
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016 

A New Threshold Based Penalty Function
Embedded MOEA/D

Muhammad Asif Jan
Department of Mathematics

Kohat University of Science & Technology
Khyber Pakhtunkhwa, Pakistan

Nasser Mansoor Tairan 
College of Computer Science 
King Khalid University Abha, 

Saudi Arabia

Rashida Adeeb Khanum 
Jinnah College for Women 

University of Peshawar Khyber 
Pakhtunkhwa, Pakistan

Wali Khan Mashwani
Department of Mathematics

Kohat University of Science & Technology
Khyber Pakhtunkhwa, Pakistan

Abstract—Recently, we proposed a new threshold based
penalty function. The threshold dynamically controls the penalty
to infeasible solutions. This paper implants the two different
forms of the proposed penalty function in the multiobjective evo-
lutionary algorithm based on decomposition (MOEA/D) frame-
work to solve constrained multiobjective optimization problems.
This led to a new algorithm, denoted by CMOEA/D-DE-ATP.
The performance of CMOEA/D-DE-ATP is tested on hard CF-
series test instances in terms of the values of IGD-metric and
SC-metric. The experimental results are compared with the three
best performers of CEC 2009 MOEA competition. Experimental
results show that the proposed penalty function is very promising,
and it works well in the MOEA/D framework.

Keywords—Constrained multiobjective optimization; decompo-
sition; MOEA/D; penalty function; threshold.

I. I NTRODUCTION

In this paper, we consider the following constrained mul-
tiobjective optimization problem (CMOP) [1]:

Minimize F (x) = (f1(x), f2(x), . . . , fm(x))T ;
Subject to gj(x) ≥ 0, j = 1, . . . , p;

lk ≤ xk ≤ uk, k = 1, . . . , n,
(1)

wherex = (x1, . . . , xn)
T ∈ Rn is an n dimensional vector

of decision variables,F is the objective vector function that
consists ofm real-valued objective functions, andgi(x) ≥ 0
are inequality constraints. The objective and constraint func-
tions, fi’s andgj ’s, could be linear or non linear real-valued
functions.lk anduk are the lower and upper bounds (called
bound constraints) ofxk, k = 1, . . . , n, respectively, which
define the search regionS = {x = (x1, . . . , xn)

T | lk ≤ xk ≤
uk, k = 1, . . . , n}.

A solutionx ∈ S is called a feasible solution, if it satisfies
all the inequality constraints in (1). The set of all feasible
solutions is called the feasible region. Mathematically, we can
write:

F = {x ∈ S ⊂ Rn|gj(x) ≥ 0, j = 1, · · · , p}.

However, If a solution is not feasible, we call it infeasible.
The set of all infeasible solutions is called the infeasible region.

The feasible attainable objective set (AOS) can be defined as
{F (x)|x ∈ F}.

Since the objectives in (1) more often contradict each other,
so it is hard to find a single solution inF that could minimize
all the objectives at the same time. Instead, one looks for a
set of optimal compromising/tradeoff feasible solutions. The
best tradeoffs among the objectives can be defined in terms of
Pareto-optimality [2], [3].

A solutionx is said to Pareto-dominate or simply dominate
another solutiony, mathematically denoted asx � y, if
fi(x) ≤ fi(y), ∀i = 1, . . . ,m and fj(x) < fj(y) for at
least onej ∈ {1, . . . ,m}1. This definition of domination is
sometimes referred to as a weak dominance relation.
A solution x∗ ∈ F is Pareto-optimal to (1) if there is no
solution x ∈ F such thatF (x) � F (x∗). F (x∗) is then
called a Pareto-optimal (objective) vector. The set of all Pareto-
optimal solutions is called the Pareto Set (PS) in the decision
space and Pareto Front (PF) in the objective space [2].

In the majority of constrained optimization problems, the
optimal solutions lie on the constraints’ boundaries. Thus,
to arrive at these solutions, some algorithms evolve some
good infeasible solutions with less constraint violation along
with their feasible counterparts during the evolutionary process
(e.g., see [4]–[6]). The primary purpose of evolving infeasible
solutions in the search procedure is to utilize the information
they transport. As EAs are stochastic search and optimization
methods, rejecting infeasible individuals might lead the EA
being stuck in local optima, particularly in problems with
disconnected search space [7], [8]. Moreover, in some highly
constrained optimization problems, it could be a demanding
problem to find a single feasible solution [9], [10]. There-
fore, constraint handling techniques used in multiobjective
optimization (MOO) can be mainly distinguished by knowing
how infeasible solutions are mixed up and evolved in the
evolutionary process.

1This definition of domination is for minimization. All the inequalities
should be reversed if the goal is to maximize the objectives in (1). “dominate”
means “be better than”.
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In [1], we introduced a new threshold based penalty
function in the replacement and update scheme of MOEA/D-
DE [11], an improved version of MOEA/D [12], to penalize
infeasible solutions. The threshold is adaptively adjusted by
using the minimum and maximum constraint violation in the
neighborhood of a solution. The infeasible solutions with con-
straint violation less than the threshold are less penalized than
the ones with constraint violation greater than the threshold.
As a result, we expect that some good infeasible solutions
with less constraint violation will have a chance to evolve in
the evolutionary process. The some preliminary experimental
results, presented in [1], have proven the capability of the
proposed algorithm for solving CF-series [13] test instances.
In this paper, we present detailed experimental results and
comment on the pitfalls of the proposed algorithm.

The rest of this paper is organized as follows. Section II
presents some basic concepts and the two versions of the pro-
posed penalty function. Section III briefly introduces MOEA/D
and the modified algorithmic framework of MOEA/D-DE.
Section IV discusses the experimental settings. Section V
presents and discusses experimental results on CF-series [13]
test instances. Section VI compares our experimental results
with the three best performers [14]–[16] of CEC 2009 MOEA
competition. Finally, Section VII concludes this paper with an
outline of the work carried out.

II. BASIC CONCEPTS ANDTHE PROPOSEDPENALTY
FUNCTION

A. Degree of Constraint Violation

The degree of constraint violation of a solutionx ∈ S can
be defined as [1], [3]:

V (x) = |

p
∑

j=1

min(gj(x), 0)|. (2)

Obviously, if V (x) = 0, x is feasible; otherwise, it is
infeasible.

B. Tchebycheff Aggregation Function

MOEA/D [12] decomposes an MOP into a number of
single objective subproblems. This paper uses the Tchebycheff
aggregation function for this purpose, which is given as
under [17]:

Minimize gte(x|λ, z∗) = max1≤i≤m{λi|fi(x)− z∗i |}; (3)
Subject to x ∈ F ⊂ Rn;

wherez∗ = (z∗1 , . . . , z
∗
m)T is the reference point, i.e.,z∗i =

min{fi(x)|x ∈ F} ∀i = 1, . . . ,m and λ = (λ1, . . . , λm)T

is a weight vector such thatλi ≥ 0 ∀i = 1, . . . ,m and
∑m

i=1
λi = 1. Some theorems related to the Pareto-optimality

of Tchebycheff aggregation function can be found in [2].

C. The Proposed Penalty Function

The proposed penalty function uses a threshold value,τ
for dynamically controlling the amount of penalty.

Suppose MOEA/D [12] decomposes the MOP intoN sub-
problems. At each generation, MOEA/D retainsN solutions
x1, . . . , xN , wherexi is the current solution to subproblemi.
Let P be the mating and update range set in MOEA/D. Then
define [1]:

Vmin = min{V (xi), i ∈ P}, (4)

Vmax = max{V (xi), i ∈ P}, (5)

whereV (xi) is the degree of constraint violation of solution
xi.

The threshold value,τ is defined as [1]:

τ = Vmin + s(Vmax − Vmin), (6)

where the parameters controls the threshold value. In [1], we
useds = 0.3.

Our suggested penalty function encourages the algorithm
to search the feasible region and the infeasible region near
the feasible region. It is defined in the following two different
ways: Fori = 1, . . . ,m

f i
p(x) =







fi(x) + s1V
2(x), if V (x) < τ ;

fi(x) + s1τ
2+

s2(V (x)− τ), otherwise,
(7)

gtep (x|λ, z∗) =







gte(x|λ, z∗) + s1V
2(x), if V (x) < τ ;

gte(x|λ, z∗) + s1τ
2+

s2(V (x) − τ), otherwise,
(8)

wheres1 ands2 are two scaling parameters withs1 << s2. In
the penalty functions, the penalty increases sharply whenV (x)
exceeds the threshold. This is realized by scaling the degree
of constraint violation,V (x) of an infeasible solution by
relatively high value of parameters2 than parameters1 in our
penalty function formulations. In Eq. 7, the penalty is added to
individual objective function values of an infeasible solution,
while in Eq. 8, it is added directly to Tchebycheff aggregation
function value of an infeasible solution. Furthermore, in [1],
we tested Eq. 8 only.

III. M ULTIOBJECTIVE EVOLUTIONARY ALGORITHM
BASED ON DECOMPOSITION

Zhang and Li [12] suggested a simple yet efficient MOEA,
multiobjective evolutionary algorithm based on decomposition
(MOEA/D). MOEA/D approximates the PF by explicitly de-
composing an MOP into several single objective optimization
subproblems. These subproblems are then optimized concur-
rently and collaboratively by evolving population of solutions.
An EA is employed for this purpose. The Euclidean distances
between the aggregation coefficient vectors of these subprob-
lems are calculated to identify the neighborhood of each
subproblem. The information gathered from the neighboring
subproblems is then used to optimize a subproblem.

In this work, we employed the penalty functions defined
by Eqs. 7, 8 in the update scheme of MOEA/D-DE [11], one
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of the efficient versions of MOEA/D to solve CF-series [13]
test instances. This resulted in a new algorithm, denoted by
CMOEA/D-DE-ATP (For details of CMOEA/D-DE, please see
[18] ). The pseudo-code of the modified update scheme is given
in Algorithm 1.

Algorithm 1 Pseudo-code of the update scheme of
CMOEA/D-DE-ATP.

1: Each new child solutiony updatesnr solutions from the
setP of its neighboring solutions as follows:

2: Setc = 0 and then do the following:
3: if c = nr or P is emptythen
4: return;
5: else
6: Randomly pick an indexj from P ;
7: Compute the Tchebycheff aggregation function val-

ues ofy andxj with the new objective values of Eq.
7 (or the new aggregation function values ofy and
xj with Eq. 8);

8: if gte(y|λj , z) ≤ gte(xj |λj , z) (or gtep (y|λj , z) ≤
gtep (xj |λj , z) ) then

9: xj = y, F (xj) = F (y), V (xj) = V (y), and
c = c+ 1;

10: end if
11: Removej from P and go to step3;
12: end if

IV. EXPERIMENTAL SETTINGS

In our experiments, we use the same parameters’ settings
and weight vectors’ selection criteria as is used in [13]. Further,
we use statistics of the inverted generational distance metric
(IGD-metric) [12], [19] for comparing results on CF-series
test instances, CF1-CF10. Also, the set coverage metric (SC-
metric) [12] is used to compare the nondominated solutions
obtained by different algorithms. Unless otherwise stated, we
will use Eq. 6 withs = 0.7 and Eqs. 7, 8 withs1 = 0.01 and
s2 = 20 in all experiments.

V. EXPERIMENTAL RESULTS

TABLE I: THE IGD-METRIC STATISTICS OF CMOEA/D-
DE-ATP USING EQS. 7, 8. THE RESULTS INBOLDFACE
INDICATE THE BETTER RESULTS; IF NOT, THEY ARE
IDENTICAL.

best (lowest) mean st. dev.

Test Instance Eq. 7 Eq. 8 Eq. 7 Eq. 8 Eq. 7 Eq. 8

CF1 0.0003 0.0003 0.0006 0.0005 0.0003 0.0002

CF2 0.0028 0.0027 0.0037 0.0041 0.0013 0.0019

CF3 0.0632 0.0632 0.1382 0.1382 0.0441 0.0441

CF4 0.0060 0.0051 0.0097 0.0095 0.0042 0.0043

CF5 0.0406 0.0297 0.1606 0.1663 0.1084 0.1107

CF6 0.0049 0.0053 0.0197 0.0192 0.0141 0.0144

CF7 0.0344 0.0304 0.1188 0.1310 0.0729 0.0722

CF8 0.0332 0.0356 0.0370 0.0371 0.0020 0.0010

CF9 0.0428 0.0434 0.0468 0.0479 0.0022 0.0030

CF10 0.1068 0.1108 0.1509 0.1630 0.0396 0.0409

Table I presents the best (i.e., lowest), mean, and standard
deviation of the IGD-metric values for CF-series test instances

found by CMOEA/D-DE-ATP with Eqs. 7, 8. These statistics
are based on 30 independent runs. As it can be seen from
this table that CMOEA/D-DE-ATP can find better best values
with Eq. 7 for one 2-objective, CF6 and three 3-objective,
CF8-CF10 and with Eq. 8 for four 2-objective, CF2, CF4,
CF5, and CF7 test instances. The best values for test instance
CF1 are identical. This table also shows that CMOEA/D-DE-
ATP with both Eqs. 7, 8 performs similarly on test instance
CF3. However, improved mean and st. dev. values can be
found when CMOEA/D-DE-ATP employs Eq. 7 for most of
the test instances. In particular, the improved performance
can be seen for the three 3-objective test instances, CF8-
CF10. This suggests that adding the penalty to individual
objective function values as is done in Eq. 7 before calculating
the aggregation function values is a good choice for better
performance on CF-series test instances.

It can also be seen from Table I that CMOEA/D-DE-ATP
with both Eqs. 7, 8 finds small values for the mean of IGD-
metric on CF1, CF2, CF4, CF6, CF8, CF9. Empirically, these
results illustrate that the final nondominated solutions found
by CMOEA/D-DE-ATP for these test instances approximate
the PF very well in a sense.

TABLE II: THE AVERAGE SET COVERAGE BETWEEN
CMOEA/D-DE-ATP WITH EQ. 7 AND WITH EQ. 8 ON
CF-SERIES TEST INSTANCES. THE RESULTS INBOLD-
FACE INDICATE THE BETTER RESULTS; IF NOT, THEY
ARE IDENTICAL.

Test Instance C(Eq. 7, Eq. 8) C(Eq. 8, Eq. 7)
CF1 0.46 0.48

CF2 0.13 0.13

CF3 0.65 0.65

CF4 0.26 0.28

CF5 0.19 0.22

CF6 0.17 0.21

CF7 0.24 0.24

CF8 0.05 0.04

CF9 0.03 0.03

CF10 0.39 0.31

Table II presents the average set coverage between the
nondominated solutions of CMOEA/D-DE-ATP with Eq. 7 and
Eq. 8. The results of this table reveal that, in terms of the
SC-metric, the nondominated solutions found by CMOEA/D-
DE-ATP with Eq. 8 are better than those obtained with Eq.
7 for test instances CF1, CF4-CF6, but are worse for test
instances CF8 and CF10 vice versa. The table also shows
that the nondominated solutions acquired from CMOEA/D-
DE-ATP with both Eqs. 7, 8 are same for test instances CF2,
CF3, CF7, and CF9. However, looking at the results of this
table, it can be inferred that the performance of CMOEA/D-
DE-ATP is comparable with both Eqs. 7, 8, as there is no big
difference in the SC-metric values.

Figures 1 and 2 show, in the objective space, the distribu-
tions of the100 and 150 nondominated population members
for the seven2-objective, CF1-CF7, and the three3-objective,
CF8-CF10, CF-series test instances. These solutions are se-
lected based on the criteria as mentioned in [13] from the final
population of the run with the best (i.e., lowest) IGD-metric
value among the30 independent runs. These figures also show
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Fig. 1: Plots of the nondominated front with the best IGD value and all the 30 final nondominated fronts found by CMOEA/D-
DE-ATP when using Eq. 7 (columns 1 and 3) and Eq. 8 (columns 2 and 4) for CF1-CF6.
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Fig. 2: Plots of the nondominated front with the best IGD value and all the30 final nondominated fronts found by CMOEA/D-
DE-ATP when using Eq. 7 (columns 1 and 3) and Eq. 8 (columns 2 and 4) for CF7-CF10.

all the30 final nondominated fronts of these selected100 and
150 nondominated solutions.

It is very clear from these figures that CMOEA/D-DE-ATP
with both Eqs. 7, 8 found good approximations for the four
2-objective, CF1, CF2, CF4, and CF6, and two3-objective,
CF8, CF9 test instances. However, it performed poorly on test
instances CF3, CF5, CF7, and CF10. It is also apparent from
the plots of30 nondominated fronts of test instances CF4 and
CF6 that CMOEA/D-DE-ATP fails to find the whole PF in
some runs.

The PF of CF3 is concave and discontinuous. Therefore,
it could be hard for the algorithm than all other 2-objective
test instances. Although the PFs of CF4 and CF5, CF6 and
CF7, and CF9 and CF10 are identical, the poor performance
of CMOEA/D-DE-ATP on test instances CF5, CF7 and CF10
could be due to the presence of harder objective and constraint
functions in these test instances than test instances CF4, CF6,
and CF9.

Figure 3 shows the evolution of the average IGD-metric
values versus function evaluations of the nondominated so-

lutions in the current population. This figure shows that
CMOEA/D-DE-ATP with both Eqs. 7, 8 converges at the
same rate in terms of IGD-metric values for six CF-series test
instances CF1, CF3, CF4, CF6, CF8 and CF9. However, it
converges slightly faster in terms of IGD-metric values for the
other four CF-series test instances CF2, CF5, CF7, and CF10
with Eq. 7 than with Eq. 8.

Figure 4 depicts the average generation feasibility versus
generations’ graphs. This figure demonstrates that CMOEA/D-
DE-ATP with both Eqs. 7, 8 approaches to the feasible regions
at the same rate for test instances CF1-CF6. It converges slower
to the feasible regions with Eq. 7 than with Eq. 8 for the test
instances CF7-CF10. This permits further exploration of the
infeasible regions near the PF and could be one of the reasons
for the better performance of CMOEA/D-DE-ATP with Eq. 7
on the three 3-objective test instances, CF8-CF10.

As it can be seen from Figure 4 that50 % or more of
the initial populations for test instances CF1, CF2, CF4 and
CF5 are feasible. These feasible solutions are propagated in the
subsequent generations by the replacement and update scheme
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Fig. 3: Evolution of the IGD-metric values versus function evaluations when CMOEA/D-DE-ATP uses Eqs. 7, 8 for CF1-CF10.

of the algorithm and thus produce better feasible solutions due
to the DE operator. Furthermore, the feasibility ratio becomes
1 after the initial 30 to 40 generations for these test instances.
The reason for the quick convergence to the feasible region
is the higher adopted update number of neighboring parent
solutions (as in our settingsnr = 6 whenT = 60 andnr = 10
whenT = 100) that are replaced by a better child solution in
the update scheme of the algorithm. This speedy convergence
to the feasible region is good for test instances like CF1, CF2,
and CF4, but it causes problems for harder test instance like
CF5. The PF of CF5 is a piecewise continuous curve with three
pieces like CF4, but its objective and constraint functions are
quite different and harder than CF4.

On the other hand, about25 % or below of the initial

populations for test instances CF6-CF10 is feasible. Here,
the proposed constraint handling technique has more chances
to evolve better infeasible solutions during the evolutionary
process. Particularly, in the two 3-objective test instances CF8
and CF9, the average feasibility ratio at the last generations
of the algorithmic runs is 0.6 and about 0.9, respectively (see
Figure 4). This way the infeasible regions near the feasibility
boundaries in these two instances are well explored and could
be a reason for the better performance of the algorithm on
these two instances.

Moreover, in test instance CF6, the feasibility ratio of
CMOEA/D-DE-ATP with both Eqs. 7, 8 becomes 1 after the
initial 40 generations, while in test instance CF7, it takes 200
generations of CMOEA/D-DE-ATP with Eq. 7 and 50 gener-
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Fig. 4: Evolution of the generation feasibility versus generations when CMOEA/D-DE-ATP uses Eqs. 7, 8 for CF1-CF10.

ations with Eq. 8 to become 1. Thus, the quick convergence
to the feasible region is good in case of CF6, but could be a
reason for the poor performance of CMOEA/D-DE-ATP with
both Eqs. 7, 8 in case of CF7.

In test instance CF10, the feasibility ratio takes about 140
generations of CMOEA/D-DE-ATP with Eq. 7 and about 80
generations of CMOEA/D-DE-ATP with Eq. 8 to become 1.
Again, the less exploration of the infeasible regions could be
the reason for the poor performance of CMOEA/D-DE-ATP
on test instance CF10.

VI. COMPARISON WITH THETHREE BEST PERFORMERS
OF CEC 2009 MOEA COMPETITION

In this section, we compare the results of CMOEA/D-DE-
ATP with Eqs. 7, 8 with the three best performers [14]–[16] in
CEC 2009 MOEA competition on the CF-series test instances.

Table III compares the best (i.e., lowest), mean, and stan-
dard deviation values of the IGD-metric obtained from our
algorithm, CMOEA/D-DE-ATP with Eqs. 7, 8, and the three
best performers [14]–[16] in CEC 2009 MOEA competition
for the CF-series test instances. The table clearly shows that
CMOEA/D-DE-ATP has found the best (i.e., lowest) IGD-
metric values for four test instances CF1, CF6, CF8 and CF9
and the second best value for one test instance CF3 with Eq.
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TABLE III: COMPARISON BETWEEN CMOEA/D-DE-ATP WITH EQ. 7 (INDICATED BY JZ1) AND WITH EQ. 8
(INDICATED BY JZ2), TSENG AND CHEN’S [14] (INDICATED BY TC), LIU AND LI’S [15] (INDICATED BY LL), AND
LIU ET. AL’S [16] (INDICATED BY LI) ALGORITHMS IN TERMS OF THE IGD VALUES BASED ON30 INDEPENDENT
RUNS. THE RESULTS INBOLDFACE AND IN ITALIC INDICATE THE BETTER AND THE SECOND BETTER RESULTS.

best (lowest) mean st. dev.

Test Instance JZ1 JZ2 TC LL LI JZ1 JZ2 TC LL LI JZ1 JZ2 TC LL LI

CF1 0.00030.00030.01390.0007 0.0071 0.0006 0.0005 0.0192 0.0009 0.0113 0.0003 0.0002 0.0026 0.0001 0.0028

CF2 0.0028 0.0027 0.00410.00270.0016 0.0037 0.0041 0.0268 0.0042 0.0021 0.0013 0.0019 0.0147 0.0026 0.0005

CF3 0.0632 0.0632 0.07530.09080.0381 0.1382 0.1382 0.1045 0.1829 0.0563 0.0441 0.0441 0.0156 0.0421 0.0076

CF4 0.0060 0.00510.00890.0090 0.0055 0.0097 0.0095 0.0111 0.0142 0.0070 0.0042 0.0043 0.0014 0.0033 0.0015

CF5 0.0406 0.0297 0.01760.05880.0079 0.1606 0.1663 0.0208 0.1097 0.0158 0.1084 0.1107 0.0024 0.0307 0.0067

CF6 0.0049 0.0053 0.00960.0090 0.0062 0.0197 0.0192 0.0162 0.0139 0.0150 0.0141 0.0144 0.0060 0.0026 0.0065

CF7 0.0344 0.0304 0.01870.05350.0104 0.1188 0.1310 0.0247 0.1045 0.0191 0.0729 0.0722 0.0047 0.0351 0.0061

CF8 0.0332 0.0356 0.62200.0473 0.0388 0.0370 0.0371 1.0854 0.0607 0.0475 0.0020 0.0010 0.2191 0.0130 0.0064

CF9 0.0428 0.0434 0.07210.0460 0.1191 0.0468 0.0479 0.0851 0.0505 0.1434 0.0022 0.0030 0.0082 0.0034 0.0214

CF10 0.1068 0.1108 0.11730.10550.0984 0.1509 0.1630 0.1376 0.1974 0.1621 0.0396 0.0409 0.0092 0.0760 0.0316

7. It has also found the best IGD-metric values for two test
instancesCF1 and CF4 and the second best values for four test
instances CF2, CF3, CF8, and CF9 with Eq. 8. Particularly,
for test instances CF1, CF8 and CF9 better statistics are found
by our algorithm except the standard deviation value on CF1
(although both our standard deviation values are very close to
the best standard deviation value).

VII. C ONCLUSIONS

A penalty function that penalizes infeasible solutions based
on an adaptive threshold value has been introduced into the
update and replacement scheme of MOEA/D-DE. This resulted
in a new algorithm, CMOEA/D-DE-ATP for CMOO. The
proposed penalty function is presented in two forms given by
Eqs. 7, 8. The performance of CMOEA/D-DE-ATP is tested on
CF-series test instances in terms of the values of IGD-metric
and SC-metric.

From the experimental results in this paper, we can make
the following conclusions.

• Overall, CMOEA/D-DE-ATP produced better results
with the proposed penalty function defined by Eq. 7
than when it is defined by Eq. 8. That is, it is better to
add the penalty to individual objective function values
before calculating the aggregation function values than
directly adding the penalty to aggregation function
values of an infeasible solution for better performance
achievement on CF-series test instances.

• The comparison of CMOEA/D-DE-ATP with the three
best performers in CEC 2009 special session and
competition indicated that CMOEA/D-DE-ATP has
found the best (i.e., lowest) IGD-metric values for
five test instances CF1, CF4, CF6, CF8 and CF9 and
the second best values for two test instances CF2 and
CF3. In particular, our algorithm overall found better
statistics for tests instances CF1, CF8, and CF9.
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