03 26.03 26.03 25.65 26.03 25.03 26.03 26.95 26.03 26.33 26.03 26.13 26.03 

auto-mpg 65.42 72.08 70.42 72.08 72.92 72.08 72.92 72.08 72.50 72.08 68.75 72.08 67.92 72.08 65.83 72.08 74.17 72.08 69.17 72.08 

balance-scale 77.60 73.12 72.32 73.12 75.04 73.12 74.08 73.12 73.28 73.12 73.92 73.12 73.44 73.12 74.72 73.12 69.60 73.12 72.32 73.12 

echocardiogram 40.91 75.68 75.68 75.68 75.68 75.68 79.73 75.68 75.68 75.68 71.62 75.68 75.68 75.68 75.68 75.68 75.68 75.68 71.62 75.68 

breast-tissue-4class 60.38 59.43 63.21 59.43 55.66 59.43 59.43 59.43 59.43 59.43 61.32 59.43 58.49 59.43 51.89 59.43 55.66 59.43 47.17 59.43 

car 76.22 82.23 82.35 82.23 83.04 82.23 83.33 82.23 84.38 82.23 82.00 82.23 66.90 82.23 65.34 82.23 67.48 82.23 65.86 82.23 

cmc 48.95 42.50 44.40 42.50 42.50 42.50 44.26 42.50 44.13 42.50 44.13 42.50 40.26 42.50 38.09 42.50 39.92 42.50 39.99 42.50 

column_2c_weka 74.52 80.97 80.65 80.97 80.00 80.97 84.52 80.97 76.45 80.97 85.48 80.97 79.03 80.97 82.26 80.97 81.29 80.97 69.35 80.97 

column_3c_weka 60.32 60.00 85.16 60.00 71.94 60.00 34.52 60.00 46.13 60.00 69.03 60.00 79.03 60.00 53.55 60.00 26.77 60.00 67.10 60.00 

dermatology 97.27 98.36 98.36 98.36 97.27 98.36 98.09 98.36 97.81 98.36 92.35 98.36 95.36 98.36 96.99 98.36 95.63 98.36 88.80 98.36 

diabetes 78.13 78.13 78.52 78.13 77.34 78.13 78.26 78.13 77.73 78.13 77.34 78.13 77.47 78.13 79.30 78.13 78.78 78.13 76.82 78.13 

disease 30.00 30.00 10.00 30.00 10.00 30.00 50.00 30.00 50.00 30.00 20.00 30.00 20.00 30.00 60.00 30.00 60.00 30.00 50.00 30.00 

ecoli 75.00 80.36 80.36 80.36 80.65 80.36 79.76 80.36 80.36 80.36 80.36 80.36 80.65 80.36 78.87 80.36 80.36 80.36 81.25 80.36 

fertility 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 

glass 70.09 72.43 71.50 72.43 72.90 72.43 71.96 72.43 71.96 72.43 71.03 72.43 72.90 72.43 61.68 72.43 64.49 72.43 66.36 72.43 

GL 64.02 60.28 56.07 60.28 57.94 60.28 66.36 60.28 66.36 60.28 65.42 60.28 63.55 60.28 51.40 60.28 46.73 60.28 52.34 60.28 

graphic.tao.radial 84.38 84.64 76.54 84.64 84.64 84.64 78.97 84.64 84.64 84.64 84.64 84.64 84.64 84.64 78.97 84.64 84.64 84.64 84.64 84.64 

hay-train 61.66 60.59 58.98 60.59 59.79 60.59 59.79 60.59 59.79 60.59 59.79 60.59 51.74 60.59 52.55 60.59 52.01 60.59 53.35 60.59 

heart-h 82.99 83.33 82.65 83.33 82.31 83.33 82.99 83.33 82.65 83.33 83.33 83.33 79.93 83.33 79.59 83.33 73.47 83.33 77.55 83.33 

iris.2D 97.33 97.33 93.33 97.33 97.33 97.33 97.33 97.33 97.33 97.33 97.33 97.33 97.33 97.33 97.33 97.33 97.33 97.33 97.33 97.33 

iris 95.33 93.33 94.66 93.33 94.00 93.33 94.00 93.33 42.00 93.33 42.00 93.33 93.33 93.33 94.00 93.33 42.00 93.33 51.33 93.33 

landformidentification 98.66 99.00 98.33 99.00 99.00 99.00 98.33 99.00 98.33 99.00 99.00 99.00 99.00 99.00 99.00 99.00 98.33 99.00 98.00 99.00 

led 74.03 74.15 73.97 74.15 73.78 74.15 73.90 74.15 74.02 74.15 74.00 74.15 73.97 74.15 73.85 74.15 73.95 74.15 73.53 74.15 

lymph 85.81 86.49 87.16 86.49 87.16 86.49 89.19 86.49 87.84 86.49 83.78 86.49 70.27 86.49 85.14 86.49 70.27 86.49 67.57 86.49 

machine 86.60 86.12 88.52 86.12 86.12 86.12 84.69 86.12 86.60 86.12 83.25 86.12 84.69 86.12 79.43 86.12 77.99 86.12 82.30 86.12 

magic 53.74 82.06 82.23 82.06 81.37 82.06 82.55 82.06 82.75 82.06 82.75 82.06 41.36 82.06 73.47 82.06 72.47 82.06 76.54 82.06 

nursery 84.74 77.99 73.81 77.99 75.91 77.99 74.05 77.99 75.30 77.99 75.69 77.99 72.61 77.99 73.69 77.99 73.68 77.99 66.12 77.99 

pendigits 93.73 97.45 96.65 97.45 97.29 97.45 96.69 97.45 97.54 97.45 97.10 97.45 80.67 97.45 96.25 97.45 92.18 97.45 90.71 97.45 

power_supply 14.73 16.19 15.70 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 16.19 

primary-tumor 44.25 46.61 44.54 46.61 46.31 46.61 46.02 46.61 46.31 46.61 46.61 46.61 28.32 46.61 43.07 46.61 27.73 46.61 25.66 46.61 

sonar 83.17 84.62 81.25 84.62 83.65 84.62 83.17 84.62 84.62 84.62 79.33 84.62 79.33 84.62 84.13 84.62 85.10 84.62 82.21 84.62 

SPECT-Heart 70.04 68.54 67.79 68.54 68.54 68.54 68.54 68.54 67.04 68.54 68.54 68.54 64.42 68.54 67.79 68.54 65.92 68.54 62.55 68.54 

SyntheticDataFlow 54.45 60.86 60.93 60.86 60.93 60.86 60.48 60.86 60.94 60.86 60.94 60.86 16.58 60.86 25.56 60.86 15.72 60.86 15.72 60.86 

tae 26.49 62.25 62.25 62.25 62.25 62.25 34.44 62.25 62.25 62.25 62.25 62.25 62.25 62.25 56.29 62.25 62.25 62.25 62.25 62.25 

titanic 70.06 74.56 71.42 74.56 74.33 74.56 71.97 74.56 44.30 74.56 44.30 74.56 73.97 74.56 53.48 74.56 73.97 74.56 67.83 74.56 

V1 87.82 90.34 90.80 90.34 91.26 90.34 90.11 90.34 89.66 90.34 87.82 90.34 88.51 90.34 90.11 90.34 87.82 90.34 89.20 90.34 

waveform 85.43 86.49 82.43 86.49 85.71 86.49 85.89 86.49 86.00 86.49 85.97 86.49 79.97 86.49 83.66 86.49 78.63 86.49 81.43 86.49 

wine_quality 48.76 51.33 50.74 51.33 50.28 51.33 50.45 51.33 50.45 51.33 50.80 51.33 46.14 51.33 45.14 51.33 43.66 51.33 45.35 51.33 

yeast 58.81 59.00 58.61 59.00 58.81 59.00 58.81 59.00 58.90 59.00 58.90 59.00 56.59 59.00 53.90 59.00 55.05 59.00 56.40 59.00 

zoo2_x 91.09 96.04 96.04 96.04 96.04 96.04 96.04 96.04 96.04 96.04 91.09 96.04 86.14 96.04 98.02 96.04 92.08 96.04 90.10 96.04 

Average Accuracy 69.15 72.47 71.78 72.47 72.01 72.47 71.64 72.47 70.54 72.47 69.80 72.47 67.29 72.47 68.78 72.47 66.08 72.47 66.15 72.47 

# Better 12 25 12 22 13 16 13 21 12 17 9 21 7 25 7 27 7 26 5 29 

# Sig Better 95% 3 8 3 6 1 4 3 9 2 5 2 6 1 17 2 12 2 19 2 16 

# Sig Better 90% 3 9 5 10 2 6 4 11 4 9 4 11 1 18 4 19 2 21 2 21 
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TABLE III.  EBN-20 ENSEMBLE CLASSIFIER COMPARED TO THE 20 INDIVIDUAL CLASSIFIERS 

Data sets 

C1  

  
EBN-

20 

C2  

  
EBN-

20 

C3  

  
EBN-

20 

C4  

  
EBN-

20 

C5  

  
EBN-

20 

C6  

  
EBN-

20 

C7  

  
EBN-

20 

C8  

  
EBN-

20 

C9  

  
EBN-

20 

C10  

  
EBN-

20 NB 

FTN

B 

TAN-

TAN

Searc

h 

FTT

AN-

TAN

Searc

h 

TAN-

K2 

FTT

AN-

K2 

TAN-

Tabu

Searc

h 

FTT

AN-

Tabu

Searc

h 

TAN-

HillC

limbe

r 

FTT

AN-

HillC

limbe

r 

abalone 25.65 26.09 25.10 26.09 24.62 26.09 24.73 26.09 25.92 26.09 26.40 26.09 25.58 26.09 25.62 26.09 25.85 26.09 26.03 26.09 

auto-mpg 65.00 72.50 65.42 72.50 72.08 72.50 70.42 72.50 72.92 72.50 72.92 72.50 73.75 72.50 72.92 72.50 73.75 72.50 72.50 72.50 

balance-scale 77.60 69.12 77.60 69.12 68.64 69.12 72.32 69.12 68.64 69.12 75.04 69.12 68.80 69.12 74.08 69.12 68.64 69.12 73.28 69.12 

echocardiogram 74.32 72.97 40.91 72.97 72.97 72.97 75.68 72.97 72.97 72.97 75.68 72.97 77.03 72.97 79.73 72.97 72.97 72.97 75.68 72.97 

breast-tissue-4class 59.43 59.43 60.38 59.43 62.26 59.43 63.21 59.43 59.43 59.43 55.66 59.43 59.43 59.43 59.43 59.43 59.43 59.43 59.43 59.43 

car 73.21 82.12 76.22 82.12 81.71 82.12 82.35 82.12 82.99 82.12 83.04 82.12 83.74 82.12 83.33 82.12 84.38 82.12 84.38 82.12 

cmc 41.14 42.57 48.95 42.57 44.26 42.57 44.40 42.57 42.36 42.57 42.50 42.57 44.06 42.57 44.26 42.57 44.13 42.57 44.13 42.57 

column_2c_weka 77.74 80.00 74.52 80.00 76.45 80.00 80.65 80.00 73.87 80.00 80.00 80.00 84.52 80.00 84.52 80.00 75.48 80.00 76.45 80.00 

column_3c_weka 60.32 60.00 60.32 60.00 63.23 60.00 85.16 60.00 61.29 60.00 71.94 60.00 35.16 60.00 34.52 60.00 46.13 60.00 46.13 60.00 

dermatology 97.27 98.36 97.27 98.36 98.36 98.36 98.36 98.36 97.27 98.36 97.27 98.36 98.09 98.36 98.09 98.36 97.81 98.36 97.81 98.36 

diabetes 78.26 78.13 78.13 78.13 77.60 78.13 78.52 78.13 77.34 78.13 77.34 78.13 78.52 78.13 78.26 78.13 78.13 78.13 77.73 78.13 

disease 30.00 30.00 30.00 30.00 10.00 30.00 10.00 30.00 10.00 30.00 10.00 30.00 50.00 30.00 50.00 30.00 60.00 30.00 50.00 30.00 

ecoli 80.65 80.36 75.00 80.36 79.17 80.36 80.36 80.36 79.76 80.36 80.65 80.36 79.17 80.36 79.76 80.36 79.46 80.36 80.36 80.36 

fertility 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 

glass 70.09 74.30 70.09 74.30 72.43 74.30 71.50 74.30 74.77 74.30 72.90 74.30 72.43 74.30 71.96 74.30 72.43 74.30 71.96 74.30 

GL 61.21 62.15 64.02 62.15 61.21 62.15 56.07 62.15 62.15 62.15 57.94 62.15 66.36 62.15 66.36 62.15 66.36 62.15 66.36 62.15 

graphic.tao.radial 76.80 86.44 84.38 86.44 87.50 86.44 76.54 86.44 84.90 86.44 84.64 86.44 76.54 86.44 78.97 86.44 84.90 86.44 84.64 86.44 

hay-train 60.86 60.05 61.66 60.05 58.98 60.05 58.98 60.05 59.25 60.05 59.79 60.05 58.98 60.05 59.79 60.05 58.98 60.05 59.79 60.05 

heart-h 83.33 82.65 82.99 82.65 83.67 82.65 82.65 82.65 82.99 82.65 82.31 82.65 82.65 82.65 82.99 82.65 82.65 82.65 82.65 82.65 

iris.2D 92.67 93.33 97.33 93.33 93.33 93.33 93.33 93.33 92.67 93.33 97.33 93.33 92.67 93.33 97.33 93.33 92.67 93.33 97.33 93.33 

iris 94.00 93.33 95.33 93.33 93.33 93.33 94.66 93.33 92.67 93.33 94.00 93.33 93.33 93.33 94.00 93.33 41.33 93.33 42.00 93.33 

landformidentification 98.33 99.00 98.66 99.00 98.33 99.00 98.33 99.00 99.00 99.00 99.00 99.00 98.33 99.00 98.33 99.00 98.33 99.00 98.33 99.00 

led 74.13 73.98 74.03 73.98 74.03 73.98 73.97 73.98 73.78 73.98 73.78 73.98 73.92 73.98 73.90 73.98 73.92 73.98 74.02 73.98 

lymph 84.46 86.49 85.81 86.49 87.16 86.49 87.16 86.49 87.16 86.49 87.16 86.49 89.86 86.49 89.19 86.49 87.84 86.49 87.84 86.49 

machine 87.08 86.60 86.60 86.60 88.52 86.60 88.52 86.60 86.12 86.60 86.12 86.60 84.69 86.60 84.69 86.60 87.08 86.60 86.60 86.60 

magic 76.54 82.05 53.74 82.05 82.22 82.05 82.23 82.05 81.39 82.05 81.37 82.05 82.52 82.05 82.55 82.05 82.74 82.05 82.75 82.05 

nursery 81.40 78.09 84.74 78.09 74.05 78.09 73.81 78.09 75.80 78.09 75.91 78.09 74.26 78.09 74.05 78.09 75.35 78.09 75.30 78.09 

pendigits 87.98 97.45 93.73 97.45 96.65 97.45 96.65 97.45 97.29 97.45 97.29 97.45 96.69 97.45 96.69 97.45 97.54 97.45 97.54 97.45 

power_supply 16.24 16.14 14.73 16.14 15.63 16.14 15.70 16.14 16.24 16.14 16.19 16.14 16.24 16.14 16.19 16.14 16.24 16.14 16.19 16.14 

primary-tumor 45.72 47.49 44.25 47.49 45.13 47.49 44.54 47.49 46.61 47.49 46.31 47.49 46.90 47.49 46.02 47.49 46.02 47.49 46.31 47.49 

sonar 83.17 84.62 83.17 84.62 79.81 84.62 81.25 84.62 83.17 84.62 83.65 84.62 82.69 84.62 83.17 84.62 83.65 84.62 84.62 84.62 

SPECT-Heart 68.91 68.54 70.04 68.54 68.91 68.54 67.79 68.54 69.66 68.54 68.54 68.54 69.29 68.54 68.54 68.54 67.42 68.54 67.04 68.54 

SyntheticDataFlow 57.54 60.86 54.45 60.86 60.93 60.86 60.93 60.86 60.93 60.86 60.93 60.86 60.47 60.86 60.48 60.86 60.94 60.86 60.94 60.86 

tae 28.48 31.79 26.49 31.79 28.48 31.79 62.25 31.79 28.48 31.79 62.25 31.79 19.21 31.79 34.44 31.79 28.48 31.79 62.25 31.79 

titanic 71.01 74.56 70.06 74.56 68.83 74.56 71.42 74.56 68.70 74.56 74.33 74.56 69.70 74.56 71.97 74.56 69.47 74.56 44.30 74.56 

V1 87.36 90.11 87.82 90.11 91.26 90.11 90.80 90.11 91.49 90.11 91.26 90.11 90.57 90.11 90.11 90.11 89.43 90.11 89.66 90.11 

waveform 81.60 86.49 85.43 86.49 82.43 86.49 82.43 86.49 85.71 86.49 85.71 86.49 85.89 86.49 85.89 86.49 86.00 86.49 86.00 86.49 

wine_quality 48.18 51.24 48.76 51.24 50.77 51.24 50.74 51.24 50.54 51.24 50.28 51.24 50.25 51.24 50.45 51.24 50.25 51.24 50.45 51.24 

yeast 59.38 59.00 58.81 59.00 59.00 59.00 58.61 59.00 58.71 59.00 58.81 59.00 58.81 59.00 58.81 59.00 58.90 59.00 58.90 59.00 

zoo2_x 95.05 96.04 91.09 96.04 96.04 96.04 96.04 96.04 96.04 96.04 96.04 96.04 96.04 96.04 96.04 96.04 96.04 96.04 96.04 96.04 

Average Accuracy 70.00 71.56 69.15 71.56 70.45 71.56 71.78 71.56 70.48 71.56 72.01 71.56 70.88 71.56 71.64 71.56 70.23 71.56 70.54 71.56 

# Better 14 23 12 24 11 22 15 19 10 23 14 19 13 22 15 19 10 24 13 17 

# Sig Better 95% 1 8 4 10 4 5 4 6 2 6 5 4 2 10 4 10 4 6 6 7 

# Sig Better 90% 3 11 5 13 4 12 6 11 2 10 6 7 3 14 5 11 4 13 8 10 

 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

446 | P a g e  

www.ijacsa.thesai.org 

TABLE IV.  CONTINUED - FTBN-20 ENSEMBLE CLASSIFIER COMPARED TO THE 20 INDIVIDUAL CLASSIFIERS 

Data sets 

C11  

  
EBN-

20 

C12  

  
EBN

-20 

C13  

  
EBN-

20 

C14  

  
EBN-

20 

C15  

  
EBN-

20 

C16  

  
EBN-

20 

C17  

  
EBN

-20 

C18  

  
EBN-

20 

C19  

  
EBN-

20 

C20  

  
EBN-

20 

TAN-

Repea

tedHil

lClim

ber 

FTT

AN-

Repe

ated

HillC

limbe

r 

BAN-

K2 

 

FTB

AN-

K2 

 

BAN-

Tabu

Searc

h 

 

FTB

AN-

Tabu

Sear

ch 

 

BAN

-

Hill

Clim

ber 

FTBA

N-

HillCl

imber 

BAN-

Repe

ated

HillC

limbe

r 

FTB

AN-

Repe

ated

HillC

limbe

r 

abalone 25.65 26.09 25.65 26.09 25.00 26.09 25.03 26.09 26.98 26.09 26.95 26.09 26.23 26.09 26.33 26.09 26.06 26.09 26.13 26.09 

auto-mpg 67.50 72.50 68.75 72.50 70.42 72.50 67.92 72.50 61.25 72.50 65.83 72.50 72.92 72.50 74.17 72.50 63.33 72.50 69.17 72.50 

balance-scale 69.28 69.12 73.92 69.12 71.36 69.12 73.44 69.12 70.24 69.12 74.72 69.12 71.52 69.12 69.60 69.12 70.24 69.12 72.32 69.12 

echocardiogram 72.97 72.97 71.62 72.97 72.97 72.97 75.68 72.97 72.97 72.97 75.68 72.97 72.97 72.97 75.68 72.97 72.97 72.97 71.62 72.97 

breast-tissue-

4class 
62.26 59.43 61.32 59.43 59.43 59.43 58.49 59.43 50.94 59.43 51.89 59.43 53.77 59.43 55.66 59.43 48.11 59.43 47.17 59.43 

car 82.18 82.12 82.00 82.12 66.96 82.12 66.90 82.12 66.90 82.12 65.34 82.12 67.36 82.12 67.48 82.12 66.32 82.12 65.86 82.12 

cmc 44.13 42.57 44.13 42.57 40.19 42.57 40.26 42.57 37.95 42.57 38.09 42.57 39.92 42.57 39.92 42.57 39.65 42.57 39.99 42.57 

column_2c_weka 84.84 80.00 85.48 80.00 73.87 80.00 79.03 80.00 75.16 80.00 82.26 80.00 75.81 80.00 81.29 80.00 65.16 80.00 69.35 80.00 

column_3c_weka 68.71 60.00 69.03 60.00 60.32 60.00 79.03 60.00 53.87 60.00 53.55 60.00 26.77 60.00 26.77 60.00 60.00 60.00 67.10 60.00 

dermatology 92.35 98.36 92.35 98.36 95.36 98.36 95.36 98.36 96.99 98.36 96.99 98.36 95.63 98.36 95.63 98.36 88.80 98.36 88.80 98.36 

diabetes 77.60 78.13 77.34 78.13 77.60 78.13 77.47 78.13 79.17 78.13 79.30 78.13 78.91 78.13 78.78 78.13 77.08 78.13 76.82 78.13 

disease 40.00 30.00 20.00 30.00 20.00 30.00 20.00 30.00 60.00 30.00 60.00 30.00 60.00 30.00 60.00 30.00 50.00 30.00 50.00 30.00 

ecoli 79.46 80.36 80.36 80.36 80.65 80.36 80.65 80.36 80.06 80.36 78.87 80.36 79.46 80.36 80.36 80.36 81.25 80.36 81.25 80.36 

fertility 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 

glass 72.43 74.30 71.03 74.30 72.90 74.30 72.90 74.30 65.89 74.30 61.68 74.30 67.76 74.30 64.49 74.30 70.56 74.30 66.36 74.30 

GL 65.42 62.15 65.42 62.15 62.62 62.15 63.55 62.15 52.34 62.15 51.40 62.15 45.79 62.15 46.73 62.15 50.47 62.15 52.34 62.15 

graphic.tao.radial 84.90 86.44 84.64 86.44 84.90 86.44 84.64 86.44 76.54 86.44 78.97 86.44 84.90 86.44 84.64 86.44 84.90 86.44 84.64 86.44 

hay-train 58.98 60.05 59.79 60.05 52.82 60.05 51.74 60.05 53.62 60.05 52.55 60.05 52.82 60.05 52.01 60.05 53.89 60.05 53.35 60.05 

heart-h 82.31 82.65 83.33 82.65 80.61 82.65 79.93 82.65 80.27 82.65 79.59 82.65 75.85 82.65 73.47 82.65 76.19 82.65 77.55 82.65 

iris.2D 92.67 93.33 97.33 93.33 92.67 93.33 97.33 93.33 92.67 93.33 97.33 93.33 92.67 93.33 97.33 93.33 92.67 93.33 97.33 93.33 

iris 41.33 93.33 42.00 93.33 92.67 93.33 93.33 93.33 93.33 93.33 94.00 93.33 41.33 93.33 42.00 93.33 50.67 93.33 51.33 93.33 

landformidentifica

tion 
99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 98.33 99.00 98.33 99.00 98.00 99.00 98.00 99.00 

led 73.92 73.98 74.00 73.98 73.95 73.98 73.97 73.98 73.77 73.98 73.85 73.98 73.90 73.98 73.95 73.98 73.75 73.98 73.53 73.98 

lymph 83.78 86.49 83.78 86.49 70.27 86.49 70.27 86.49 85.14 86.49 85.14 86.49 70.27 86.49 70.27 86.49 67.57 86.49 67.57 86.49 

machine 83.73 86.60 83.25 86.60 84.69 86.60 84.69 86.60 78.47 86.60 79.43 86.60 77.99 86.60 77.99 86.60 81.34 86.60 82.30 86.60 

magic 82.74 82.05 82.75 82.05 41.21 82.05 41.36 82.05 73.48 82.05 73.47 82.05 72.47 82.05 72.47 82.05 76.55 82.05 76.54 82.05 

nursery 75.79 78.09 75.69 78.09 72.56 78.09 72.61 78.09 73.56 78.09 73.69 78.09 73.28 78.09 73.68 78.09 66.15 78.09 66.12 78.09 

pendigits 97.10 97.45 97.10 97.45 80.67 97.45 80.67 97.45 96.25 97.45 96.25 97.45 92.18 97.45 92.18 97.45 90.71 97.45 90.71 97.45 

power_supply 16.24 16.14 16.19 16.14 16.24 16.14 16.19 16.14 16.24 16.14 16.19 16.14 16.24 16.14 16.19 16.14 16.24 16.14 16.19 16.14 

primary-tumor 46.61 47.49 46.61 47.49 28.61 47.49 28.32 47.49 42.77 47.49 43.07 47.49 27.43 47.49 27.73 47.49 26.25 47.49 25.66 47.49 

sonar 79.81 84.62 79.33 84.62 78.85 84.62 79.33 84.62 84.13 84.62 84.13 84.62 85.10 84.62 85.10 84.62 82.21 84.62 82.21 84.62 

SPECT-Heart 68.16 68.54 68.54 68.54 65.54 68.54 64.42 68.54 68.54 68.54 67.79 68.54 65.92 68.54 65.92 68.54 63.67 68.54 62.55 68.54 

SyntheticDataFlo

w 
60.94 60.86 60.94 60.86 16.58 60.86 16.58 60.86 25.55 60.86 25.56 60.86 15.71 60.86 15.72 60.86 15.71 60.86 15.72 60.86 

tae 28.48 31.79 62.25 31.79 28.48 31.79 62.25 31.79 24.50 31.79 56.29 31.79 28.48 31.79 62.25 31.79 28.48 31.79 62.25 31.79 

titanic 69.47 74.56 44.30 74.56 73.69 74.56 73.97 74.56 73.24 74.56 53.48 74.56 76.51 74.56 73.97 74.56 71.38 74.56 67.83 74.56 

V1 87.82 90.11 87.82 90.11 88.74 90.11 88.51 90.11 90.11 90.11 90.11 90.11 88.74 90.11 87.82 90.11 89.20 90.11 89.20 90.11 

waveform 85.97 86.49 85.97 86.49 79.97 86.49 79.97 86.49 83.66 86.49 83.66 86.49 78.63 86.49 78.63 86.49 81.43 86.49 81.43 86.49 

wine_quality 50.74 51.24 50.80 51.24 46.08 51.24 46.14 51.24 45.23 51.24 45.14 51.24 43.48 51.24 43.66 51.24 45.41 51.24 45.35 51.24 

yeast 58.81 59.00 58.90 59.00 56.02 59.00 56.59 59.00 58.81 59.00 58.81 59.00 56.02 59.00 55.05 59.00 56.40 59.00 56.40 59.00 

zoo2_x 91.09 96.04 91.09 96.04 86.14 96.04 86.14 96.04 98.02 96.04 98.02 96.04 92.08 96.04 92.08 96.04 90.10 96.04 90.10 96.04 

Average 

Accuracy 
69.83 71.56 69.80 71.56 65.71 71.56 67.29 71.56 68.14 71.56 68.90 71.56 65.08 71.56 66.08 71.56 64.92 71.56 66.15 71.56 

# Better 11 26 13 23 7 29 10 26 6 29 11 26 8 29 11 27 4 33 8 31 

# Sig Better 95% 2 6 5 7 2 13 6 16 1 15 4 14 1 18 3 18 0 20 3 18 

# Sig Better 90% 4 13 6 11 2 17 7 16 2 19 8 17 1 21 4 19 0 22 5 22 
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TABLE V.  COMPARISONS BETWEEN THE THREE ENSEMBLE CLASSIFIERS (EBN-20, EBN-10 AND EFTBN-10) 

Data sets 
EBN-20 vs EBN-10 EBN-20 vs EFTBN-10 EBN-10 vs EFTBN-10 

EBN-20 Diversity EBN- 10 Diversity EBN-20 Diversity EFTBN- 10 Diversity EBN- 10 EFTBN-10 

abalone 26.09 0.00 25.82 0.50 26.09 0.00 26.03 0.50 25.82 26.03 

auto-mpg 72.50 0.21 72.92 0.48 72.50 0.21 72.08 0.50 72.92 72.08 

balance-scale 69.12 0.12 68.64 0.42 69.12 0.12 73.12 0.44 68.64 73.12 

echocardiogram 72.97 0.25 72.97 0.50 72.97 0.25 75.68 0.50 72.97 75.68 

breast-tissue-4class 59.43 0.12 59.43 0.39 59.43 0.12 59.43 0.41 59.43 59.43 

car 82.12 0.20 82.23 0.45 82.12 0.20 82.23 0.45 82.23 82.23 

cmc 42.57 0.30 42.57 0.54 42.57 0.30 42.50 0.54 42.57 42.50 

column_2c_weka 80.00 0.17 75.48 0.50 80.00 0.17 80.97 0.50 75.48 80.97 

column_3c_weka 60.00 0.33 60.32 0.57 60.00 0.33 60.00 0.54 60.32 60.00 

dermatology 98.36 0.03 98.36 0.33 98.36 0.03 98.36 0.33 98.36 98.36 

diabetes 78.13 0.07 78.13 0.50 78.13 0.07 78.13 0.50 78.13 78.13 

disease 30.00 0.55 50.00 0.50 30.00 0.55 30.00 0.50 50.00 30.00 

ecoli 80.36 0.01 79.46 0.32 80.36 0.01 80.36 0.32 79.46 80.36 

fertility 88.00 0.00 88.00 0.50 88.00 0.00 88.00 0.50 88.00 88.00 

glass 74.30 0.07 72.90 0.37 74.30 0.07 72.43 0.39 72.90 72.43 

GL 62.15 0.09 63.08 0.39 62.15 0.09 60.28 0.41 63.08 60.28 

graphic.tao.radial 86.44 0.14 84.90 0.50 86.44 0.14 84.64 0.50 84.90 84.64 

hay-train 60.05 0.19 60.59 0.45 60.05 0.19 60.59 0.45 60.59 60.59 

heart-h 82.65 0.05 81.97 0.34 82.65 0.05 83.33 0.35 81.97 83.33 

iris.2D 93.33 0.02 92.67 0.39 93.33 0.02 97.33 0.39 92.67 97.33 

iris 93.33 0.27 93.33 0.55 93.33 0.27 93.33 0.56 93.33 93.33 

landformidentification 99.00 0.00 99.00 0.31 99.00 0.00 99.00 0.31 99.00 99.00 

led 73.98 0.01 73.93 0.29 73.98 0.01 74.15 0.29 73.93 74.15 

lymph 86.49 0.13 86.49 0.41 86.49 0.13 86.49 0.41 86.49 86.49 

machine 86.60 0.04 87.08 0.34 86.60 0.04 86.12 0.34 87.08 86.12 

magic 82.05 0.28 82.00 0.50 82.05 0.28 82.06 0.50 82.00 82.06 

nursery 78.09 0.14 78.06 0.41 78.09 0.14 77.99 0.41 78.06 77.99 

pendigits 97.45 0.04 97.45 0.30 97.45 0.04 97.45 0.30 97.45 97.45 

power_supply 16.14 0.00 16.24 0.50 16.14 0.00 16.19 0.50 16.24 16.19 

primary-tumor 47.49 0.00 47.79 0.50 47.49 0.00 46.61 0.50 47.79 46.61 

sonar 84.62 0.14 84.13 0.50 84.62 0.14 84.62 0.50 84.13 84.62 

SPECT-Heart 68.54 0.25 69.66 0.50 68.54 0.25 68.54 0.50 69.66 68.54 

SyntheticDataFlow 60.86 0.28 60.86 0.53 60.86 0.28 60.86 0.53 60.86 60.86 

tae 31.79 0.38 28.48 0.41 31.79 0.38 62.25 0.44 28.48 62.25 

titanic 74.56 0.17 69.47 0.50 74.56 0.17 74.56 0.50 69.47 74.56 

V1 90.11 0.09 90.57 0.50 90.11 0.09 90.34 0.50 90.57 90.34 

waveform 86.49 0.12 86.49 0.45 86.49 0.12 86.49 0.45 86.49 86.49 

wine_quality 51.24 0.06 51.15 0.41 51.24 0.06 51.33 0.41 51.15 51.33 

yeast 59.00 0.03 58.81 0.29 59.00 0.03 59.00 0.30 58.81 59.00 

zoo2_x 96.04 0.04 96.04 0.36 96.04 0.04 96.04 0.36 96.04 96.04 

Average 71.56 0.13 71.69 0.44 71.56 0.13 72.47 0.44 71.69 72.47 

# Better 16 
 

11 
 

8 
 

13 
 

12 13 

# Sig Better 95% 0 
 

0 
 

2 
 

3 
 

1 6 

# Sig Better 90% 6 
 

2 
 

2 
 

8 
 

4 9 

V. CONCLUSION 

This work shows that an ensemble of fine tune BN 
classifiers is an effective way to increase the classification 
accuracy of BN classifiers. It also empirically concludes that 
the ensemble of the fine-tuned classifiers outperforms an 
ensemble of un-tuned classifiers. Although the two ensembles 
have the same average diversity, the ensemble of the fine-tuned 
classifiers combines more accurate classifiers. However, 
constructing a larger ensemble that combines the fine-tuned 
and un-tuned classifiers does not improve the classification 
accuracy because the combined classifiers are not very 

different. The work also proposes a distance-based diversity 
measure and uses it in analyzing the results. The ensemble of 
classifiers combines different types of BN classifiers (NB, 
TAN, and BAN). Different learning algorithms that use 
different search methods were used to build TAN and BAN 
classifiers. The variation of the BN classifiers increases the 
diversity of the ensemble while using fine-tuned classifiers 
increase accuracy of the constituent classifiers. The work 
compares between three different ensembles of BN classifiers. 
The first ensemble, EBN-10, combines ten un-tuned classifiers; 
the second, EFTBN-10, combines ten fine-tuned BN classifiers 
while the third ensemble combines all the previous 20 BN 
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classifiers (EBN-20). The experimental results using 40 data 
sets and a simple majority voting method shows that the 
ensembles outperform all the individual constituent classifiers. 
It also states that the EFTBN-10 is the superior one because it 
has more accurate constituents and is more diverse. 

VI. FUTURE WORK 

As a future work, we intend to develop ensembles of BN 
classifiers by using different other BN classifiers. Also it is 
interesting to develop a new fine tuning algorithm to improve 
the accuracy of the ensemble base classifiers. Moreover, 
different ensemble method and voting techniques can be used. 
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