
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

484 | P a g e

www.ijacsa.thesai.org

An Empirical Investigation of Predicting Fault Count,

Fix Cost and Effort Using Software Metrics

Raed Shatnawi

Software Engineering Department,

Jordan University of Science and Technology,

Irbid, Jordan

Wei Li

Computer Science Department,

University of Alabama in Huntsville,

Huntsville, AL, USA

Abstract—Software fault prediction is important in software

engineering field. Fault prediction helps engineers manage their

efforts by identifying the most complex parts of the software

where errors concentrate. Researchers usually study the fault-

proneness in modules because most modules have zero faults, and

a minority have the most faults in a system. In this study, we

present methods and models for the prediction of fault-count,

fault-fix cost, and fault-fix effort and compare the effectiveness of

different prediction models. This research proposes using a set of

procedural metrics to predict three fault measures: fault count,

fix cost and fix effort. Five regression models are used to predict

the three fault measures. The study reports on three data sets

published by NASA. The models for each fault are evaluated

using the Root Mean Square Error. A comparison amongst fault

measures is conducted using the Relative Absolute Error. The

models show promising results to provide a practical guide to

help software engineers in allocating resources during software

testing and maintenance. The cost fix models show equal or

better performance than fault count and effort models.

Keywords—Software metrics; fault prediction; fix cost; fix

effort; regression analysis

I. INTRODUCTION

Predicting faults in modules is important to assess software
quality and to direct software engineers’ effort to spend more
time on more trouble-prone modules. Software metrics are
surrogates for fault measures such as fault-proneness, fault
count, fault-fix cost, and effort. Software metrics measure the
complexity of software and can be used to identify the faulty
modules using statistical and machine-learning techniques.
These techniques can be used to build prediction models such
as fault count, fix cost, and fix effort to predict which modules
are likely to have these problems. Software systems are
becoming larger and larger and contain thousands of modules
that are investigated in testing and maintenance phases.
However, the cost of testing and maintenance are growing with
the size of systems. This growing trend leads to either very
costly system or compromised quality. Software engineers can
use prediction models to prioritize modules to focus the testing
and maintenance activities on the modules that are either have
more faults, more costly to fix or demand more efforts to fix.
Hence, detecting and ranking faulty modules is an important
engineering task for improving system quality and reducing
cost. There are usually two measures of module quality: fault
count or fault-proneness. In most systems, a small number of
modules have faults and the majority of modules have zero
faults. Researchers use fault-proneness by using binary coding

of modules (zero for no faults and one if there are faults in a
module) to build prediction models that are usually easy to
interpret [1][2][3][4][5][6][7]. However, the binary coding
does not explore all information available about faults. Fault
count is an indicator of quality in a module but may not
provide enough information about the fix cost or effort.
Therefore, regression and machine-learning models are used to
identify complex modules by considering fault count, fix cost
and effort. In this paper, five regression and machine-learning
techniques are used to predict the three fault measures. Twenty
procedural metrics used as independent variables in the
prediction models. The models are trained and tested on three
data sets provided by NASA. Overall, fifteen models were built
for each data set using 10-fold cross-validation. The results for
the three fault measures have shown similar results, but the
cost-fix models are slightly better. These models can help in
allocating resources for software testing and maintenance. The
results of the models are used to rank the modules based on the
fault measures, and the results are promising and
commensurate with previous works [8][9].The performance of
the three fault measures is compared to find the best ranking.
The results show similar results for the three measures with
some advantage for fault count and fix cost over fix effort.

The rest of the paper is organized as follows: related work
to the three fault measures are discussed in Section 2. In
section 3, the study design is discussed which includes a
description of the dependent, independent variables and
regression models used in this paper. The data analysis is
presented in Section 4, which also evaluates the predictions of
the fault measures. Validity threats to the study are discussed in
Section 5. The study is concluded in Section 6.

II. RELATED WORK

Fault prediction has been discovered in many previous
research in two major themes: fault-proneness and fault count.
Studies on fault proneness categorized software classes into
groups. Usually, classes are divided into two groups: faulty
classes that had one or more faults in the current release, and
non-faulty classes. Software metrics have shown significant
relations with fault-proneness using many machine learning
and statistical techniques [1][2][3][5][6][7][10]. Many research
studies used the NASA fault data to build fault-proneness
models. For example, Pai and Dugan [11] conducted a
Bayesian analysis of fault count and fault proneness. The study
produced statistical significant results using linear, Poison, and
binomial logistic regression. The modeling of the results have

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

485 | P a g e

www.ijacsa.thesai.org

shown 20:60 relationship when classes were ranked using
module-fault order. Catal and Diri [12] used the NASA data
sets to predict fault-prone modules and proposed an artificial
immune system (semi-supervised approach) that uses a recent
algorithm called YATSI. Gondra [13] also used the NASA’s
Metrics Data Program data to build prediction models of fault-
proneness of modules using two machine l++-earning
techniques: Artificial Neural Networks (ANN) and Support
Vector Machines (SVM). Zheng [14] used four datasets from
NASA projects to compare the effect of cost-sensitive boosting
algorithms on the performance of neural networks for
predicting fault-prone parts. In other studies on fault measures ,
Ohlsson and Alberg [15] noted that in commercial products,
the average cost of fixing an operational fault was $7000.
Biyani and Santhanam [16] found correlation between the
number of faults found in development and the number of
faults remaining in operation. Ostrand et al. [17] developed a
negative binomial regression model to predict the number of
faults in each file for many consecutive releases of a software.
Khoshgoftaar and Gao [9] used two statistical models: Poisson
regression model and the zero-inflated Poisson to predict fault
count in two industrial case studies. The zero inflated model
showed better performance than poison regression model.
Other researchers focused on other fault measures such as fix
cost and effort. For instance, [18] used the KC1 data to build
faults fix cost using Neural Networks. Panjer [19] proposed to
build machine-learning models to predict fault-fix time.
(Khoshgoftaar and Gao [9] proposed to use a program module-
order models to explore the relationship between %modules
and %faults as a more practical model that is based on the
predictions resulting from machine learning models.
Khoshgoftaar et al. found that 80% of faults are found in the
top 20% of files when ordered by faults predicted by models
[9]. In a recent study, Hamill and Goseva-Popstojanova [20]
studied the relationship between faults and failure of 21 large-
scale software components extracted from a safety-critical
NASA mission. However, the study focused more on fault
types.

Fault prediction models are reported frequently in previous
works as reported in surveys on software fault prediction [21]
[22]. This study provides an exploration of the added
dimension for the relationships between software metrics and
fault measures such as fix cost and fix effort. In addition, the
module-order models proposed in Briand et al. and
Khoshgoftaar and Gao [8][9] are used to prioritize modules
according to models predicting fix cost and fix effort.

III. STUDY DESIGN

Fault data are becoming more available on many
repositories such as PROMISE [23], Eclipse Bug Data [24],
and NASA fault data [25]. The NASA data provides more
details on the costs and efforts of fixing software faults, which
are the focus of this research. Three data sets, KC1, KC3 and
KC4 report the cost of fault fixes in terms of person hours and
effort measured in Source Line of Code (SLOC) modified to
accomplish the fix. Table 1 shows a summary of the three data
sets. All these projects were built in similar software
development environments and analyzed by the same set of
software product metrics. These data sets are available publicly
and other researchers can repeat and verify this study’s results.

The MDP is funded by NASA’s Software Independent
Verification & Validation (IV&V) facility. These systems met
the requirements to support NASA mission [26].

TABLE I. A SUMMARY OF DATA SETS

Data

set
Description Language #instances

#faulty

instances

%faulty

instances

KC1

is a system
implementing

storage
management

for receiving

and
processing

ground data

C++ 2107 278 13%

KC3

Storage

management
for ground

data

Java 458 25 5.5%

KC4

a ground-
based

subscription

server

Perl 125 60 48%

A. Research Questions

Given the information available on fault count, fix cost and
fix effort, this research aims to find answers for the following
research questions.

RQ1: Can software metrics predict fault count?

Fault count is defined as the number of faults fixed in a
module. This question is already answered in previous research
as explained in more details in the related work section.
However, this study adds the evaluation of faults prediction
using other machine learning techniques. Fault prediction is
important to assess the complexity of software modules. Five
prediction models are conducted to answer this question. The
results of the prediction models are used to rank the modules
by sorting according to the predicted fault count. The models
can be used to allocate resources efficiently to identify for
instance the 20% modules that have the most faults.

RQ2: Can software metrics predict fix cost as measured in
man-hours?

Fix cost is defined as the total number of hours the
developers spent to fix all faults in a module. For each module,
the cost of fault fixes are aggregated. The fix cost in hours is an
indicator of the complexity of code. A positive relationship is
expected between the studied metrics and fix cost, i.e., more
complex modules cost more than less complex modules. To put
the cost prediction models in practical use, the results of
prediction models are used to sort the modules by the predicted
fix cost. The models can be used to allocate resources
efficiently to identify for instance the 20% modules that have
the most fix cost.

RQ3: Can software metrics predict fix effort as measured in
SLOC modified?

Fix effort is defined as the actual number of SLOC added
or modified to fix all faults in a module. In this study, the
aggregation of all modified SLOC for a particular module is
used to investigate the relationship between the fix effort and
the complexity of modules. To put the effort prediction in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

486 | P a g e

www.ijacsa.thesai.org

practical use, the results of the prediction models are used to
sort the modules by the predicted fix effort. The models can be
used to allocate resources efficiently to identify for instance the
20% modules that need the most fix effort.

The results of the three quality predictions are compared
using the relative absolute error to find which models are
better.

B. Dependent variables

NASA MDP has many projects, but only three of these
projects have details on fault fixes, cost and effort. For each
module, the number of faults (fault content), the total fix hours,
and the total SLOC changed or added are aggregated. Table 2
provides a summary of the fault measures used in this study.
The scale for fix cost and effort are larger than the fault count.
The scale has effect on the performance measures used in
evaluating the prediction models and the comparison should be
based on unbiased performance measures. Relative absolute
error is used to evaluate models besides the root mean square
error.

C. Independent variables - software metrics

The software metrics under investigation are procedural
metrics for three systems collected by NASA MDP. The
metrics collection were applied to the lowest level functional
unit, procedures. The data were stored in a structured format.
For example, a file named KC1_static_defect_data.csv, keeps
all information related to faults including severity, priority, fix
hours, the actual number of SLOC changed or added. Another
file includes all the static metrics for each module and
recognized using a unique variable, MODULE_ID. These files
are then combined together into one file using the
MODULE_ID, which is an identifier of module records in all
files.

The NASA MDP data needs preprocessing as reported in
[27]. Therefore, we use only those metrics that were reported
by [27] which had 21 metrics as reported in Table 3. The
LOC_BLANK metric is deleted because it is not meaningful
and its interpretation is not clear. These metrics were originally
proposed in [28][29]. The McCabe and Halstead measures are
module-based where a module is the smallest unit of
functionality. McCabe argued that code with complicated
pathways are more error prone. Halstead considered the code
readability as indicator of fault proneness. Halstead metrics
measure software complexity by counting the number of
concepts in a module [26].

TABLE II. DESCRIPTIVE STATISTICS FOR THE THREE FAULT MEASURES

(FAULT COUNT, FIX HOURS, SLOC MODIFIED)

Fault count Min Max Mean stdev Total

KC1 0 11 0.30 0.991 631

KC3 0 3 0.114 0.50 52

KC4 0 23 2 3.60 248

Fix cost Min Max Mean stdev Total

KC1 0 397 5.99 26.7 12629

KC3 0 190 6.62 29.365 3032

KC4 0 498 28.6 62.43 3548

Fix effort Min Max Mean stdev Total

KC1 0 1016 14.57 57.59 30713

KC3 0 512 7.63 44.00 3496

KC4 0 467 19.24 62.70 7176

D. Regression Models

We propose to use a set of data mining techniques to
predict the value of a numerical variable (e.g., fix cost) by
building a model based on many software metrics. This
research uses the following regression techniques to predict
fault count, fix cost and fix effort.

Regression Decision Trees (M5P): Decision tree is used to
build regression models in the form of a tree structure using the
M5 algorithm [30]. The algorithm constructs a decision tree for
regression different from classification by using Standard
Deviation Reduction instead of Information Gain. A dataset is
continuously partitioned into smaller subsets while the standard
deviation is larger than zero.

Multiple Linear regression (MLR): Multiple linear
regression (MLR) is a well-known statistical technique used to
model the linear relationship between a count variable and
many independent variables. MLR is based on calculating
ordinary least squares (OLS), the model is fit such that the
differences between actual and predicted instances are
minimized.

k Nearest Neighbors (kNN): The kNN algorithm is an
instance-based method that is not used to build a model from
training data; rather, it keeps the training instances with the
intention of analyzing future instances. The kNN algorithm
searches the training instances to find the closest instances to a
new unknown instance to be analyzed. The search starts by
finding the distance with all other instances using the
Euclidean Distance. The kNN algorithm selects the average of
the closest group of k objects in the training set [31].

TABLE III. SOFTWARE METRICS USED IN THE EMPIRICAL WORK

Metrics description or formula

LOC_CODE_AND_COMMENT:

The number of lines
which contain both code

and comment in a
module

LOC_COMMENTS
The number of lines of

comments in a module

LOC_EXECUTABLE

The number of lines of
executable code for a

module (not blank or

comment)

LOC_TOTAL
 The total number of
lines for a given module

BRANCH_COUNT Branch count metrics

CYCLOMATIC_COMPLEXITY:

 The cyclomatic

complexity of a module
v(G) = e − n + 2

DESIGN_COMPLEXITY:iv(G)
The design complexity

of a module

ESSENTIAL_COMPLEXITY:ev(G)
 The essential
complexity of a module

NUM_OPERATORS:N1

The number of

operators contained in a
module

NUM_OPERANDS:N2
The number of operands

contained in a module

NUM_UNIQUE_OPERATORS:µ1
The number of unique
operators contained in a

module

NUM_UNIQUE_OPERANDS:µ2
The number of unique
operands contained in a

module

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

487 | P a g e

www.ijacsa.thesai.org

HALSTEAD_CONTENT:µ

The halstead length

content of a module µ =

µ1 + µ2

HALSTEAD_LENGTH:N 2

The halstead length

metric of a module N =
N1 + N

HALSTEAD_LEVEL:L

The halstead level

metric of a module L =

(2∗µ2)/µ1∗N2

HALSTEAD_DIFFICULTY:D

The halstead difficulty

metric of a module D =
1/L

HALSTEAD_VOLUME:V

The halstead volume

metric of a module V =

N ∗ log2(µ1 + µ2)

HALSTEAD_EFFORT:E
The halstead effort
metric of a module E =

V/L

HALSTEAD_PROG_TIME: T

The halstead

programming time

metric of a module T =

E/18

HALSTEAD_ERROR_EST: B
 The halstead error
estimate metric of a

module B = E2/3/1000

Multi-layer Perceptron - Backpropagation algorithm: The
multi-layer perceptron (MLPRegressor) is similar to the
organization of the brain neurons. Artificial neurons are
arranged in layers (i.e., input layer, hidden layers and output
layer). Connections between the neurons provide the network
with the ability to learn patterns. In MLP, each neuron in the
hidden layer uses a combination of weighted outputs of the
neurons from the previous layer. In the final hidden layer,
neurons are combined to produce an output, which is compared
to the correct output and the difference between the two values
(the error) is fed back to update the network [13].

Support Vector Machine (SMOreg): SMOreg implements
the support vector machine for regression. SMOreg is more
complicated to be taken into consideration than the
classification version. However, both aim to minimize error,
i.e., individualizing the hyperplane which maximizes the
margin while error is tolerated [32].

E. Regression performance evaluation

The models are trained and tested using 10-fold cross-
validation, in which data is partitioned into ten equal sample
sizes. Nine partitions are used for training while the last
partition is used for testing. This process is repeated ten times
to use all partitions in testing. The performance of regression
models is usually evaluated using the Root Mean Squared
Error (RMSE) as defined in Eq. (1). RMSE is frequently used
to measure the difference between predicted and actual values.
RMSE is calculated as follows.

RMSE = √
∑ ()

 (1)

In this research the dependent variables have different units
and to be able to compare models on different units, the
Relative Absolute Error (RAE) is used as defined in Eq. (2).
[32]. RAE is calculated as follows.

RAE =
∑ | |

∑ | ̅ |

 (2)

In both measures, a is the actual value, p is the predicted
value, and ̅ is the mathematical mean.

IV. DATA ANALYSIS

In the following, the evaluation of the prediction
performance for fault measures are reported using RMSE and
then compared using RAE.

A. Evaluation of fault count prediction

Five prediction models are built for fault count using
twenty metrics under investigation. The performance of fault
prediction is calculated and summarized in Table 4. The results
of the five models do not differ from each other when
compared within any data set. However, the LR models look
better in two data sets, while KNN models are also better in
two data sets as marked in bold. However, the differences in
the performance among the models are not enough to provide
ranking of the machine learning techniques. The MLP can be
considered the worst in performance among all.

TABLE IV. FAULT COUNT REGRESSION MODELS

Fault

Count
LR kNN M5P SMOreg MLPRegressor

KC1 0.90 0.92 0.93 1.00 1.06

KC3 0.46 0.46 0.48 0.47 0.63

KC4 3.17 2.60 2.78 3.16 3.69

To put models in practice, the results of the models are
depicted using Alberg diagrams as proposed in [15]. In Figure
1, modules are sorted in decreasing order by the predicted
faults. The plot shows the percentage of modules (x-axis)
against the percentage of actual faults after sorting the
instances. Figure 1 shows the results of fault count prediction
in KC1. These results are taken from running the models in the
10-fold cross-validation. The figure can be used as follows, for
example at X=20 the value of the curve is 60, which means
20% of modules (369 modules) with highest predicted fault
count constitute of 60% of faults. It can be noticed that the top
30% of modules has 70% of actual faults. This behavior is
similar in all models.

We also plot the same graph for KC3 and KC4 prediction
models in Figure 2 and 3. In Figure 2, we observe similar
results for the top 20% modules, i.e., about 60% of faults are
found in the top 20% of modules in all prediction models. In
Figure 3, we observe similar results for KC4 data in kNN
model. Other models show 20:50 relationship, i.e., 50% of
faults are found in the top 20 modules. We can conclude that
software metrics can be used to predict fault count and models
can be used in practice to rank modules based on predicted
fault count. Therefore, RQ1 is answered in this research. When
planning for quality inspection during the software
development process, we can make a trade-off between the
resources spent on inspection and the effectiveness of
inspections [8]. The prediction models can be used to put the
modules in a priority list for more investigation such as testing
and maintenance. We can use the graph in Figure 1 to
determine the percentage of faults that are expected in the
system by inspecting a certain percentage of the system
modules. For example, the top 20% modules can be

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

488 | P a g e

www.ijacsa.thesai.org

investigated first if allocated resources are only available for
investigating such number of modules.

The graphs in Figures 1-3 have shown similar behavior to
works in [33][8][11]. For instance, Briand et al. [8] found that
the first 20% of classes have 52% of faults in the system. They
also suggested that such curves can be used in practice if they
appear to be constant across projects. Software managers can
use fault prediction models to allocate more resources on the
parts of the code that were predicted to be more fault-prone
[5][34].

B. Evaluation of fix-cost prediction

We repeated the same experiment to predict fix cost using
all metrics and the results are shown in Table 5. We notice no
significant differences among the models except MLP, which
is again the worst modelling technique. M5P regression trees
can be considered the best among all models, while others have
almost equal performances.

Fig. 1. Alberg diagram for five prediction models of KC1

Fig. 2. Alberg diagram for five prediction models of KC3

Fig. 3. Alberg diagram for five prediction models of KC4

TABLE V. FIX-COST REGRESSION MODELS

Fix cost LR kNN M5P SMOreg MLPRegressor

KC1 24.70 25.05 24.70 25.71 29.70

KC3 25.98 26.3 27.71 24.47 36.38

KC4 59.88 50.83 50.00 55.47 73.21

The fix cost can be used in practice to order modules based
on cost prediction. We plot the percentage of modules (x-axis)
and the percentage of actual costs after sorting the instances in
decreasing order by the predicted fix cost. Figure 4 shows the
results of the five prediction models for fix-cost prediction in
KC1. The figure can be used, at X=20 the value of the curve is
60% in three models whereas in two models (LR and MLP) is
about 50%. This result means 20% of modules (369 modules)
with highest predicted fix cost incurred 60% of the spent
person hours on fixing cost. It can be noticed that the top 30%
of modules ordered by the prediction model has 60-70% of
actual fix cost.

We plot the Module-Cost graph for KC3 and KC4 in Figure
5 and 6.

Fig. 4. Alberg diagram for five prediction models of KC1

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

LR Faults% KNN Faults%

M5P Faults% SMOReg Faults%

MLP Faults%

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

LR Faults% KNN Faults%

M5P Faults% SMOReg Faults%

MLP Faults%

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

LR Faults% KNN Faults%

M5P Faults% SMOReg Faults%

MLP Fix cost%

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

LR Fix cost% KNN Fix cost% M5P Fix cost%

SMO Fix cost% MLPFix cost%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

489 | P a g e

www.ijacsa.thesai.org

The graphs show a 10:60 relationship, i.e., 10% of modules
incurred 60% of the fix cost in both KC3 and KC4 in four
models except the MLP prediction models which shows 20:40
relationship. These results are better than the models in KC1.
In addition, the use of fix cost seems more efficient than the
use of fault count in two data sets: KC3 and KC4, which show
20:60 relationship. Therefore, RQ2 is answered in this research
as well. Fix cost can be predicted using software metrics and
models can be used in practice to rank modules based on
predicted fix cost. Fix cost can be used to allocate resources in
software testing and maintenance activities.

C. Evaluation of fix effort prediction

The SLOC modified in a module is also studied as a fault
measure and the results are presented in Table 6. The results
are not conclusive in identifying the best model. The MLP
models are again the least in performance among all. We plot
the percentage of modules (x-axis) and the percentage of actual
SLOC modified to fix faults in each module after sorting
modules in decreasing order by the predicted effort as shown in

Fig. 5. Alberg diagram for five prediction models of KC3

Fig. 6. Alberg diagram for five prediction models of KC4

Figure 7,8 , and 9. The results of the five prediction models do
not show consistent results in all data sets. Almost all models
show 20:60 relationship in KC1, but are different in KC3 and
KC4 for different models. However, the results of the models
on KC4 are similar to the models in KC1. While the models
obtained from KC3 do not show promising results. These

results show that RQ3 is answered. Fix effort as measured
using SLOC can be used in practice to order the modules based
on fix effort. However, the fault count and fix cost in person
hours can be more beneficial to software managers.

TABLE VI. FIX EFFORT REGRESSION MODELS

Fixed SLOC LR kNN M5P SMOreg MLPRegressor

KC1 53.05 56.32 53.58 56.66 61.66

KC3 36.91 38.00 35.49 34.58 49.85

KC4 109.63 92.66 90.41 103.79 129.00

Fig. 7. Alberg diagram for five prediction models of KC1 data

D. Comparison of models performance

The RMSE results cannot be used to compare the results
across the three fault measures because of the differences in
measurement units. Therefore, we use another measure, the
Relative Absolute Error (RAE), to analyze the results among
the fault measures. The results of the models performance in
RAE are reported in Table 7, where we find the following
observations. In KC1, the Fault count models are the best in
most models except one. In KC3, the fix cost models are the
best except for two models. In KC4, the Fault count models are
again the best. Therefore, for the systems under investigation,
we can observe that prediction models based on fault count are
slightly better in performance than other studied models.
However, we do not observe large differences among the three
fault measures under investigation. These results help the
software engineers to consider other quality factors related to
fault discovery and fix processes. The regression models for
the fix cost and fix effort can be used similarly to fault count
models.

Fig. 8. Alberg diagram for five prediction models of KC3 data

0%

20%

40%

60%

80%

100%

120%

0% 20% 40% 60% 80% 100%

LR Fix cost% KNN Fix cost%

M5P Fix cost% SMO Fix cost%

MLP Fix cost%

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

LR Fix effort% KNN Fix effort%

M5P Fix effort% SMO Fix effort%

MLP Fix effort%

0%

50%

100%

0% 20% 40% 60% 80% 100%

LR Fix effort% KNN Fix effort%
M5P Fix effort% SMO Fix effort%
MLP Fix effort%

0%
20%
40%
60%
80%

100%

0% 20% 40% 60% 80% 100%

LR Fix effort% KNN Fix effort%

M5P Fix effort% SMO Fix effort%

MLP Fix effort%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

490 | P a g e

www.ijacsa.thesai.org

Fig. 9. Alberg diagram for five prediction models of KC4 data

TABLE VII. THE RAE RESULTS FOR FIVE MODELS

 KC1 KC3 KC4

F
au

lt

co
u

n
t

F
ix

 co
st

F
ix

effo
rt

F
au

lt

co
u

n
t

F
ix

 co
st

F
ix

effo
rt

F
au

lt

co
u

n
t

F
ix

co
st

F
ix

effo
rt

LR 84.2 91.3 89.7 90.6 89.8 101.2 92.0 102.2 97.9
KNN 72.2 76.4 78.4 71.4 69.3 73.5 67.1 77.1 73.4

M5P 85.8 88.2 87.5 97.7 96.1 99.2 79.9 84.6 82.7

SMO 58.2 57.7 58.4 51.6 51.6 50.1 74.9 70.4 69.3

MLP 106 114.1 109.7 131 125.4 137.7 103 122.3 114.1

The three quality factors can be used in practice to allocate
resources, but it is important to know which models are
consistent and always useful. The results of the practical
implementation of the models for the three factors when 20%
of modules are selected for further investigation are
summarized in Table 8. The results show that both fault count
and fix cost are more consistent than fix effort. In some cases,
the cost models show better results. Furthermore, the use of fix
cost in allocating resources provide more insights about the
person hours spent to fix faults and can be considered a
stronger indicator of where difficulties in code may appear.

V. VALIDITY THREATS

In the following, we address two kinds of possible threats
that may affect the conducted research.

Construct Validity Threats: Construct validity refers to
the degree to which the dependent and independent variables in
this research measure the intended targets. Fix cost as
measured in person hours are estimated by the developers and
there is no detailed information about how developers estimate
the fix cost. However, the data comes from a well-reputed
organization, NASA, and their work is focused on quality of
data and quality of work. The metrics in this study are well-
studied metrics and recommended by many researchers to
measure modules at procedural level.

Internal validity threats: internal validity is the degree to
which conclusions can be drawn from the proposed data sets.
This study depends on data from other organization and there
is not enough information available about the development
process followed in developing the three applications under

study. However, the studied systems were considered in many
other research papers and recommended to use by NASA.

External validity threats: External validity is concerned
with the degree to which the results can be generalized to other
research settings. The results of this study is based on only
three data sets published by NASA MDP. We need more data
sets to be able to generalize the results of this study into other
systems. In addition, the systems are measured at procedural
levels and conclusions may not be applicable for other
paradigms like object-oriented paradigm.

VI. CONCLUSIONS AND FUTURE WORK

The fault prediction models are surrogates for the software
quality. The assessment of faults in modules can be used to
direct the efforts of software engineers in assuring software
quality. Five well-known regression models were used to
predict fault count, fix cost, and fix effort. The results of
regression models for three data sets were reported. The results
were not conclusive to find the best models in each data set and
all regression models had similar performance. The prediction
of fault count had a better performance in most models in KC1
and KC4 data sets. We found the prediction of fix cost is the
best in KC3 only. Engineers may not have enough time to
explore the quality of all modules in large software systems. It
is vital to show the value of using these models in doing cost-
effective quality assurance, e.g., prioritizing modules for
further investigation. We have modeled the results of the
prediction models by plotting the relationship between
%modules and %faults after sorting the modules by faults
predicted.

0%

50%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Chart Title

LR Fix effort% KNN Fix effort% M5P Fix effort% SMO Fix effort% MLP Fix effort%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

491 | P a g e

www.ijacsa.thesai.org

TABLE VIII. THE RELATIONSHIPS RESULTING FROM IMPLEMENTATION OF THE PREDICTION MODELS

We have also plotted the relationship between (%modules,
%fix cost) and (%modules, %fix effort). The plots have shown
that the 20:60 rule can be applied for the three measures.

These results are important to conclude that we can use the
same metrics to predict different fault measures, i.e., answering
the three research questions. The software engineers can have
alternative methods to select software modules for further
verification and validation from different perspectives. In
future, we plan to expand this study to more diverse data sets.

REFERENCE

[1] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Trans. Softw. Eng.,
vol. 22, pp. 751–761, 1996.

[2] K. El Emam, W. Melo, and J. Machado, “The prediction of faulty classes
using object-oriented design metrics,” J. Syst. Softw., vol. 56, no. 1, pp.
63–75, Feb. 2001.

[3] T. M. Khoshgoftaar and N. Seliya, “Comparative assessment of software
quality classification techniques: An empirical case study,” Empir. Softw.
Eng., vol. 9, no. 3, pp. 229–257, 2004.

[4] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” IEEE
Trans. Softw. Eng., vol. 31, no. 10, pp. 897–910, 2005.

[5] Y. Zhou and H. Leung, “Empirical analysis of object-oriented design
metrics for predicting high and low severity faults,” IEEE Trans. Softw.
Eng., vol. 32, no. 10, pp. 771–789, 2006.

[6] R. Shatnawi, W. Li, J. Swain, and T. Newman, “Finding software metrics
threshold values using ROC curves,” J. Softw. Maint. Evol. Res. Pract.,
vol. 22, no. 1, pp. 1–16, 2010.

[7] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models,” J. Syst. Softw., vol. 83, no. 1, pp. 2–17, 2010.

[8] L. C. Briand, J. Wust, J. W. Daly, and D. Victor Porter, “Exploring the
relationships between design measures and software quality in object-
oriented systems,” J. Syst. Softw., vol. 51, pp. 245–273, 2000.

[9] T. M. Khoshgoftaar and K. Gao, “Count models for software quality
estimation,” IEEE Trans. Reliab., vol. 56, no. 2, pp. 212–222, 2007.

[10] R. Shatnawi, “Empirical study of fault prediction for open-source systems
using the Chidamber and Kemerer metrics,” IET Softw., vol. 8, no. 3, pp.
113–119, 2013.

[11] G. J. Pai and J. B. Dugan, “Empirical Analysis of Software Fault Content
and Fault Proneness Using Bayesian Methods,” IEEE Trans. Softw. Eng.,
vol. 33, no. 10, pp. 675–686, 2007.

[12] C. Catal and B. Diri, “A fault prediction model with limited fault data to
improve test process,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2008, vol. 5089 LNCS, pp. 244–257.

[13] I. Gondra, “Applying machine learning to software fault-proneness
prediction,” J. Syst. Softw., vol. 81, no. 2, pp. 186–195, 2008.

[14] J. Zheng, “Cost-sensitive boosting neural networks for software defect
prediction,” Expert Syst. Appl., vol. 37, pp. 4537–4543, 2010.

[15] N. Ohlsson and H. Alberg, “Predicting Fault-Prone Software Modules in
Telephone Switches,” IEEE Trans. Softw. Eng., vol. 22, no. 12, pp. 886–
894, 1996.

[16] S. Biyani and P. Santhanam, “Exploring defect data from development
and customer usage on software modules over multiple releases,” in
Proceedings Ninth International Symposium on Software Reliability
Engineering (Cat. No.98TB100257), 1998, pp. 316–320.

[17] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location and
number of faults in large software systems,” IEEE Trans. Softw. Eng.,
vol. 31, no. 4, pp. 340–355, 2005.

[18] H. Zeng and D. Rine, “Estimation of software defects fix effort using
neural networks,” in Proceedings - International Computer Software and
Applications Conference, 2004, vol. 2, pp. 20–21.

[19] L. D. Panjer, “Predicting eclipse bug lifetimes,” in Proceedings - ICSE
2007 Workshops: Fourth International Workshop on Mining Software
Repositories, MSR 2007, 2007, p. 29.

[20] M. Hamill and K. Goseva-Popstojanova, “Exploring fault types, detection
activities, and failure severity in an evolving safety-critical software
system,” Softw. Qual. J., pp. 1–37, 2014.

[21] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software
engineering,” IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1276–1304,
2012.

[22] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software Fault
Prediction Metrics:A Systematic Literature Review,” Inf. Softw.
Technol., vol. 55, no. 8, pp. 1397–1418, 2013.

[23] G. Boetticher, T. Ostrand, and T. Menzies, “Promise repository of
empirical software engineering data.” 2007.

[24] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proceedings - ICSE 2007 Workshops: Third International
Workshop on Predictor Models in Software Engineering, PROMISE’07,
2007, p. 9.

[25] NASA M.D.P., “NASA Independent Verification and Validation
facility,” 2014. [Online]. Available: http://mdp.ivv.nasa.gov.

[26] T. Menzies and J. S. Di Stefano, “How good is your blind spot sampling
policy,” in Eighth IEEE International Symposium on High Assurance
Systems Engineering, 2004. Proceedings., 2004, pp. 129–138.

[27] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some
comments on the NASA software defect datasets,” IEEE Trans. Softw.
Eng., vol. 39, no. 9, pp. 1208–1215, 2013.

[28] T. J. McCabe, “A Complexity Measure,” IEEE Trans. Softw. Eng., vol. 4,
no. 2, pp. 308–320, 1976.

[29] M. Halstead, Elements of Software Science. 1977.

[30] J. R. Quinlan, “Learning with continuous classes,” in Machine Learning,
1992, vol. 92, pp. 343–348.

[31] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Mach. Learn., vol. 6, no. 1, pp. 37–66, 1991.

[32] S. Sayed, An Introduction to Data Mining. 2014.

[33] L. Briand, J. Wust, S. Ikonomovski, and H. Lounis, “A Comprehensive
Investigation of Quality Factors in Object-Oriented Designs: An
Industrial Case Study.” 1998.

[34] Y. Zhou, B. Xu, L. Chen, and L. Hareton, “An in-depth study of the
potentially confounding effect of class size in fault prediction,” Trans.
Softw. Eng. Methodol., vol. 23, no. 1, p. 51, 2014.

 KC1 KC3 KC4

F
au

lt

co
u

n
t

F
ix

co
st

F
ix

effo
rt

F
au

lt

C
o
u
n

t

F
ix

co
st

F
ix

effo
rt

F
au

lt

co
u

n
t

F
ix

co
st

F
ix

effo
rt

LR 20:58 20:59 20:62 20:54 20:60 20:49 20:49 20:60 20:43

KNN 20:58 20:58 20:63 20:50 20:58 20:33 20:57 20:58 20:58

M5P 20:59 20:48 20:58 20:48 20:60 20:38 20:46 20:60 20:49
SMO 20:58 20:57 20:56 20:54 20:59 20:50 20:49 20:59 20:49

MLP 20:58 20:44 20:54 20:42 20:43 20:14 20:30 20:43 20:29

