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Abstract—JADE is an adaptive scheme of nature inspired
algorithm, Differential Evolution (DE). It performed considerably
improved on a set of well-studied benchmark test problems. In
this paper, we evaluate the performance of new JADE with
two external archives to deal with unconstrained continuous
large-scale global optimization problems labeled as Reflected
Adaptive Differential Evolution with Two External Archives
(RJADE/TA). The only archive of JADE stores failed solutions. In
contrast, the proposed second archive stores superior solutions at
regular intervals of the optimization process to avoid premature
convergence towards local optima. The superior solutions which
are sent to the archive are reflected by new potential solutions.At
the end of the search process, the best solution is selected from
the second archive and the current population. The performance
of RJADE/TA algorithm is then extensively evaluated on two test
beds. At first on 28 latest benchmark functions constructed for
the 2013 Congress on Evolutionary Computation special session.
Secondly on ten benchmark problems from CEC2010 Special
Session and Competition on Large-Scale Global Optimization.
Experimental results demonstrated a very competitive perfor-
mance of the algorithm.

Keywords—Adaptive differential evolution; large scale global
optimization; archives.

I. I NTRODUCTION

Optimization deals with finding the optimal solution for
single or multi-objective functions [1]. An unconstrainedsingle
objective optimization problem can be stated as follows:

Minimize f(x), (1)

where f(x) denotes the objective function, andx =
(x1, x2, ..., xn)

T is ann-dimensional real vector.

DE [2] is a most popular bio-inspired scheme for finding
the global optimumx

∗ of problem (1). The heuristic is
essentially an evolutionary one and relies on the usual genetic
operators of mutation and crossover. DE is easy to understand
and implement, has a few parameters to control, and is robust.

There is no doubt that DE is a remarkable optimizer for many
optimization problems. However, it has few drawbacks like,
stagnation, premature convergence, and loss of diversity.Since
it is a global optimizer, so its local search ability is not that
good. More details can be found in [3].

To enhance the performance of DE, many modifications
to the classic DE have been suggested and various variants
of DE are proposed. A novel work is done by Wang et al.
[4], in which they utilized orthogonal crossover instead of
binomial and exponential crossover. A group of researchers
have introduced new variants like opposition based DE [5],
centroid dependent initialization ciJADE [6], cluster-based
population initialization (CBPI) [7] jDE [8], genDE [9], In-
dividual dependent Mechanism (IDE) [10] etc. Control pa-
rameters adaptation and self-adaptation have devised in [11],
[12], jDErpo [13] SaDE [14], JADE [15], [16], EPSDE [17],
IDE [18], SHADE [19]L-SHADE [20] [21], EWMA-DECrF
[22]. Cooperative coevolution have been brought into DE for
large scale optimization [23]. Some researchers applied itto
problems from the discrete domain [24], [25], while others are
taking the advantage of its global searching in the continuous
domains [4], [26]–[28].

In another experiment, adaptive variant of DE, the so-
called JADE [15], is proposed for numerical optimization. It
has shown performance improvement over the state-of-the-
art algorithms, jDE [8], SaDE [29] and DE/rand/1/bin [2]
according to the reported results in [15] and [30]. However,
JADE is not reliable; on some problems. For instance, it finds
the global optima in some runs, but it can also be trapped
in local optima [30]. To improve the reliability of JADE, in
this paper, we introduce two new strategies in JADE and thus
propose Reflected Adaptive Differential Evolution with Two
External Archives (RJADE/TA).

The rest of this paper is organized as follows. Section II de-
scribes the basic DE and JADE algorithm. Section III presents
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proposed RJADE/TA. Section IV gives the experimental results
and finally Section V concludes this paper and discusses future
research directions.

II. D IFFERENTIAL EVOLUTION AND JADE

A. Differential Evolution

The four main schemes of differential evolution (DE) are
detailed as follows.

1) Parent Selection:For each memberxi, i = 1, 2, ..., Np,
of the current generationG three other members,xr1 , xr2 and
xr3 are randomly selected, wherer1, r2 andr3 are randomly
chosen indices such thatr1, r2 and r3 ∈ {1, 2, ..., Np} and
i 6= r1 6= r2 6= r3. Thus, for each individual,xi, a mating
pool of four individuals is formed in which it breeds against
three individuals and produces an offspring.

2) Mutation: After selection, mutation is applied to pro-
duce a mutant vectorvi, by adding a scaled difference of the
two already chosen vectors to the third chosen vector. i.e.,

vi = xr1 + F (xr2 − xr3), (2)

whereF ∈ (0, 2) [31] is the scaling factor.

3) Crossover:After mutation, the parameters of the parent
vector xi and mutant vectorvi are mixed by a crossover
operator and a trial memberui is generated as follows:

ui,j =

{

vi,j if randj(0, 1) ≤ CR;
xi otherwise, (3)

wherej ∈ {1, 2, ..., n}.

4) Survivor Selection:At the end, the trial vector generated
in (3) is compared with its parent on the basis of its objective
function value. The fittest will propagate to the next generation.
i.e.,

xi+1 =

{

ui, if f(ui) ≤ f(xi);
xi, otherwise. (4)

B. JADE

Before presenting the new algorithm, we give the details
of the DE’s version JADE, upon which the devised algorithm
in this paper is based. JADE [15] is an adaptive version of DE.
It improves the performance of DE, by implementing a new
mutation strategy DE/current-to-p best with/without external
archive, and adaptively controlling the parametersF andCR.
JADE adopts the crossover and selection scheme of classic DE
as described in Equation (3) and Equation (4). DE/current-
to-pbest strategy incorporates not only the best solution in-
formation, but also the information of other good solutions.
Specifically, any solution from the topp% population can be
randomly selected in DE/current-to-p best to play the role of
the single best solution in DE/current-to-best [15]. Wherep
is the percentage of top good solutions and the default value
for it is 5% of Np. Other suggested values ofp are between
5% and20%, inclusive. JADE modifies classic DE in three
aspects.

1) DE/current/to-pbest strategy:JADE utilizes two muta-
tion strategies, one with external archive, and the other without
it. These strategies are the improvement of DE/current-to-
best/1 strategy. They can be expressed as follows [15]:

vi = xi + Fi(x
p
best − xi) + Fi(xr1 − x̃r2), (5)

vi = xi + Fi(x
p
best − xi) + Fi(xr1 − xr2), (6)

where x
p
best is a vector chosen randomly from the topp%

individuals andxi, xr1 andxr2 are chosen from the current
populationP , while x̃r2 is chosen randomly fromP ∪ A.
Where A denotes the archive of JADE, which records the
inferior parent solutions found during the current generation.

2) Control Parameter Adaptation:For each individualxi,
control parameterFi and the crossover probability,CRi are
generated independently from Cauchy and Normal distribu-
tions, respectively as follows [15]:

Fi = rand(µF, 0.1) (7)
CRi = rand(µCR, 0.1), (8)

where rand is a uniform random number from[0, 1], and
µCR andµF are the means of the Normal and Cauchy
distributions with standard deviation 0.1. Cauchy distribution
is more helpful than the Normal distribution to diversify
the mutation factors and thus prevent premature convergence,
which often occurs in mutation strategies if the mutation
factors are highly concentrated around a certain value [15].
The standard deviation is chosen to be relatively small (0.1)
because otherwise the adaptation does not function efficiently;
e.g., in the case of an infinite standard deviation, the truncated
Normal distribution gets independent of the value ofµCR
[15]. CRi andFi given in Equations (7) and (8) are then
truncated to(0, 1] and [0, 1], respectively. Initially, bothµF
and µCR are set to 0.5 as suggested in [15]. They are
expressed as below [15]:

µF = (1− c)µF + c ·meanL(SF ) (9)

µCR = (1− c)µCR+ c ·meanA(SCR). (10)

HeremeanL denotes the Lehmer mean,meanA denotes the
arithmetic mean, andSF is the set of successfulFi’s, while
SCR is the set of successfulCRi’s at generationG. The
Lehmer mean is helpful to propagate larger mutation factors,
which in turn improves the progress rate. To the contrary, an
arithmetic mean ofSF tends to be smaller than the optimal
value of the mutation factor and thus it might cause premature
convergence at the end. The parameterc in Equations (9)
and (10) is a constant which controls the rate of parameter
adaptation and is chosen between 0 and 1. The life span of
a successfulCRi or Fi is roughly 1

c
generations; i.e., after1

c
generations, the old value ofµCR or µF is reduced by a factor
of (1 − c)

1

c , whenc is close to zero, ifc = 0 no parameter
adaptation takes place.

3) Optional External Archive: At each generation, the
failed parents are sent to the archive. The Euclidian distance of
the archive members from the current population is utilizedin
the mutation operation in order to diversify the populationand
avert the premature convergence. If the archive size exceeds
Np, some solutions are randomly deleted from it to keep its
size equal toNp.

www.ijacsa.thesai.org 676| P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016

III. REVIEW

Almost two decades have been passed when DE was
proposed in1995 to cope with non-differentiable, non-convex
and non-linear problems defined in the continuous parameter
space [32]. Since then, DE and its uncountable and diversified
variants have emerged as one of the most competitive and
versatile family of the evolutionary computing optimizersand
have been prosperously applied to solve numerous real-world
problems from diverse discipline of science and technology
[33]. Extensive literature on DE is available, which is evident
from the recent surveys on DE [34], [32]. However, this
section attempts to review some of the relevant methods.
The hybridization of DE with local search strategies is a
popular area of research among the practitioners. Many hybrid
algorithms have shown significant performance improvement.

In [35] Sequential Quadratic Programming (SQP) is
merged in DE algorithm. This new hybrid applies the DE al-
gorithm until function evaluations reach30% of the maximum
function evaluations. It then applies SQP for the first time to
the best point thus obtained. Afterwards, SQP is applied after
each 100 generations to the best solution of the current search.
In this work, the population size keeps reducing dynamically
and the process terminates with minimum population size.

In another experiment DE is combined with simplex
method and this method is know as NSDE [36]. The authors
applied nonlinear simplex method with uniform random num-
bers to initialize DE population. Initially,Np individuals are
generated uniformly and then nextNp are generated from these
Np points by application of Nelder-Mead Simplex (NMS).
Now from 2Np population, the fittestNp are selected as DE’s
initial population and the rest of DE is unchanged in this
algorithm. Their algorithm only modify DE in the population
step.

Further, differential evolution algorithm with localization
around the best point (DELB) is proposed in [37]. In DELB
the initial evolutionary steps are the same as DE except that
the mutation scale factorF is chosen from[−1,−0.4]∪[0.4, 1]
randomly for each mutant vector, DELB modifies the selection
of DE by introducing reflection and contraction. The trial
vector is compared with the current best and the parent vector.
If the parent is worse than the trial vector it is replaced by a
new concentrated or reflected vector. In DELB, the trial vector
can be replaced by its parent vector, or reflected vector or
contracted vector, while in classic DE only the trial vector
replaces the parent.

Inspired by the above techniques, a new variant RJADE/TA
of DE family is presented, which records the best individuals
of the optimization process at regular intervals. Besides,it
utilizes an reflection strategy of local search for replacing the
archived solutions. The detail of RJADE/TA is presented in
the following section.

IV. PROPOSED REFLECTED ADAPTIVE
DIFFERENTIAL EVOLUTION WITH TWO

EXTERNAL ARCHIVES

This section proposes a new DE algorithm, RJADE/TA,
which modifies JADE in two aspects, first it introduces a
second external archive into JADE, which stores superior

solutions of the search at regular intervals of the optimization
process. Second, these superior solutions are then reflected by
new significant/potantial solutions in the current population.
RJADE/TA adopts the same crossover and mutation operations
as described in JADE [15]. We have done some modification to
the Pseudo-code of JADE; this addition can be seen in lines 26
to 31 of Algorithm 1. Further in the last line the best solution
is selected fromPUA2, the rest of the code remains the same.

Algorithm 1 Pseudo-code of RJADE/TA

1: Population size= Np; FES = Number of function
evaluations;κ = interval between second archive updates;

2: Uniformly and randomly sample Np solutions,
xr1,G,xr2,G, . . . ,xrNp ,G

from the search space to
form the initial populationP ;

3: Initialize the archivesA = ∅; A2 = ∅;
4: SetµCR = 0.5; µF = 0.5; p = 5%; c = 0.1;
5: SetSCR = ∅; SF = ∅;
6: Evaluate these individuals; SetFES = Np;
7: while FES < n ∗ 10000 do
8: GenerateCRi = rand(µCR, 0.1);
9: GenerateFi = rand(µF, 0.1);

10: Selectxp
best,G randomly from100p% population;

11: Selectxr1,G 6= xi,G randomly fromP ;
12: Selectx̃r2,G 6= xr2,G randomly fromP ∪A;
13: Generate mutantvi = xi,G + Fi(x

p
best,G − xi,G) +

Fi(xr1,G − x̃r2,G);
14: for j = 1 to n do
15: if j < jrand or rand(0, 1) < CRi then
16: uj,i,G = vj,i,G;
17: else
18: xj,i,G = xj,i,G;
19: end if
20: end for
21: Select the best betweenxi,G andui,G;
22: if ui,G is betterthen
23: xi,G → A;,CRi → SCR, Fi → SF ;
24: end if
25: Delete individuals randomly from A if sizeA > Np;
26: Update second archiveA2 by sending best point of

the search to it;
27: if Gen = κ then
28: xbest,G → A2; and reflect it as
29: Compute the centroid ofP − xbest,G asxc,G =

1
Np−1

∑Np

i=2 xi,G

30: Generate reflection point asxr,G = xc,G +
1(xc,G − xbest,G)

31: end if
32: µCR = (1− c) · µCR+ c ·meanA(SCR);
33: µF = (1− c) · µF + c ·meanL(SF );
34: end while
35: Output : the solution vector with the smallest objective

function value fromPUA2 in the search.

A. Best Solution’s Reflection

Early convergence of the algorithms may be achieved due
to best solution. Thus to avoid premature convergence, stag-
nation and local optima RJADE/TA reflects the best solution,
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xbest,G of the search process and send it to the archiveA2. To
implement the reflection mechanism [38] in RJADE/TA, first
the center of mass of the current populationP except the best
solutionxbest,G is computed as:

xc,G =
1

Np − 1

Np
∑

i=2

xi,G (11)

wherexc,G denotes the center of mass ofNp − 1 individuals,
since one candidate solution will be archived, this operation
can be seen in Algorithm 1 (line 29). Once the center of mass
of Np − 1 individuals is calculated, then the best individual
xbest,G (the solution with minimum objective value) ofP is
reflected through the center of massxc,G as follows:

xr,G = xc,G + 1 · (xc,G − xbest,G). (12)

Wherexr,G is the mirror image or reflection [38] ofxbest,G

through the centroidxc,G, this newly produced solution is
known as reflected solution. The coefficient of reflection is
”1” as suggested in [38].

The reflected solution replacesxbest,G in the population
P and the best solutionxbest,G by itself is transferred to the
second archiveA2.

B. Second External Archive in RJADE/TA

When the search procedure reaches its50% function eval-
uations the first archiveA2 update is made. After whichA2 is
updated at regular interval of generationsκ. As mentioned ear-
lier that JADE has archiveA, which stores inferior solutions, if
the archive size exceedsNp; some solutions are removed from
it. In contrast the proposed second archiveA2 records the best
solution of the search after eachκ generations. In other words
the best solution of the current population, afterκ generations
is removed from the search procedure and is kept passive in
archiveA2 during the optimization. The objective of sending
the best solution from the current optimization process is that
the best solution information may cause difficulties such as
premature convergence due to the resultant reduced population
diversity [15]. Best solution some times mislead the searchto
local optima or stagnation.

The second archiveA2 is initialized as0 and is updated
with a best solution in eachκ generations (see Algorithm 1).
The interval between two reflections isκ, this is kept1000
here. If we reflect the best solution at each generation, there
will be one extra evaluation at each generation, which may bea
wastage of computational energy. Furthermore, if we store best
solution at each generation then the best solution of current
generation and the previous will be not much different from
each other. Which again will be wastage of computation. That
is why we selectedκ a 1000. There are few differences inA
andA2 which are given below.

1) A2 stores best solution of the current population,
while A records the recently explored inferior solu-
tions.

2) The size ofA is keptNp, if this size exceeds, some
solutions are randomly deleted fromA, however in
the new archiveA2 the size may exceedsNp. It keeps
the record of all best solutions, no solution is removed
from it.

3) A2 records the best solution (only one solution) of
the current generation, this may be a parent solution
or a child solution. In contrast,A keeps the inferior
parents solutions (more than one) only, it does not
record inferior child solution.

4) A2 is initialized as0 and is updated afterκ genera-
tions (1000 say). On the other handA is updated at
the end of each generation.

5) The recorded inferior parents ofA are later on
utilized in mutation. Where inA2 the stored best
solution is reflected with a new solution; which is sent
to the current population. Once a solution is kept in
A2, it remains inactive during the optimization. When
the search procedures are terminated, then the second
archive’s solution contribute towards the selection of
optimal solution.

V. NUMERICAL EXPERIMENTS AND RESULTS

A. Experimental Setup

Experimental validations for the proposed RJADE/TA are
conducted on a set of 28 new and complex test functions [39]
provided by CEC 2013 special session and a 1000 dimensional
functions designed for CEC 2010 competition on large scale
global optimization problems [40].

B. CEC 2013 Test Suite

In the CEC 2013 test suite, the previously proposed compo-
sition functions of CEC 2005 [2] are enhanced and additional
test functions are considered for real parameter single objective
optimization. Three types of problems are developed:

• Functions 1-5 are unimodal;

• 6-20 are multimodal functions.

• 21-28 are composit functions, which are designed
by combining various problems into a complex land-
scape.

C. Parameter Settings for CEC 2013 Test Suite

We performed our experiments following the guidelines
of the CEC2013 competition [39]. For all the problems, the
initialization range is[−100; 100]. For all of the problems the
number of dimensions aren = 10 and30, and the maximum
number of objective function evaluations are10000×n per run.
When the difference between the values of the best solution
found and the optimal (known) solution is10−8 or less, the
error is set to0. The population size is set to100.

D. Results on CEC 2013 functions

The experimental statistics(best, mean, median, worst and
standard deviation) obtained by our algorithm in 51 runs,
on 28 functions with dimensionsn = 10 of the CEC 2013
test functions are summarized in Table I. In Table II, the
Mean values of function error values(f(x)− f(x∗)) obtained
by RJADE/TA are presented forn = 10. These values
are compared with state of the art algorithms, jDE, jDEsoo
[41] a new version of jDE, SPSRDEMMS [42] and jDErpo
[13]. Among these SPSRDEMMS and jDErpo were specially
developed for CEC 2013 competition.
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In Table II the - shows that the corresponding algorithm
loesses against our RJADE/TA algorithm. The+ indicates
that the particular algorithm wins against our algorithm, and
= reveals that both the algorithms performs equivalently.
The outstanding performance of RJADE/TA is clearly visible
from Table II, where many negative- signs made this fact
evident. It is very clear from the Table that our RJADE/TA
algorithm performed significantly better than jDE and jDEsoo
algorithms on 15 out of 28 functions, on 4 functions both got
similar results. On the other hand jDE and jDEsoo showed
better performance on only 9 functions. As compared with
SPSRDEMMS, our algorithm found better solutions for 16
out of 28 functions and SPSRDEMMS showed good results on
12 functions. Furthermore, jDErpo and RJADE/TA performed
better than each other on 12 functions.

Table III shows the comparison of RJADE/TA against
jDE, jDEsoo, SPSRDEMMS and jDErpo forn = 30. It
is interesting to note that the performance of RJADE/TA
increased with the increase in dimension. It found better results
for 20 out of 28 function against jDE and jDEsoo. jDE only
solved 5 out of 28 problems for 30 dimensions, and jDEsoo
got good results on 3 out of 28 functions. SPSRDEMMS and
jDErpo performed inferior on 16 functions, and superior on 8
functions only, which can be seen from Table III.

Tables II and III showed the comparison of RJADE/TA
against each of the particular algorithms. Here we present
the overall percentage of all the algorithms, jDE, jDErpo,
SPSRDEMMS, jDErpo and RJADE/TA on 30 dimensional
problems. Table IV demonstrates that RJADE/TA performance
percentage is 50% while jDErpo is 37%, the remaining three
algorithms in comparison performed less than or equal to 25%.
This percentage validity is even more clearly visible from the
bar graph 1. Each bar shows the number of test problems
optimized by particular algorithm. The last bar representing
RJADE/TA.

jDE jDEsoo SPSRDEMMS jDErpo RJADE/TA
0

7

14

Fig. 1: Comparison of RJADE/TA and other up to date
algorithms with dimensionn = 30

E. CEC2010 Test Instances

Here we evaluate RJADE/TA on ten complex optimization
problems used in CEC2010 special session and competition
on large scale global optimization [40]. Since separability
provides a measure of the complexity of various problems,
in [40] a test suite for high dimensional problems is devised
which is based on separability and non separability of the
functions. Here, three kinds of high-dimensional problemsare
considered:

• Separable functions;

• Partially-separable functions, in which only a small
number of variables are dependent and the rest are
independent;

• Partially-separable functions that consist of multiple
independent subcomponents, each of which ism-non-
separable; and

This test suite provided an enhanced platform for evaluating
the performance of algorithms on high-dimensional problems
in various scenarios [40]. Below we list only those test
functions (F1-F10) which are used in this work.

1) Separable Functions (3)
• F1: Shifted Elliptic Function
• F2: Shifted Rastrigin’s Function
• F3: Shifted Ackley’s Function

2) Single-groupm-nonseparable Functions (5)
• F4: Single-group Shifted andm-rotated Ellip-

tic Function
• F5: Single-group Shifted andm-rotated Ras-

trigin’s Function
• F6: Single-group Shifted andm-rotated Ack-

ley’s Function
• F7: Single-group Shifted m-dimensional

Schwefel’s Problem 1.2
• F8: Single-group Shifted m-dimensional

Rosenbrock’s Function
3) n

2m
-groupm-nonseparable Functions (2)
• F9: n

2m
-group Shifted andm-rotated Elliptic

Function
• F10: n

2m
-group Shifted andm-rotated Rastri-

gin’s Function

The parameterm controls the number of variables in each
group and hence defining the degree of separability.

F. Parameter Settings for CEC2010 instances

For this experiment the population sizeNp is chosen50
and the dimensionn is set to1000. The maximum function
evaluations are chosen3× 10+06. The value to reach is set to
10−2. RJADE/TA and JADE were run 25 independent times
for all test instances as suggested in the original paper [40].
All these experiments were conducted in MATLAB software.

G. Comparison of RJADE/TA with JADE 0n CEC 2010 in-
stances

The best, median, mean and standard deviation of function
error values obtained in 25 runs of the proposed algorithm,
RJADE/TA are presented in Table V. These statistics were
requested in [40] as well. The best results are typed as bold.

As can be seen from Table V, overall RJADE/TA per-
formed well as compared with JADE in obtaining the “best”
solution for five out of ten test instances, F3, F4, F5, F7 and
F8. For F6 both algorithms got the same accuracy. Here F3
is separable and all others are single-groupm-nonseparable
functions. Surly it is due to the additional second archive of
RJADE/TA which provides more chance to the population for
searching the region and discouraging early convergence. For
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TABLE I: EXPERIMENTAL RESULTS OF RJADE/TA ON 28 TEST FUNCTIONS OVER 51 RUNS WITH DIMENSION n
= 10.

Func Best Worst Median Mean Std Dev

1 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00

2 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00

3 2.2737E − 013 9.3924E + 02 5.1956E + 01 1.2108E + 02 1.8941E + 02

4 0.0000E + 00 5.9114E + 03 0.0000E + 00 1.1591E + 02 8.2776E + 02

5 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00

6 0.0000E + 00 9.8124E + 00 9.8124E + 00 7.8884E + 00 3.9346E + 00

7 1.9695E − 03 1.2013E + 00 7.5908E − 02 1.5927E − 01 2.1904E − 01

8 2.0201E + 01 2.0511E + 01 2.0358E + 01 2.0366E + 01 6.7627E − 02

9 3.4033E + 00 6.0808E + 00 4.4493E + 00 4.4593E + 00 6.0360E − 01

10 5.6843E − 014 6.8717E − 02 3.6112E − 02 3.5342E − 02 1.4363E − 02

11 5.6843E − 014 1.1937E − 012 2.2737E − 013 2.4298E − 013 1.9922E − 013

12 3.5441E + 00 1.1542E + 01 6.7460E + 00 6.7571E + 00 1.6197E + 00

13 3.9347E + 00 1.1345E + 01 7.9523E + 00 7.7246E + 00 1.9071E + 00

14 1.0282E − 04 1.2604E − 01 2.1817E − 03 1.1994E − 02 2.5730E − 02

15 3.9803E + 02 9.2821E + 02 6.5814E + 02 6.6660E + 02 1.2744E + 02

16 6.2944E − 01 1.4778E + 00 1.1505E + 00 1.1336E + 00 1.8774E − 01

17 1.0122E + 01 1.0122E + 01 1.0122E + 01 1.0122E + 01 4.5729E − 06

18 1.7593E + 01 3.1133E + 01 2.2134E + 01 2.2715E + 01 2.8525E + 00

19 2.9479E − 01 5.2259E − 01 4.5204E − 01 4.4224E − 01 5.3887E − 02

20 1.2860E + 00 3.4877E + 00 2.5708E + 00 2.5317E + 00 3.7190E − 01

21 2.0000E + 02 4.0019E + 02 4.0019E + 02 3.9627E + 02 2.8033E + 01

22 1.9796E − 02 1.1123E + 02 1.7431E + 01 2.7022E + 01 2.6637E + 01

23 2.8879E + 02 1.0544E + 03 6.9580E + 02 7.0015E + 02 1.5859E + 02

24 1.3524E + 02 2.1472E + 02 2.0279E + 02 2.0217E + 02 1.2455E + 01

25 2.0003E + 02 2.1188E + 02 2.0091E + 02 2.0314E + 02 3.6775E + 00

26 1.0514E + 02 2.0002E + 02 1.1187E + 02 1.2670E + 02 3.4574E + 01

27 3.0001E + 02 4.0438E + 02 3.0019E + 02 3.0351E + 02 1.6372E + 01

28 1.0000E + 02 3.0000E + 02 3.0000E + 02 2.8824E + 02 4.7525E + 01

TABLE II: COMPARISON OF RJADE/TA WITH OTHER ALGORITHMS ON THEMEAN OF THE FUNCTION ERROR
VALUES AT EXECUTION TERMINATION OVER 51 RUNS, ON 28 TEST FUNCTIONS WITH n=10.

Func jDE jDEsoo SPSRDEMMS jDErpo RJADE/TA

1 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00

2 7.6534e − 05- 1.7180e + 03- 6.8886e + 02- 0.0000e + 00= 0.0000e + 00

3 1.3797e + 00+ 1.6071e + 00+ 5.9735e + 00+ 3.7193e − 05+ 1.2108e + 02

4 3.6639e − 08+ 1.2429e − 01+ 3.8803e − 02+ 0.0000e + 00+ 1.1591e + 02

5 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00

6 8.6581e + 00- 8.4982e + 04- 8.6580e + 00- 5.3872e + 00+ 7.8884e + 00

7 2.7229e − 03+ 9.4791e − 01- 1.8732e − 01- 1.6463e − 03+ 1.5927e − 01

8 2.0351e + 01+ 2.0348e + 01+ 2.0348e + 01+ 2.0343e + 01+ 2.0366e + 01

9 2.6082e + 00+ 2.7464e + 00+ 2.7311e + 00+ 6.4768e − 01+ 4.4593e + 00

10 4.5263e − 02- 7.0960e − 02- 1.0346e − 01+ 6.4469e − 02- 3.5342e − 02

11 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00

12 1.2304e + 01- 6.1144e + 00+ 7.5821e + 00+ 1.3410e + 01- 7.7246e + 00

13 1.3409e + 01- 7.8102e + 00- 1.1042e + 01- 1.4381e + 01- 6.7571e + 00

14 0.0000e + 00+ 5.0208e − 02- 8.3273e − 02- 1.9367e + 01- 1.1994e − 02

15 1.1650e + 03- 8.4017e + 02- 8.3072e + 02- 1.1778e + 03- 6.6660e + 02

16 1.0715e + 00+ 1.0991e + 00+ 1.1871e + 00- 1.0598e + 00+ 1.1336e + 00

17 1.0122e + 01= 9.9240e + 00+ 1.0127e + 01 1.0997e + 01- 1.0122e + 01

18 3.2862e + 01- 2.7716e + 01- 2.2949e + 01- 3.2577e + 01- 2.2715e + 01

19 4.3817e − 01+ 3.1993e − 01+ 3.1854e − 01+ 7.4560e − 01- 4.4224e − 01

20 3.0270e + 00- 2.7178e + 00- 2.5112e + 00+ 2.5460e + 00- 2.5317e + 00

21 3.7272e + 02+ 3.5113e + 02+ 3.9234e + 02- 3.7272e + 02+ 3.9627e + 02

22 7.9231e + 01- 9.1879e + 01- 6.6219e + 01- 9.7978e + 01- 2.7022e + 01

23 1.1134e + 03- 8.1116e + 02- 9.4740e + 02- 1.1507e + 03+ 7.0015e + 02

24 2.0580e + 02- 2.0851e + 02- 2.0442e + 02- 1.8865e + 02+ 2.0217e + 02

25 2.0471e + 02- 2.0955e + 02- 2.0473e + 02- 1.9885e + 02+ 2.0314e + 02

26 1.8491e + 02- 1.9301e + 02- 1.6886e + 02- 1.1732e + 02+ 1.2670e + 02

27 4.7470e + 02- 4.9412e + 02- 4.7300e + 02- 3.0000e + 02+ 3.0351e + 02

28 2.9216e + 02- 2.8824e + 02= 2.8431e + 02+ 2.9608e + 02- 2.8824e + 02

- 15 15 16 12
+ 9 9 9 12
= 4 4 3 4
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TABLE III: COMPARISON OF RJADE/TA WITH OTHER ALGORITHMS ON THE MEAN OF THE FUNCTION ERROR
VALUES AT EXECUTION TERMINATION OVER 51 RUNS, ON 28 TEST FUNCTIONS WITH n=30.

Func jDE jDEsoo SPSRDEMMS jDErpo RJADE/TA

1 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00

2 1.1925e + 06- 1.2914e + 05- 1.0157e + 05- 2.8378e + 04- 7.4009e + 03

3 5.6216e + 06- 9.8414e + 06- 1.0951e + 07- 8.5740e + 01+ 2.4293e + 05

4 9.3584e + 03- 1.9720e + 04- 2.4061e + 00+ 1.7214e + 02+ 5.1627e + 03

5 0.0000e + 00= 1.2606e − 08= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00

6 1.4157e + 01- 7.9292e + 00- 1.7463e + 01- 7.5852e + 00- 1.0356e + 00

7 2.6171e + 01- 9.8167e + 00- 1.1038e + 01- 1.1163e + 00+ 4.2514e + 00

8 2.0934e + 01+ 2.0946e + 01- 2.0950e + 01- 2.0940e + 01- 2.0937e + 01

9 1.8151e + 01+ 2.0971e + 01- 2.4903e + 01+ 3.0923e + 01- 2.7961e + 01

10 3.8212e − 02- 7.9055e − 02- 5.3974e − 02- 9.2759e − 03+ 3.7380e − 02

11 3.6609e + 01- 0.0000e + 00= 0.0000e + 00= 3.2858e + 01- 0.0000e + 00

12 1.7135e + 02- 4.2835e + 01- 4.2650e + 01- 1.7995e + 02- 3.6994e + 01

13 1.8086e + 0-2 7.0750e + 01- 7.9763e + 01- 1.8151e + 02- 5.7309e + 01

14 3.0639e + 03- 1.3327e + 00- 3.2550e + 00- 1.5120e + 03- 1.1223e + 00

15 7.2978e + 03- 4.8340e + 03- 4.4226e + 03- 7.1440e + 03- 4.1938e + 03

16 2.4646e + 00- 2.2791e + 00- 2.2801e + 00- 2.4687e + 00- 2.1305e + 00

17 7.8765e + 01- 3.0434e + 01= 3.0440e + 01- 7.3585e + 01- 3.0434e + 01

18 2.1731e + 02- 1.2341e + 02- 8.9310e + 01+ 2.1298e + 02- 1.0213e + 02

19 7.0078e + 00- 1.0956e + 00+ 1.1639e + 00+ 7.5022e + 00- 2.0825e + 00

20 1.2564e + 01- 1.1639e + 01- 1.1236e + 01- 1.2268e + 01- 1.0858e + 01

21 2.7818e + 02+ 2.9396e + 02- 2.8466e + 02+ 2.8637e + 02+ 2.9336e + 02

22 3.1346e + 03- 5.1621e + 01+ 7.6606e + 01+ 1.7779e + 03- 1.3131e + 02

23 7.2920e + 03- 4.6061e + 03- 4.7713e + 03- 7.2374e + 03- 4.2998e + 03

24 2.5511e + 02- 2.4818e + 02- 2.5330e + 02- 2.0102e + 02+ 2.1616e + 02

25 2.5213e + 02+ 2.6037e + 02+ 2.6408e + 02+ 2.5354e + 02+ 2.7921e + 02

26 2.0015e + 02+ 2.5758e + 02- 2.0001e + 02+ 2.0000e + 02+ 2.2275e + 02

27 7.8688e + 02- 7.2161e + 02- 8.8779e + 02- 3.7724e + 02- 7.1060e + 02

28 3.0000e + 02= 3.0000e + 02= 3.0000e + 02= 3.0000e + 02= 3.0000e + 02

- 20 20 16 16
+ 5 3 8 8
= 3 5 4 3

TABLE IV: %age comparison of RJADE/TA with other algorithms

Optimizer jDE jDEsoo SPSRDEMMS jDErpo RJADE/TA
No. of probs. optimized 7 6 6 10 14

%age 25% 21% 21% 36% 50%

TABLE V: EXPERIMENTAL RESULTS OF JADE, AND RJADE/TA ON 10 TEST INSTANCES OF 1000 VARIABLES WITH
3 · 10+06FES.Best, Median, Mean AND the Std Dev OF THE FUNCTION ERROR VALUES OBTAINED OVER 25 RUNS.

Test Best Mean Median Std Dev

Instance RJADE/TA JADE RJADE/TA JADE RJADE/TA JADE RJADE/TA JADE

F1 3.12E + 05 1.44E + 05 1.26E + 06 1.18E + 06 9.70E + 05 1.05E + 06 8.07E + 05 9.24E + 05

F2 1.44E + 03 1.09E + 01 1.63E + 03 7.28E + 01 1.61E + 03 5.87E + 01 1.30E + 02 4.60E + 01

F3 7.27E − 03 9.49E − 01 5.47E − 01 1.20E + 00 4.32E − 01 1.20E + 00 5.43E − 01 1.47E − 01

F4 6.29E + 10 9.08E + 10 6.60E + 12 8.12E + 12 1.80E + 11 1.56E + 11 1.03E + 13 1.09E + 13

F5 4.93E + 007 5.65E + 007 6.91E + 007 7.62E + 007 6.71E + 007 7.71E + 007 1.52E + 007 1.28E + 007

F6 1.97E + 01 ≈ 1.97E + 01 1.98E + 01 3.52E + 04 1.98E + 01 ≈ 1.98E + 01 2.80E − 02 1.76E + 05

F7 4.61E + 05 4.58E + 05 1.19E + 09 6.29E + 07 7.80E + 05 8.53E + 05 2.47E + 09 1.36E + 08

F8 7.10E + 04 9.00E + 04 4.07E + 07 2.60E + 07 4.11E + 06 6.97E + 06 6.00E + 07 3.49E + 07

F9 3.98E + 07 3.65E + 07 5.03E + 07 4.83E + 07 5.02E + 07 4.51E + 07 1.04E + 07 7.52E + 06

F10 5.04E + 03 3.34E + 03 5.35E + 03 3.67E + 03 5.35E + 03 3.69E + 03 1.66E + 02 1.59E + 02
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the remaining four test instances, F1, F3, F9 and F10 JADE got
better solutions than RJADE/TA; here F1 and F3 are separable
and two functions F9 and F10 are partially-separable functions
that consist of multiple independent subcomponents. Further-
more, the failure on F10 (n

2m
-group nonseparable) could be its

complexity, as it is the sum of ten rotated Rastrigins functions
applied to groups ofm (50 here) decision variables each and
one non-rotated Rastrigins function applied to the remaining
500 decision variables. The failure on F9 can be due to its
complex nature like F10.

Considering “Mean”, “Median” and Standard deviation, we
see that RJADE/TA’s is more suitable to solve single-groupm-
nonseparable functions, F3-F8, which is visible from TableV.
Hence in general, the analysis of above experimental results
lead us to the conclusion that RJADE/TA in much much better
than JADE in optimizing problems from the category of single-
groupm-nonseparable functions.

VI. CONCLUSIONS

The current DE variant JADE with one optional external
archive some times exhibit poor reliability [30]. Moreover, best
solutions some times mislead the search to a local optima. In
this paper, we have attempted to introduce a second archive
A2 into JADE for overcoming this shortcoming for large scale
global optimization problems. This archive stores the best
solution, which is removed from the current population after
regular intervals. The removal of best solution is compensated
by a new potential solution in the population. Thus we have
proposed an approach RJADE/TA to addA2 to JADE algo-
rithm and add new good divers solutions to the population to
make a systematic and rational search in the region defined
for the search process. RJADE/TA takes the advantages of
both archives,A with inferior solutions andA2 with superior
solutions. It is easy to implement and does not introduce any
complicated structures.

The performance of the developed RJADE/TA has been
demonstrated by taking advantage of 28 complex competi-
tion test functions from CEC 2013 and 10 functions from
CEC2010. On CEC2013 test suit RJADE/TA was compared
with jDE, jDEsoo, jDErpo and SPSRDEMMS algorithms
on 10 and 30 dimensions. The superior performance of
RJADE/TA was demonstrated on 10 and 30 dimensions. More-
over, we have compared RJADE/TA with classical JADE with
1000 dimensions. RJADE/TA notably outperformed JADE and
is very competitive in solving single-groupm-nonseparable
functions. In this paper, our aim was to analyze the behavior
of algorithm if the best solution is removed from it.

In future JADE with second Archive only can be ex-
plored. The experiments may be carried out at other higher
dimensional problems. This may be extended to constrained
optimization.
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