
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

48 | P a g e

www.ijacsa.thesai.org

Toward Secure Web Application Design:

Comparative Analysis of Major Languages and

Framework Choices

Stephen J. Tipton

College of Arts & Sciences

Regent University

Virginia Beach, Virginia, U.S.A.

Young B. Choi

College of Arts & Sciences

Regent University

Virginia Beach, Virginia, U.S.A.

Abstract—We will examine the benefits and drawbacks in the

selection of various software development languages and web

application frameworks. In particular, we will consider five of

the ten threats outlined in the Open Web Application Security

Project (OWASP) Top 10 list of the most critical Web application

security flaws [12], and examine the role of three popular Web

application frameworks (Ruby on Rails (Ruby), Play Framework

(Scala), and Zend Framework 2 (PHP)) in addressing a selection

of these major threats. In addition, we will compare the strengths

and weaknesses of each Web application framework as it

pertains to the implementation of strong security measures.

Furthermore, for each framework examined, assess how an

organization should address these security threats in their

software design utilizing their framework of choice. We will

suggest the direction in which an organization facing such a

decision ought to head; moreover, facilitate such a decision by

assessing the benefits and drawbacks of each, based on the

findings; and encourage one to decide what works best for the

organization’s technical direction.

Keywords—Web; security; framework; application;

authentication; ruby; ruby on rails; play framework; Scala; PHP;

Zend Framework 2; SQL injection; threats

I. INTRODUCTION

In October 2014, Drupal, the popular PHP-based open
source content management platform, reported experiencing
multiple exploits of vulnerability within its database
abstraction API involving carefully crafted requests that
resulted in the execution of arbitrary SQL statements [18].
Despite the overarching purpose of the database abstraction
API in preventing such exploits, the Drupal Security Team
advised site administrators utilizing Drupal 7.x to upgrade to
Drupal core 7.32. Administrators who were unable to upgrade
were advised to apply a patch to the database.inc file. In a
subsequent announcement from the Drupal Security Team, the
importance of upgrading to Drupal 7.32 was further outlined
and promulgated that simply upgrading would not remove the
potential for backdoors in the database, code, or various other
locations [5].

A SQL injection attack is such that takes advantage of
holes in web services and other web applications by inserting,
or "injecting" arbitrary SQL statements "via the input data from
the client to the application" [12, 20]. Such vulnerability raises
the extreme potential for reading sensitive data from the

database; the modification of data via Insert, Update, and/or
Delete statements; and the execution of administration
operations on the database [20].

WhiteHat Security's 2014 Website Security Statistics
Report [25] notes that as a language, "PHP stood out from the
pack when looking at SQL Injection, with the languages
instances of the vulnerability exhibiting the lowest average
number of days at 6.8." Java fell with a much larger gap from
PHP at an average of 64.8 days [25]. It is further noted that
from the perspective of the Ruby language, statistics were
much too minute to include in WhiteHat's report.

While SQL injection, or injection in general, leads the
OWASP Top 10 list of web security threats, Web security
considerations are not limited to this vulnerability. The scope
of this assessment addresses five of the leading threats listed in
the Top 10, with SQL injection rounding out this list.
Additionally discussed are the threats involving broken
authentication and session management; cross-site scripting;
insecure direct object references; and security
misconfiguration. In particular, a selection of these threats are
addressed in relation to three Web application frameworks:
Ruby on Rails (Ruby) addressing SQL injection; Play
Framework (Scala) addressing Security Misconfiguration; and
Zend Framework 2 (PHP) addressing Broken Authentication
and Session Management. Addressing these top threats in
relation to these three frameworks, and assessing their
strengths and weaknesses may facilitate an organization facing
the technical decision of choosing an appropriate software
stack.

II. WEB SECURITY THREAT CONSIDERATIONS

The OWASP Top 10 list of Web security threats is rounded
out by five of the most critical threats noted within the previous
year. Leading the list, as previously cited, are injection attacks
(e.g., SQL injection), which were outlined in the case of
Drupal's vulnerability in their database abstraction API.

This section considers the leading five threats from the Top
10 list: SQL injection; broken authentication and session
management; cross-site scripting; insecure direct object
references; and security misconfiguration. Each threat is
detailed in its nature, with the primary objective to outline the
threats in relation to the scope of this research.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

49 | P a g e

www.ijacsa.thesai.org

The secure design and implementation of software
applications are critically bound to the firm understanding of
the threats in which software is designed against. It is
imperative that these five threats are considered in detail to
provide the understanding necessary for selecting the
appropriate software stack to be leveraged in the
implementation of the organization's web applications. The
following considerations will describe each of the five threats,
and the nature imposed upon software applications. The
Network Defense Security and Vulnerability Assessment,
Volume 5 of the Network Security Administrator Certification
[19], echoes this critical aspect due to the increasing
importance of Web sites to commercial businesses.

A. SQL Injection

SQL injection attacks exploit vulnerabilities in APIs, as
well as other Web applications through the insertion, or
injection of arbitrary SQL commands by way of inputting data
through the gateway that links the client to the application [12,
20]. Patil and Bamnote [13] cite repercussions from injection
attacks including the "unauthorized access to private or
confidential information stored ... [via] authentication
bypassing, [and] leaking of private information." The Network
Defense Security and Vulnerability Assessment [19] parallels
this illustration by noting that Web applications are extremely
vulnerable due to the ability to receive input data in numerous
ways. In general, input data should be analyzed and effectively
wrapped by a server-side validation mechanism.

B. Broken Authentication and Session Management

According to the Top 10, authentication and session
management are often incorrectly implemented, leaving
vulnerable web applications in a broken state in which
attackers may potentially compromise user-created passwords,
API keys, or session tokens; vulnerabilities left unaccounted
for may also "exploit other implementation flaws to assume
other users’ identities." Web service authentication is not a
feature that comes built-in to various Web application
frameworks [6]; rather, it is the expectation of developers to
implement authentication. Furthermore, this is primarily the
case due to the many flavors of adding authentication to
HTTP-based web services, including basic authentication,
token-based authentication, and session-based authentication.

C. Cross-Site Scripting

Cross-site scripting, or XSS, is the result of "insufficient
data validation, sanitization, or escaping" [9] within web
applications that present an opportunity for an attacker to
execute malicious browser-side code, such as JavaScript. The
exploitation of this vulnerability may consummate in the
"complete ... compromise of the victim's session," cites Kern.
Similar to SQL injection, the Network Defense Security and
Vulnerability Assessment [19] asserts that all input data should
be thoroughly validated. In XSS vulnerabilities, this threat
relates to the browser-side; therefore, XSS can occur when
proper validation or escaping on the browser-side is non-
existent. According to the Top 10, the malicious execution of
scripts can result in hijacked user sessions, defaced web sites,
or redirection to phishing sites.

D. Insecure Direct Object References

The Top 10 defines insecure direct object references as "a
reference to an internal implementation object, such as a file,
directory, or database key" that lacks necessary access controls
or other protective measures. For example, web applications
are frequently known to use the actual name or key of an object
when generating Web pages, without verifying the
authorization to access that particular object [21]. The technical
impact of such flaws includes the potential for compromising
the data associated with the key. To expand upon this example,
one may consider a RESTful Web service's URI structure as
"intuitive and guessable" [7]. To counteract this, the MVC-
pattern featured in many Web frameworks establishes the role
of a controller intermediary between the route (the URI
structure) and the model layer.

E. Security Misconfiguration

Efficient security requires the existence of secure
configuration that is both defined and deployed for the Web
application, its framework(s), its server and other related
servers (e.g., web, database, etc.), and its platform, according
to the Top 10. Furthermore, settings should constantly be
maintained. The utilization of what is referred to as "patch
management," which is "the administration and supervision of
the processes and technology for keeping systems updated with
the latest security software defenses," goes hand-in-hand with
maintaining good security configurations, and is considered a
"basic security must-have" [4]. Configuration defaults are also
known to be insecure. For example, the Play framework default
configuration includes a generated value for the application's
secret key [6]. This is also the case for the Ruby on Rails
framework [3]. Furthermore, it is also common to require
configuration values to be stored within environment variables,
and then referenced in configuration files [6].

III. COMPARATIVE ANALYSIS OF POPULAR WEB

APPLIACTION FRAMEWORKS

At some point, an organization will be facing a technical
decision involving the selection of a software development
stack to accomplish a project that will ultimately enhance or
increase business value. The importance of selecting the
appropriate tool for the job is drastically increased when
weighing the threats outlined in the OWASP Top 10 list.
Having previously addressed in detail the five threats that
round out the Top 10 list, the next measure to consider is
analyzing the comparisons between three web application
frameworks across three different software development
languages: Ruby on Rails (Ruby); Play Framework (Scala);
and Zend Framework 2 (PHP).

Each framework addressed will offer a high-level overview
of the framework's features and typical use cases. In a
comparative analysis, strengths and weaknesses of each
framework will be weighed; the objective is to understand what
each framework may or may not offer "out-of-the box," and
how each framework will assist developers in designing and
implementing secure web services, modular components, or
full-blown web applications. From a business angle, such an
understanding will facilitate a technical decision.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

50 | P a g e

www.ijacsa.thesai.org

It ought to be understood, however, that neither of these
frameworks are not in itself “more secure than another” [17];
rather, it is the functional features that reside within each
framework that assist developers with the tools necessary to
secure web applications.

To round out the comparative analysis of these three
frameworks, each will include a real-world example within a
summarized case study, demonstrating how organizations have
utilized that framework of choice to deliver a secure software
application. In these short studies, the scope will be limited to a
single selection from the five threats that round out the
OWASP Top 10 list. It is the objective of this discussion to
encourage technical leadership in an organization to make a
sound decision when selecting a software development stack.

A. Ruby on Rails (Ruby)

The 10,000-foot level. The overall purpose of a Web
application framework is to provide a toolset to developers that
facilitate the implementation of Web-based software
applications. From a security standpoint, no one framework is
going to outweigh another in its own security [17]. The
challenge in securing web-based software is raised when
developers are faced with implementing secure code. The good
news is, Web frameworks provide a set of tools that make this
simple for developers to achieve. Ruby on Rails is an example
of a Web application framework that achieves this function. In
short, the Rails framework "makes it easier to develop, deploy,
and maintain web applications" [16].

The leading threat according to the OWASP Top 10 is the
exploitation of API vulnerabilities using SQL injection. By
virtue of "clever methods," [17] most Rails applications are
nearly immune to this threat. However, this is not to assert
SQL injection is impossible in Rails applications. If not utilized
properly, these "clever methods" will serve no other purpose
than to sit unused, leaving a Rails application open to this
vulnerability. Ruby on Rails utilizes an Object Relational
Mapper (ORM) called Active Record which exposes methods
facilitating safe database transactions by properly escaping
SQL, which in itself "is immune from SQL injection attacks"
[16].

Strengths and weaknesses of the framework. In
addressing SQL injection vulnerabilities within Rails
applications, it is the responsibility of developers to take
advantage of the toolset provided by the Rails framework. As
noted previously, Rails exposes "clever methods" that facilitate
a near-immunity against SQL injection. While these methods
do exist, holes are occasionally uncovered that expose
vulnerabilities within the internal method. For example, in
January 2013, such a vulnerability was found in dynamic
finder methods (e.g., find_by_foo(params[:foo])). The scenario
was verified when applications were using the third-party
authentication library Authlogic, and the secret session token
was known [10].

[16] describe the functionality of Active Record and how it
handles the prevention of SQL injection as follows: When
multiple parameters are passed into the where method call— a
method call that corresponds to the SQL where clause— the
first parameter is effectively utilized as a template for

generated SQL. Strengthening this feature is the utilization of
placeholders, which are replaced with the values from the
remaining parts of the array at runtime. Additionally, named
placeholders may have their values passed in as a hash of key-
value pairs (e.g., {pay_type: pay_type, ...}). Furthermore, these
key-value pairs can be passed in as a direct hash reference (e.g.
params[:order]) as a single argument to the where method (e.g.,
Order.where(params[:order])). This latter form is cautioned,
however, as it takes in every key-value pair residing within the
hash. An even more secure method would essentially white list
the key-value pairs that are needed for the Active Record query
(e.g., Order.where(name: params[:name], ...)).

Case study: Object Injection and Rails’ Dependency on
YAML. William (B.J.) Snow Orvis is a software programmer
with Artemis Internet and iSec Partners, and has frequented the
Ruby community presenting talks on addressing security issues
in Ruby on Rails development. In Orvis' Secure Development
on Rails presentation [11], he covered an object injection
vulnerability (similar to SQL injection) that was discovered by
Rails contributor Aaron Patterson [14]. This vulnerability
affected all versions of the Rails framework, and entailed
"multiple weaknesses in the parameter parsing code ... which
allow[ed] attackers to bypass authentication systems, inject
arbitrary SQL, inject and execute arbitrary code, or perform a
DoS attack on a Rails application." It is noted that the
parameter parsing code provides applications the ability to
automatically typecast strings to certain data types. The caveat
uncovered revealed that certain conversions, in particular the
creation of symbols and parsing YAML— a highly utilized
dependency in Rails— were supported in the parsing code.
"These unsuitable conversions can be used by an attacker to
compromise a Rails application," warned Patterson.

The previous scenario outlined by Patterson [14] varied
depending on which version of Rails was being used, and
whether or not the Web application depended upon support for
XML parameters. Mitigating the issue followed a two-fold
approach. Primarily, users who did not rely upon XML
parameter support were advised to disable XML parsing
entirely by deleting Mime::XML from
ActionDispatch::ParamsParser::DEFAULT_PARSERS (e.g.,
ActionDispatch::ParamsParser::DEFAULT_PARSERS.delete(
Mime::XML) in Rails 3.x). Alternatively, developers of
applications that relied heavily upon XML parsing were
advised to disable the YAML and symbol type conversion
from the XML parser by deleting Mime::YAML from
ActionDispatch::ParamsParser::DEFAULT_PARSERS (e.g.,
ActionDispatch::ParamsParser::DEFAULT_PARSERS.delete(
Mime::YAML) in Rails 3.x). Additionally, this latter approach
was further advised to be in parallel with reducing the value of
REXML::Document.entity_expansion_limit to limit the risk of
entity explosion attacks. Orvis' talk on Secure Development on
Rails covered many aspects of Web security, and is
recommended as a supplement to this composition.

B. Play Framework (Scala)

The 10,000-foot level. As previously discussed, Ruby on
Rails experienced a vulnerability involving parameter parsing,
which automatically typecasts strings to certain data types. In
Play for Scala, data types are cast statically at compile time,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

51 | P a g e

www.ijacsa.thesai.org

rather than dynamically at runtime. Furthermore, it is this
"increased type safety" that garners an immediate benefit
throughout the development lifecycle [6]. Play is not
constrained to type safety benefits, either. It offers a declarative
application URL scheme configuration; it features an HTML5-
embraced architecture; it silently reloads on code changes; and
more importantly, it is a full-stack framework providing
persistence, security, and internationalization [6].

The OWASP Top 10 listed security misconfiguration as the
fifth-most critical Web security threat in 2013. Adequate
security relies on the definition and deployment of secure
configuration for the web application and its numerous
components. In addition, the maintenance of these
configurations are of equal importance. Cyber Security [4]
stresses patch management, along with good security
configuration maintenance as a "basic security must-have."
Expanding upon this, security misconfiguration is classified by
OWASP as easily exploitable. An attacker may access default
accounts, unused pages, unpatched flaws, unprotected files and
directories, etc. for the primary purpose of obtaining
unauthorized access to or knowledge of the system.

Strengths and weaknesses of the framework. Hilton,
Bakker, and Canedo [6] confidently assert that simply creating
a Play application requires no configuration. This is true as
well with Ruby on Rails, which boasts of its convention over
configuration. Play initializes a configuration file
automatically, with almost all of the parameters being optional.
However, with optional parameters, values must sensibly be
defaulted. Configuration defaults, in production, are
susceptible to insecurity. For example, Play adds a default
configuration value for the application's secret key. As
expected, these values are able to be overridden, or referenced
with environment variables. Moreover, it is required to utilize
environment variable references for OS-independent, machine-
specific configuration; likewise, it is encouraged to use
environment variable references— primarily in production
environments— for sensitive configurations, such as database
credentials and secret keys.

During development, there is only the need for a single
configuration file (e.g., conf/application.conf). However, when
deploying to production, different configuration settings will be
necessary. Hilton, Bakker, and Canedo [6] note that due to the
application being packaged within a JAR file, simply
deploying the application, and then manually editing the
configuration is inefficient. Consequently, this practice is
known to be error-prone and automation-unfriendly. It is
highly advised to not make the mistake of sharing identical
settings for all environments (e.g., development, test, and
production), to shortcut the need for separate configurations. It
is likely that at some point, a developer who has shortcut this
necessary step could potentially wipe out an entire production
asset, such as a database, simply by mistaking which
environment was currently being utilized.

It is encouraged to have a "safe" default configuration that
is easily overridable by other environments, such as the test
environment [6]. Play allows configuration overriding by
specifying the override function on a given configuration (e.g.,
mail.override.address = "info@example.org"). Following any

overrides, the developer would then specify the inclusion of a
separate configuration file (e.g., development.conf), which
would override the default configuration.

Case study: Secure Network Configuration using the
Typesafe Reactive Platform and the Play Framework.
Auvik Networks "is a hybrid cloud, software-as-a-service
(SaaS) application that provides IT professionals with a better
way to monitor, configure and automate their network" [24].
The company created a cloud-managed network automation
platform to simplify enterprise networking, which has the
potential of being highly complex. To deliver this business
value, Auvik utilized the Typesafe Reactive Platform to
provide a reliable and scalable solution, allowing a continual
value add to the business [2].

Utilizing Akka, which facilitates the building of "highly
concurrent, distributed, and resilient message-driven
applications on the JVM" [1], Auvik leveraged the scalability,
clustering, and load balancing to build and deploy their hybrid
cloud configuration. Auvik delivered a cloud-based UI that
allows a customer to sign up, manage, monitor, and configure
their network environment— all via a Web application built on
the Play framework. By using Play, and deploying onto the
Typesafe Reactive Platform, Auvik was able to take advantage
of developer productivity, a modern web application
experience, minimal resource consumption, and a high-
performing, highly scalable application.

To read more about Auvik Networks use of the Typesafe
Reactive Platform and Play framework, the Auvik Networks
simplifies enterprise networking [2] case study is
recommended.

C. Zend Framework 2 (PHP)

The 10,000-foot level. Broken authentication and session
management appear in the OWASP Top 10 list second to SQL
injection. The vulnerability does not reside within the
framework itself; rather, it is in the incorrect implementation
that leaves web applications in a vulnerable state potentially
allowing attackers to compromise passwords, API keys, or
session tokens. Hilton, Bakker, and Canedo [6] echo this fact
by disclosing against the misconception that frameworks ship
with built-in authentication handling. Because of the many
attributes of HTTP-based web services (e.g., basic
authentication, token-based authentication, and session-based
authentication), the responsibility of handling an authentication
mechanism is left to developers; and since developers are the
sole proprietors of enabling a secure authentication
implementation, it is imperative that entry-points into a web
application are efficiently secure.

In some cases, developers are encouraged to utilize open-
source libraries to leverage authentication functionality. Rather
than reinvent the wheel, frameworks such as Ruby on Rails, in
collaboration with the rich Ruby community, foster the
utilization of libraries such as Devise or OmniAuth; of course,
developers may roll their own authentication implementation
as well [15]. The Play framework likewise does not ship with
authentication functionality built-in. In fact, rolling one's own
authentication implementation in Play is a straightforward
process. Hilton, Bakker, and Canedo [6] state that

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

52 | P a g e

www.ijacsa.thesai.org

authentication may be performed alongside every HTTP
request, prior to an appropriate HTTP response. This allows the
existence of a stateless application that requires valid
credentials on every HTTP request.

When addressing user-created passwords, the obligation of
encryption is introduced. Where libraries such as Devise
facilitate Rails developers in integrating a robust, encrypted
authentication solution, frameworks such as Zend Framework
2 (ZF2) for PHP ship with encryption components ready to
deal with symmetric or asymmetric algorithms; additionally,
cryptographic fingerprints [8] further protect authenticated
sensitive data. When considering security benefits in ZF2, it is
valuable to note that "all the cryptographic and secure coding
tools you need to do things right" are readily available out-of-
the-box [8].

Strengths and weaknesses of the framework. Karadzhov
(2013) outlines the steps and code involved in securing a
valuable authentication mechanism in ZF2 applications. One of
the many components available to achieve this is
Zend\Authentication\Adapter. This component receives user
credentials such as username and password; however, it may
also be an International Mobile Equipment Identity (IMEI) key
unique to mobile devices. If authentication is verified, the
identity information is stored to alleviate the need for the user
to provide credentials repeatedly. Subsequent requests utilize
the stored identity to check accessibility to a given controller
and action in the MVC pattern. Coupled with an authentication
adapter, a connection the system involved in credential
verification is established. For example, when using MD5 for
password hashing, an instance of a database adapter such as
Zend\Db\Adapter\Adapter would be utilized along with
database table information relating to storing the username and
password. However, this approach is no longer considered
secure [8].

As previously discussed, ZF2 ships with encryption
components that ease the challenges of implementing properly
secured authentication. As storing passwords hashed with the
MD5 algorithm are no longer considered secure, according to
Karadzhov [8], ZF2 features the Zend\Crypt\Password
component that more efficiently and securely stores passwords.
Furthermore, it is advised to use the Bcrypt algorithm in
replacement of any use of MD5. Enrico Zimuel, creator of
Zend\Crypt, states that Bcrypt is considered secure due to the
slow computational time of a single hash; therefore, a brute
force or dictionary attack would require a much larger amount
of time to complete [8]. The Bcrypt algorithm is implemented
via the Zend\Crypt\Password\Bcrypt class, in which an
instance of this class would create a 60-character hashed string
given a plain-text string:

use Zend\Crypt\Password\Bcrypt;

$bcrypt = new Bcrypt();

$password = $bcrypt->create('password');

#=>$2a$14$yuD/3v/ldbdOZ0pfljUyJ.a0Q4Ue0UTAoES2B
lgK0Op1Z6IF9.aTS

Case study: Brute-force Password Cracking.
Compounding the threat of compromising passwords is a

brute-force method in which bots are used to submit multiple
string combinations to authentication forms. While brute-force
attacks are more difficult to be successful when employing
encryption algorithms such as Bcrypt in ZF2 web applications,
it is still a considerable vulnerability to address. Vikram
Vaswani, founder of Bombay-based web design company
Melonfire, has outlined in a very robust how-to article [23] the
mitigation of various security scenarios when developing web
applications in the ZF2 architecture. As previously discussed,
web applications are vulnerable to attacks including, but not
limited to, SQL injection, XSS, CSRF, spam, and brute-force
password hacking. Also outlined is the ease in protecting
against such vulnerabilities when developing a PHP web
application in ZF2. In Vaswani's article, he addresses
countermeasures developers can take in mitigating form-based
brute-force attacks.

The simplest measure to take to counteract bot interaction
via web application forms is to implement a CAPTCHA [23].
ZF2 includes a component that implement this functionality:
Zend\Captcha. This component can add FIGlet— ASCII-
generated text banners made up of many typefaces— or an
image CAPTCHA to the Web form. It also supports the third
party web service reCAPTCHA, which integrates remote-
generated CAPTCHAs. A caveat to the integration of
reCAPTCHA lies in the requirement that the dependency
would need to be specified in the Composer configuration.
Aside from this, ZF2 essentially ships with many components
necessary to secure Web applications.

Vaswani [23] illustrates the setup of a simple contact form,
with inputs for name, email address, and CAPTCHA
verification. ZF2 provides the Zend\Captcha\Image
component, which accepts a number of configuration options
(e.g., length of CAPTCHA word, font, directory to store the
CAPTCHA, etc.) to generate the CAPTCHA. It is further noted
that this component utilizes PHP's GD extension to generate
the CAPTCHA image. Once the CAPTCHA is in place,
validators are automatically set up and available to the
controller and action via the Zend\Captcha component.

To understand more of how ZF2 can assist in securing web
applications, Vaswani’s thorough article, Improve web
application security with Zend Framework 2 [23], is
recommended.

IV. CONCLUSION

As outlined in the OWASP Top 10, there is much more to
securing Web applications than addressing three of the more
common threats in relation to three corresponding web
application frameworks. It must be restated as well that no
single web application framework is going to be more secure
than the other. However, there are features that prove
beneficial to developers; while there are features that may not
be of much assistance aside from providing necessary tools for
developers. It is important to recall that most frameworks do
not ship with authentication functionality, or any other fully
implemented security threat mitigation. Therefore, the onus is
on developers to understand the threats facing web
applications. Because these threats are constantly evolving, it is
important to remain engaged in current threat assessments in
the industry.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

53 | P a g e

www.ijacsa.thesai.org

We examined the benefits and drawbacks in selecting
software stacks comprised of Ruby and the Ruby on Rails
framework; Scala and the Play framework; and PHP and Zend
Framework 2. It has further considered the leading five threats
from the OWASP Top 10, and compared the three frameworks
in mitigating a subset of the five threats. In exemplifying such
mitigation, we covered three scenarios in which a given
framework was utilized in counteracting an exploited
vulnerability.

The determination of which software stack works best for a
given organization's technical needs must now rely upon the
technical focus of the organization. If an organization is
seeking to build a robust, scalable, and easily configurable web
service, along with a modern user interface, then perhaps the
choice for the organization may lead to developing on the JVM
using Scala and the Play framework. Companies such as
Twitter, LinkedIn, DirecTV, WhitePages, and The Huffington
Post have all made this decision to migrate away from their
original architectures to the Reactive Platform offered by
Typesafe [22].

It may be in the business’ interest to quickly deliver a
robust application with security-minded authentication
functionality, and common threat mitigation approaches— all
while not being in possession of a large, knowledgeable team
of developers that would be able to roll their own approach. If
this is the scenario, perhaps utilizing the Ruby on Rails
framework would be the choice, with its rich community of
developers and open source libraries that are able to be
seamlessly integrated into a complete application.

However, it is noted that one framework is not more secure
than the other; likewise, it is noted that most frameworks leave
it to developers to implement security measures in Web
applications, while being provided the tools necessary for it to
be achieved. In retrospect, the single framework considered in
this research that demonstrates the most robust set of tools is
arguably Zend Framework 2. With components available to
achieve more secure encrypted password functionality, ZF2
may be the choice for an organization warranting such a
complete toolset.

The decision, however, is up to the organization's technical
leadership. It is also highly encouraged to not only understand
the threats facing today's Web technologies, but to understand
what those threats mean to one's organization. By
understanding these threats, and how these threats may affect
one's organization, the determination of an appropriate
software stack may be decided upon. We only provided a
handful of tools; like many Web application frameworks, the
responsibility is now up to developers. Likewise, the
responsibility is now in the hands of technical leadership.

REFERENCES

[1] Akka. (2014). Retrieved from http://akka.io/.

[2] Auvik Networks simplifies enterprise networking. (2013). Typesafe Case
Studies & Stories. Retrieved from
http://downloads.typesafe.com/website/casestudies/Auvik-Case-
Study.pdf?_ga=1.61301934.324464605.1417574558.

[3] Configuring Rails Applications. (n.d.). Rails Guides. Retrieved from
http://guides.rubyonrails.org/configuring.html#initializers.

[4] Cyber Security: Doing the Right Things. (2013). Securing our connected
world. TMForum Security and Defense Publication. Retrieved from
http://www.tmforum.org/ResearchPublications/7097/home.html#TRCPub
lications/Link51039.

[5] Drupal Core - Highly Critical - Public Service announcement - PSA-
2014-003. (2014, Oct. 29). Drupal Security Advisories. Retrieved from
https://www.drupal.org/PSA-2014-003.

[6] Hilton, P., Bakker, E., and Canedo, F. (2014). Play for Scala. Covers Play
2. Shelter Island, NY: Manning Publications Co.

[7] Insecure Direct Object Reference or Forceful Browsing. (2014). OWASP.
Retrieved from
https://www.owasp.org/index.php/Ruby_on_Rails_Cheatsheet#Insecure_
Direct_Object_Reference_or_Forceful_Browsing.

[8] Karadzhov, S. (2013). Learn ZF2 Zend Framework 2: Learning by
Example. Slavey Karadzhov.

[9] Kern, C. (2014). Securing the Tangled Web: Preventing script injection
vulnerabilities through software design. Communications Of The ACM,
57(9), 38-47. doi:10.1145/2643134.

[10] Lai, H. (2013). Rails SQL injection vulnerability: hold your horses, here
are the facts. Phusion Corporate Blog. Retrieved from
http://blog.phusion.nl/2013/01/03/rails-sql-injection-vulnerability-hold-
your-horses-here-are-the-facts/.

[11] Orvis, W. S. (2013). Secure Development on Rails. Pivotal Labs.
Retrieved from http://pivotallabs.com/bj-orvis-rails-security/.

[12] OWASP. (2013). OWASP Top 10 - 2013. The Ten Most Critical Web
Application Security Risks. The Open Web Application Security Project.
Retrieved from
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-
%202013.pdf.

[13] Patil, V. S., and Bamnote, Dr. G. R. (2014). An Overview to SQL
Injection Attacks and its Countermeasures. International Journal of
Innovative Research & Development, Vol. 3, Issue 1. Retrieved from
http://ojms.cloudapp.net/index.php/ijird/article/view/45590/36927.

[14] Patterson, A. (2013). Multiple vulnerabilities in parameter parsing in
Action Pack (CVE-2013-0156). Retrieved from
https://groups.google.com/forum/?fromgroups=#!topic/rubyonrails-
security/61bkgvnSGTQ.

[15] Rolling Your Own Auth. (n.d.). Sessions, Cookies, and Authentication.
The Odin Project. Retrieved from http://www.theodinproject.com/ruby-
on-rails/sessions-cookies-and-authentication#sts=Rolling Your Own
Auth.

[16] Ruby, S., Thomas, D., and Hansson, D. H. (2011). Agile Web
Development with Rails. 4th ed. Raleigh, NC; Dallas, TX: The Pragmatic
Bookshelf.

[17] Ruby on Rails Security Guide. (n.d.). Rails Guides. Retrieved from
http://guides.rubyonrails.org/security.html.

[18] SA-CORE-2014-005 - Drupal core - SQL injection. (2014, Oct. 15).
Drupal Security Advisories. Retrieved from https://www.drupal.org/SA-
CORE-2014-005.

[19] Security and Vulnerability Assessment. (2011). Network Security
Administrator Certification, Vol. 5. EC-Council.

[20] SQL Injection. (2014, Aug. 14). OWASP. Retrieved from
https://www.owasp.org/index.php/SQL_Injection.

[21] Top 10 2013-A4-Insecure Direct Object References. (2013). OWASP.
Retrieved from https://www.owasp.org/index.php/Top_10_2013-A4-
Insecure_Direct_Object_References.

[22] Typesafe Clients. Retrieved from https://typesafe.com/.

[23] Vaswani, V. (2014). Improve web application security with Zend
Framework 2. Retrieved from
http://www.ibm.com/developerworks/library/se-zend-security/index.html.

[24] What is Auvik. (2014). Auvik Networks. Retrieved from
https://www.auvik.com/about/.

[25] WhiteHat Security. (2014). 2014 Website Security Statistics Report.
Retrieved from
http://info.whitehatsec.com/rs/whitehatsecurity/images/statsreport2014-
20140410.pdf.

http://guides.rubyonrails.org/configuring.html#initializers
http://www.tmforum.org/ResearchPublications/7097/home.html#TRCPublications/Link51039
http://www.tmforum.org/ResearchPublications/7097/home.html#TRCPublications/Link51039
https://www.drupal.org/PSA-2014-003
https://www.owasp.org/index.php/Ruby_on_Rails_Cheatsheet#Insecure_Direct_Object_Reference_or_Forceful_Browsing
https://www.owasp.org/index.php/Ruby_on_Rails_Cheatsheet#Insecure_Direct_Object_Reference_or_Forceful_Browsing
http://blog.phusion.nl/2013/01/03/rails-sql-injection-vulnerability-hold-your-horses-here-are-the-facts/
http://blog.phusion.nl/2013/01/03/rails-sql-injection-vulnerability-hold-your-horses-here-are-the-facts/
http://pivotallabs.com/bj-orvis-rails-security/
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://ojms.cloudapp.net/index.php/ijird/article/view/45590/36927
https://groups.google.com/forum/?fromgroups=#!topic/rubyonrails-security/61bkgvnSGTQ
https://groups.google.com/forum/?fromgroups=#!topic/rubyonrails-security/61bkgvnSGTQ
http://guides.rubyonrails.org/security.html
https://www.drupal.org/SA-CORE-2014-005
https://www.drupal.org/SA-CORE-2014-005
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://typesafe.com/
http://www.ibm.com/developerworks/library/se-zend-security/index.html
https://www.auvik.com/about/
http://info.whitehatsec.com/rs/whitehatsecurity/images/statsreport2014-20140410.pdf
http://info.whitehatsec.com/rs/whitehatsecurity/images/statsreport2014-20140410.pdf

