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Abstract—Software fault prediction is important in software 

engineering field. Fault prediction helps engineers manage their 

efforts by identifying the most complex parts of the software 

where errors concentrate. Researchers usually study the fault-

proneness in modules because most modules have zero faults, and 

a minority have the most faults in a system. In this study, we 

present methods and models for the prediction of fault-count, 

fault-fix cost, and fault-fix effort and compare the effectiveness of 

different prediction models. This research proposes using a set of 

procedural metrics to predict three fault measures: fault count, 

fix cost and fix effort. Five regression models are used to predict 

the three fault measures. The study reports on three data sets 

published by NASA. The models for each fault are evaluated 

using the Root Mean Square Error. A comparison amongst fault 

measures is conducted using the Relative Absolute Error. The 

models show promising results to provide a practical guide to 

help software engineers in allocating resources during software 

testing and maintenance. The cost fix models show equal or 

better performance than fault count and effort models. 

Keywords—Software metrics; fault prediction; fix cost; fix 

effort; regression analysis 

I. INTRODUCTION 

Predicting faults in modules is important to assess software 
quality and to direct software engineers’ effort to spend more 
time on more trouble-prone modules. Software metrics are 
surrogates for fault measures such as fault-proneness, fault 
count, fault-fix cost, and effort. Software metrics measure the 
complexity of software and can be used to identify the faulty 
modules using statistical and machine-learning techniques. 
These techniques can be used to build prediction models such 
as fault count, fix cost, and fix effort to predict which modules 
are likely to have these problems.  Software systems are 
becoming larger and larger and contain thousands of modules 
that are investigated in testing and maintenance phases. 
However, the cost of testing and maintenance are growing with 
the size of systems. This growing trend leads to either very 
costly system or compromised quality. Software engineers can 
use prediction models to prioritize modules to focus the testing 
and maintenance activities on the modules that are either have 
more faults, more costly to fix or demand more efforts to fix. 
Hence, detecting and ranking faulty modules is an important 
engineering task for improving system quality and reducing 
cost. There are usually two measures of module quality:  fault 
count or fault-proneness. In most systems, a small number of 
modules have faults and the majority of modules have zero 
faults. Researchers use fault-proneness by using binary coding 

of modules (zero for no faults and one if there are faults in a 
module) to build prediction models that are usually easy to 
interpret [1][2][3][4][5][6][7]. However, the binary coding 
does not explore all information available about faults. Fault 
count is an indicator of quality in a module but may not 
provide enough information about the fix cost or effort. 
Therefore, regression and machine-learning models are used to 
identify complex modules by considering fault count, fix cost 
and effort. In this paper, five regression and machine-learning 
techniques are used to predict the three fault measures. Twenty 
procedural metrics used as independent variables in the 
prediction models. The models are trained and tested on three 
data sets provided by NASA. Overall, fifteen models were built 
for each data set using 10-fold cross-validation. The results for 
the three fault measures have shown similar results, but the 
cost-fix models are slightly better. These models can help in 
allocating resources for software testing and maintenance. The 
results of the models are used to rank the modules based on the 
fault measures, and the results are promising and 
commensurate with previous works [8][9].The performance of 
the three fault measures is compared to find the best ranking. 
The results show similar results for the three measures with 
some advantage for fault count and fix cost over fix effort. 

The rest of the paper is organized as follows: related work 
to the three fault measures are discussed in Section 2. In 
section 3, the study design is discussed which includes a 
description of the dependent, independent variables and 
regression models used in this paper. The data analysis is 
presented in Section 4, which also evaluates the predictions of 
the fault measures. Validity threats to the study are discussed in 
Section 5. The study is concluded in Section 6. 

II. RELATED WORK 

Fault prediction has been discovered in many previous 
research in two major themes: fault-proneness and fault count. 
Studies on fault proneness categorized software classes into 
groups. Usually, classes are divided into two groups: faulty 
classes that had one or more faults in the current release, and 
non-faulty classes. Software metrics have shown significant 
relations with fault-proneness using many machine learning 
and statistical techniques [1][2][3][5][6][7][10]. Many research 
studies used the NASA fault data to build fault-proneness 
models. For example, Pai and Dugan [11] conducted a 
Bayesian analysis of fault count and fault proneness. The study 
produced statistical significant results using linear, Poison, and 
binomial logistic regression. The modeling of the results have 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

485 | P a g e  

www.ijacsa.thesai.org 

shown 20:60 relationship when classes were ranked using 
module-fault order.  Catal and Diri [12] used the NASA data 
sets to predict fault-prone modules and proposed an artificial 
immune system (semi-supervised approach) that uses a recent 
algorithm called YATSI.  Gondra [13] also used the NASA’s 
Metrics Data Program data to build prediction models of fault-
proneness of modules using two machine l++-earning 
techniques: Artificial Neural Networks (ANN) and Support 
Vector Machines (SVM). Zheng  [14] used four datasets from 
NASA projects to compare the effect of cost-sensitive boosting 
algorithms on the performance of neural networks for 
predicting fault-prone parts. In other studies on fault measures , 
Ohlsson and Alberg [15] noted that in commercial products, 
the average cost of fixing an operational fault was $7000. 
Biyani and Santhanam [16] found correlation between the 
number of faults found in development and the number of 
faults remaining in operation. Ostrand et al. [17] developed a 
negative binomial regression model to predict the number of 
faults in each file for many consecutive releases of a software. 
Khoshgoftaar and Gao [9] used two statistical models: Poisson 
regression model and the zero-inflated Poisson to predict fault 
count in two industrial case studies.  The zero inflated model 
showed better performance than poison regression model. 
Other researchers focused on other fault measures such as fix 
cost and effort. For instance, [18] used the KC1 data to build 
faults fix cost using Neural Networks. Panjer [19] proposed to 
build machine-learning models to predict fault-fix time. 
(Khoshgoftaar and Gao [9] proposed to use a program module-
order models to explore the relationship between %modules 
and %faults as a more practical model that is based on the 
predictions resulting from machine learning models.  
Khoshgoftaar et al. found that 80% of faults are found in the 
top 20% of files when ordered by faults predicted by models 
[9]. In a recent study, Hamill and Goseva-Popstojanova [20] 
studied the relationship between faults and failure of 21 large-
scale software components extracted from a safety-critical 
NASA mission. However, the study focused more on fault 
types. 

Fault prediction models are reported frequently in previous 
works as reported in surveys on software fault prediction [21] 
[22]. This study provides an exploration of the added 
dimension for the relationships between software metrics and 
fault measures such as fix cost and fix effort. In addition, the 
module-order models proposed in Briand et al. and 
Khoshgoftaar and Gao [8][9] are used to prioritize modules 
according to models predicting  fix cost and fix effort. 

III. STUDY DESIGN 

Fault data are becoming more available on many 
repositories such as PROMISE [23], Eclipse Bug Data [24], 
and NASA fault data [25]. The NASA data provides more 
details on the costs and efforts of fixing software faults, which 
are the focus of this research. Three data sets, KC1, KC3 and 
KC4 report the cost of fault fixes in terms of person hours and 
effort measured in Source Line of Code (SLOC) modified to 
accomplish the fix. Table 1 shows a summary of the three data 
sets. All these projects were built in similar software 
development environments and analyzed by the same set of 
software product metrics. These data sets are available publicly 
and other researchers can repeat and verify this study’s results. 

The MDP is funded by NASA’s Software Independent 
Verification & Validation (IV&V) facility. These systems met 
the requirements to support NASA mission [26]. 

TABLE I.  A SUMMARY OF DATA SETS 

Data  

set 
Description Language #instances 

#faulty 

instances 

%faulty 

instances 

KC1 

is a system 
implementing 

storage 
management 

for receiving 

and 
processing 

ground data 

C++ 2107 278 13% 

KC3 

Storage 

management 
for ground 

data 

Java 458 25 5.5% 

KC4 

a ground-
based 

subscription 

server 

Perl 125 60 48% 

A. Research Questions 

Given the information available on fault count, fix cost and 
fix effort, this research aims to find answers for the following 
research questions. 

RQ1: Can software metrics predict fault count? 

Fault count is defined as the number of faults fixed in a 
module. This question is already answered in previous research 
as explained in more details in the related work section. 
However, this study adds the evaluation of faults prediction 
using other machine learning techniques. Fault prediction is 
important to assess the complexity of software modules. Five 
prediction models are conducted to answer this question. The 
results of the prediction models are used to rank the modules 
by sorting according to the predicted fault count. The models 
can be used to allocate resources efficiently to identify for 
instance the 20% modules that have the most faults. 

RQ2: Can software metrics predict fix cost as measured in 
man-hours? 

Fix cost is defined as the total number of hours the 
developers spent to fix all faults in a module. For each module, 
the cost of fault fixes are aggregated. The fix cost in hours is an 
indicator of the complexity of code. A positive relationship is 
expected between the studied metrics and fix cost, i.e., more 
complex modules cost more than less complex modules. To put 
the cost prediction models in practical use, the results of 
prediction models are used to sort the modules by the predicted 
fix cost. The models can be used to allocate resources 
efficiently to identify for instance the 20% modules that have 
the most fix cost. 

RQ3: Can software metrics predict fix effort as measured in 
SLOC modified? 

Fix effort is defined as the actual number of SLOC added 
or modified to fix all faults in a module. In this study, the 
aggregation of all modified SLOC for a particular module is 
used to investigate the relationship between the fix effort and 
the complexity of modules. To put the effort prediction in 
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practical use, the results of the prediction models are used to 
sort the modules by the predicted fix effort. The models can be 
used to allocate resources efficiently to identify for instance the 
20% modules that need the most fix effort. 

The results of the three quality predictions are compared 
using the relative absolute error to find which models are 
better. 

B. Dependent variables 

NASA MDP has many projects, but only three of these 
projects have details on fault fixes, cost and effort. For each 
module, the number of faults (fault content), the total fix hours, 
and the total SLOC changed or added are aggregated. Table 2 
provides a summary of the fault measures used in this study. 
The scale for fix cost and effort are larger than the fault count. 
The scale has effect on the performance measures used in 
evaluating the prediction models and the comparison should be 
based on unbiased performance measures. Relative absolute 
error is used to evaluate models besides the root mean square 
error. 

C. Independent variables - software metrics 

The software metrics under investigation are procedural 
metrics for three systems collected by NASA MDP. The 
metrics collection were applied to the lowest level functional 
unit, procedures. The data were stored in a structured format. 
For example, a file named KC1_static_defect_data.csv, keeps 
all information related to faults including severity, priority, fix 
hours, the actual number of SLOC changed or added. Another 
file includes all the static metrics for each module and 
recognized using a unique variable, MODULE_ID. These files 
are then combined together into one file using the 
MODULE_ID, which is an identifier of module records in all 
files. 

The NASA MDP data needs preprocessing as reported in 
[27]. Therefore, we use only those metrics that were reported 
by [27] which had 21 metrics as reported in Table 3. The 
LOC_BLANK metric is deleted because it is not meaningful 
and its interpretation is not clear. These metrics were originally 
proposed in [28][29]. The McCabe and Halstead measures are 
module-based where a module is the smallest unit of 
functionality. McCabe argued that code with complicated 
pathways are more error prone. Halstead considered the code 
readability as indicator of fault proneness. Halstead metrics 
measure software complexity by counting the number of 
concepts in a module [26]. 

TABLE II.  DESCRIPTIVE STATISTICS FOR THE THREE FAULT MEASURES 

(FAULT COUNT, FIX HOURS, SLOC MODIFIED) 

Fault count Min Max Mean stdev Total  

KC1 0 11 0.30 0.991 631 

KC3 0 3 0.114 0.50 52 

KC4 0 23 2 3.60 248 

Fix cost Min Max Mean stdev Total 

KC1 0 397 5.99 26.7 12629 

KC3 0 190 6.62 29.365 3032 

KC4 0 498 28.6 62.43 3548 

Fix effort Min Max Mean stdev Total 

KC1 0 1016 14.57 57.59 30713 

KC3 0 512 7.63 44.00 3496 

KC4 0 467 19.24 62.70 7176 

D. Regression Models 

We propose to use a set of data mining techniques to 
predict the value of a numerical variable (e.g., fix cost) by 
building a model based on many software metrics. This 
research uses the following regression techniques to predict 
fault count, fix cost and fix effort. 

Regression Decision Trees (M5P): Decision tree is used to 
build regression models in the form of a tree structure using the 
M5 algorithm [30]. The algorithm constructs a decision tree for 
regression different from classification by using Standard 
Deviation Reduction instead of Information Gain. A dataset is 
continuously partitioned into smaller subsets while the standard 
deviation is larger than zero. 

Multiple Linear regression (MLR):  Multiple linear 
regression (MLR) is a well-known statistical technique used to 
model the linear relationship between a count variable and 
many independent variables. MLR is based on calculating 
ordinary least squares (OLS), the model is fit such that the 
differences between actual and predicted instances are 
minimized. 

k Nearest Neighbors (kNN): The kNN algorithm is an 
instance-based method that is not used to build a model from 
training data; rather, it keeps the training instances with the 
intention of analyzing future instances. The kNN algorithm 
searches the training instances to find the closest instances to a 
new unknown instance to be analyzed. The search starts by 
finding the distance with all other instances using the 
Euclidean Distance. The kNN algorithm selects the average of 
the closest group of k objects in the training set [31]. 

TABLE III.  SOFTWARE METRICS USED IN THE EMPIRICAL WORK 

Metrics  description or formula 

LOC_CODE_AND_COMMENT:  

The number of lines 
which contain both code 

and comment in a 
module 

LOC_COMMENTS 
The number of lines of 

comments in a module 

LOC_EXECUTABLE  

The number of lines of 
executable code for a 

module (not blank or 

comment) 

LOC_TOTAL 
 The total number of 
lines for a given module 

BRANCH_COUNT  Branch count metrics 

CYCLOMATIC_COMPLEXITY:  

 The cyclomatic 

complexity of a module 
v(G) = e − n + 2 

DESIGN_COMPLEXITY:iv(G)  
The design complexity 

of a module 

ESSENTIAL_COMPLEXITY:ev(G) 
 The essential 
complexity of a module 

NUM_OPERATORS:N1  

The number of 

operators contained in a 
module 

NUM_OPERANDS:N2  
The number of operands 

contained in a module 

NUM_UNIQUE_OPERATORS:µ1  
The number of unique 
operators contained in a 

module 

NUM_UNIQUE_OPERANDS:µ2  
The number of unique 
operands contained in a 

module 
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HALSTEAD_CONTENT:µ  

The halstead length 

content of a module µ = 

µ1 + µ2 

HALSTEAD_LENGTH:N 2 

The halstead length 

metric of a module N = 
N1 + N 

HALSTEAD_LEVEL:L  

The halstead level 

metric of a module L = 

(2∗µ2)/µ1∗N2 

HALSTEAD_DIFFICULTY:D  

The halstead difficulty 

metric of a module D = 
1/L 

HALSTEAD_VOLUME:V  

The halstead volume 

metric of a module V = 

N ∗ log2(µ1 + µ2) 

HALSTEAD_EFFORT:E  
The halstead effort 
metric of a module E = 

V/L 

HALSTEAD_PROG_TIME: T  

The halstead 

programming time 

metric of a module T = 

E/18 

HALSTEAD_ERROR_EST: B 
 The halstead error 
estimate metric of a 

module B = E2/3/1000 

Multi-layer Perceptron - Backpropagation algorithm: The 
multi-layer perceptron (MLPRegressor) is similar to the 
organization of the brain neurons. Artificial neurons are 
arranged in layers (i.e., input layer, hidden layers and output 
layer). Connections between the neurons provide the network 
with the ability to learn patterns. In MLP, each neuron in the 
hidden layer uses a combination of weighted outputs of the 
neurons from the previous layer. In the final hidden layer, 
neurons are combined to produce an output, which is compared 
to the correct output and the difference between the two values 
(the error) is fed back to update the network [13]. 

Support Vector Machine (SMOreg): SMOreg implements 
the support vector machine for regression. SMOreg is more 
complicated to be taken into consideration than the 
classification version. However, both aim to minimize error, 
i.e., individualizing the hyperplane which maximizes the 
margin while error is tolerated [32]. 

E. Regression performance evaluation 

The models are trained and tested using 10-fold cross-
validation, in which data is partitioned into ten equal sample 
sizes. Nine partitions are used for training while the last 
partition is used for testing.  This process is repeated ten times 
to use all partitions in testing. The performance of regression 
models is usually evaluated using the Root Mean Squared 
Error (RMSE) as defined in Eq. (1). RMSE is frequently used 
to measure the difference between predicted and actual values. 
RMSE  is calculated as follows. 

RMSE = √
∑ (     )

  
   

 
  (1) 

In this research the dependent variables have different units 
and to be able to compare models on different units, the 
Relative Absolute Error (RAE) is used as defined in Eq. (2).  
[32]. RAE is calculated as follows. 

RAE = 
∑ |     |
 
   

∑ | ̅   |
 
   

  (2) 

In both measures, a is the actual value, p is the predicted 
value, and  ̅ is the mathematical mean. 

IV. DATA ANALYSIS 

In the following, the evaluation of the prediction 
performance for fault measures are reported using RMSE and 
then compared using RAE. 

A. Evaluation of fault count prediction 

Five prediction models are built for fault count using 
twenty metrics under investigation. The performance of fault 
prediction is calculated and summarized in Table 4. The results 
of the five models do not differ from each other when 
compared within any data set. However, the LR models look 
better in two data sets, while KNN models are also better in 
two data sets as marked in bold. However, the differences in 
the performance among the models are not enough to provide 
ranking of the machine learning techniques. The MLP can be 
considered the worst in performance among all. 

TABLE IV.  FAULT COUNT REGRESSION MODELS 

Fault 

Count 
LR kNN M5P SMOreg MLPRegressor 

KC1 0.90 0.92 0.93 1.00 1.06 

KC3 0.46 0.46 0.48 0.47 0.63 

KC4 3.17 2.60 2.78 3.16 3.69 

To put models in practice, the results of the models are 
depicted using Alberg diagrams as proposed in [15].  In Figure 
1, modules are sorted in decreasing order by the predicted 
faults. The plot shows the percentage of modules (x-axis) 
against the percentage of actual faults after sorting the 
instances. Figure 1 shows the results of fault count prediction 
in KC1. These results are taken from running the models in the 
10-fold cross-validation. The figure can be used as follows, for 
example at X=20 the value of the curve is 60, which means 
20% of modules (369 modules) with highest predicted fault 
count constitute of 60% of faults.  It can be noticed that the top 
30% of modules has 70% of actual faults. This behavior is 
similar in all models. 

We also plot the same graph for KC3 and KC4 prediction 
models in Figure 2 and 3. In Figure 2, we observe similar 
results for the top 20% modules, i.e., about 60% of faults are 
found in the top 20% of modules in all prediction models. In 
Figure 3, we observe similar results for KC4 data in kNN 
model. Other models show 20:50 relationship, i.e., 50% of 
faults are found in the top 20 modules. We can conclude that 
software metrics can be used to predict fault count and models 
can be used in practice to rank modules based on predicted 
fault count. Therefore, RQ1 is answered in this research. When 
planning for quality inspection during the software 
development process, we can make a trade-off between the 
resources spent on inspection and the effectiveness of 
inspections [8]. The prediction models can be used to put the 
modules in a priority list for more investigation such as testing 
and maintenance. We can use the graph in Figure 1 to 
determine the percentage of faults that are expected in the 
system by inspecting a certain percentage of the system 
modules. For example, the top 20% modules can be 
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investigated first if allocated resources are only available for 
investigating such number of modules. 

The graphs in Figures 1-3 have shown similar behavior to 
works in [33][8][11]. For instance, Briand et al. [8] found that 
the first 20% of classes have 52% of faults in the system. They 
also suggested that such curves can be used in practice if they 
appear to be constant across projects. Software managers can 
use fault prediction models to allocate more resources on the 
parts of the code that were predicted to be more fault-prone 
[5][34]. 

B. Evaluation of fix-cost prediction 

We repeated the same experiment to predict fix cost using 
all metrics and the results are shown in Table 5. We notice no 
significant differences among the models except MLP, which 
is again the worst modelling technique. M5P regression trees 
can be considered the best among all models, while others have 
almost equal performances. 

 
Fig. 1. Alberg diagram for five prediction models of KC1 

 
Fig. 2. Alberg diagram for five prediction models of KC3 

 
Fig. 3. Alberg diagram for five prediction models of KC4 

TABLE V.  FIX-COST REGRESSION MODELS 

Fix cost LR kNN M5P SMOreg MLPRegressor 

KC1 24.70 25.05 24.70 25.71 29.70 

KC3 25.98 26.3 27.71 24.47 36.38 

KC4 59.88 50.83 50.00 55.47 73.21 

The fix cost can be used in practice to order modules based 
on cost prediction. We plot the percentage of modules (x-axis) 
and the percentage of actual costs after sorting the instances in 
decreasing order by the predicted fix cost. Figure 4 shows the 
results of the five prediction models for fix-cost prediction in 
KC1. The figure can be used, at X=20 the value of the curve is 
60% in three models whereas in two models (LR and MLP) is 
about 50%. This result means 20% of modules (369 modules) 
with highest predicted fix cost incurred 60% of the spent 
person hours on fixing cost.  It can be noticed that the top 30% 
of modules ordered by the prediction model has 60-70% of 
actual fix cost.  

We plot the Module-Cost graph for KC3 and KC4 in Figure 
5 and 6. 

 

Fig. 4. Alberg diagram for five prediction models of KC1 
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The graphs show a 10:60 relationship, i.e., 10% of modules 
incurred 60% of the fix cost in both KC3 and KC4 in four 
models except the MLP prediction models which shows 20:40 
relationship. These results are better than the models in KC1. 
In addition, the use of fix cost seems more efficient than the 
use of fault count in two data sets: KC3 and KC4, which show 
20:60 relationship. Therefore, RQ2 is answered in this research 
as well. Fix cost can be predicted using software metrics and 
models can be used in practice to rank modules based on 
predicted fix cost. Fix cost can be used to allocate resources in 
software testing and maintenance activities. 

C. Evaluation of fix effort prediction 

The SLOC modified in a module is also studied as a fault 
measure and the results are presented in Table 6. The results 
are not conclusive in identifying the best model. The MLP 
models are again the least in performance among all. We plot 
the percentage of modules (x-axis) and the percentage of actual 
SLOC modified to fix faults in each module after sorting 
modules in decreasing order by the predicted effort as shown in  

 

Fig. 5. Alberg diagram for five prediction models of KC3 

 
Fig. 6. Alberg diagram for five prediction models of KC4 

Figure 7,8 , and 9. The results of the five prediction models do 
not show consistent results in all data sets. Almost all models 
show 20:60 relationship in KC1, but are different in KC3 and 
KC4 for different models. However, the results of the models 
on KC4 are similar to the models in KC1. While the models 
obtained from KC3 do not show promising results. These 

results show that RQ3 is answered. Fix effort as measured 
using SLOC can be used in practice to order the modules based 
on fix effort. However, the fault count and fix cost in person 
hours can be more beneficial to software managers. 

TABLE VI.  FIX EFFORT REGRESSION MODELS 

Fixed SLOC LR kNN M5P SMOreg MLPRegressor 

KC1 53.05 56.32 53.58 56.66 61.66 

KC3 36.91 38.00 35.49 34.58 49.85 

KC4 109.63 92.66 90.41 103.79 129.00 

 

Fig. 7. Alberg diagram for five prediction models of KC1 data 

D. Comparison of models performance 

The RMSE results cannot be used to compare the results 
across the three fault measures because of the differences in 
measurement units. Therefore, we use another measure, the 
Relative Absolute Error (RAE), to analyze the results among 
the fault measures. The results of the models performance in 
RAE are reported in Table 7, where we find the following 
observations. In KC1, the Fault count models are the best in 
most models except one. In KC3, the fix cost models are the 
best except for two models. In KC4, the Fault count models are 
again the best. Therefore, for the systems under investigation, 
we can observe that prediction models based on fault count are 
slightly better in performance than other studied models. 
However, we do not observe large differences among the three 
fault measures under investigation. These results help the 
software engineers to consider other quality factors related to 
fault discovery and fix processes. The regression models for 
the fix cost and fix effort can be used similarly to fault count 
models. 

 
Fig. 8. Alberg diagram for five prediction models of KC3 data 
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Fig. 9. Alberg diagram for five prediction models of KC4 data 

TABLE VII.  THE RAE RESULTS FOR FIVE MODELS 
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LR 84.2 91.3 89.7 90.6 89.8 101.2 92.0 102.2 97.9 
KNN 72.2 76.4 78.4 71.4 69.3 73.5 67.1 77.1 73.4 

M5P 85.8 88.2 87.5 97.7 96.1 99.2 79.9 84.6 82.7 

SMO 58.2 57.7 58.4 51.6 51.6 50.1 74.9 70.4 69.3 

MLP 106 114.1 109.7 131 125.4 137.7 103 122.3 114.1 

The three quality factors can be used in practice to allocate 
resources, but it is important to know which models are 
consistent and always useful. The results of the practical 
implementation of the models for the three factors when 20% 
of modules are selected for further investigation are 
summarized in Table 8. The results show that both fault count 
and fix cost are more consistent than fix effort. In some cases, 
the cost models show better results. Furthermore, the use of fix 
cost in allocating resources provide more insights about the 
person hours spent to fix faults and can be considered a 
stronger indicator of where difficulties in code may appear. 

V. VALIDITY THREATS 

In the following, we address two kinds of possible threats 
that may affect the conducted research. 

Construct Validity Threats: Construct validity refers to 
the degree to which the dependent and independent variables in 
this research measure the intended targets. Fix cost as 
measured in person hours are estimated by the developers and 
there is no detailed information about how developers estimate 
the fix cost. However, the data comes from a well-reputed 
organization, NASA, and their work is focused on quality of 
data and quality of work. The metrics in this study are well-
studied metrics and recommended by many researchers to 
measure modules at procedural level. 

Internal validity threats: internal validity is the degree to 
which conclusions can be drawn from the proposed data sets. 
This study depends on data from other organization and there 
is not enough information available about the development 
process followed in developing the three applications under 

study. However, the studied systems were considered in many 
other research papers and recommended to use by NASA. 

External validity threats: External validity is concerned 
with the degree to which the results can be generalized to other 
research settings. The results of this study is based on only 
three data sets published by NASA MDP. We need more data 
sets to be able to generalize the results of this study into other 
systems. In addition, the systems are measured at procedural 
levels and conclusions may not be applicable for other 
paradigms like object-oriented paradigm. 

VI. CONCLUSIONS AND FUTURE WORK 

The fault prediction models are surrogates for the software 
quality. The assessment of faults in modules can be used to 
direct the efforts of software engineers in assuring software 
quality. Five well-known regression models were used to 
predict fault count, fix cost, and fix effort. The results of 
regression models for three data sets were reported. The results 
were not conclusive to find the best models in each data set and 
all regression models had similar performance. The prediction 
of fault count had a better performance in most models in KC1 
and KC4 data sets. We found the prediction of fix cost is the 
best in KC3 only. Engineers may not have enough time to 
explore the quality of all modules in large software systems. It 
is vital to show the value of using these models in doing cost-
effective quality assurance, e.g., prioritizing modules for 
further investigation. We have modeled the results of the 
prediction models by plotting the relationship between 
%modules and %faults after sorting the modules by faults 
predicted. 
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TABLE VIII.  THE RELATIONSHIPS RESULTING FROM IMPLEMENTATION OF THE PREDICTION MODELS

We have also plotted the relationship between (%modules, 
%fix cost) and (%modules, %fix effort). The plots have shown 
that the 20:60 rule can be applied for the three measures. 

These results are important to conclude that we can use the 
same metrics to predict different fault measures, i.e., answering 
the three research questions. The software engineers can have 
alternative methods to select software modules for further 
verification and validation from different perspectives. In 
future, we plan to expand this study to more diverse data sets. 
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LR 20:58 20:59 20:62 20:54 20:60 20:49 20:49 20:60 20:43 

KNN 20:58 20:58 20:63 20:50 20:58 20:33 20:57 20:58 20:58 

M5P 20:59 20:48 20:58 20:48 20:60 20:38 20:46 20:60 20:49 
SMO 20:58 20:57 20:56 20:54 20:59 20:50 20:49 20:59 20:49 

MLP 20:58 20:44 20:54 20:42 20:43 20:14 20:30 20:43 20:29 


