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Abstract—the field of DNA Computing has attracted many 

biologists and computer scientists as it has a biological interface, 

small size and substantial parallelism. DNA computing depends 

on DNA molecules’ biochemical reactions which they can 

randomly anneal and they might accidentally cause improper or 

unattractive computations. This will inspire opportunities to use 

evolutionary computation via DNA. Evolutionary Computation 

emphasizes on probabilistic search and optimization methods 

which are mimicking the organic evolution models. The research 

work aims at offering a simulated evolutionary DNA computing 

model which incorporates DNA computing with an evolutionary 

algorithm. This evolutionary approach provides the likelihood 

for increasing dimensionality through replacing the typical 

filtering method by an evolutionary one. Thus, via iteratively 

increasing and recombination a population of strands, 

eliminating incorrect solutions from the population, and choosing 

the best solutions via gel electrophoresis, an optimal or near-

optimal solution can be evolved rather than extracted from the 

initial population. 

Keywords—Parallel Computation; DNA Computation 

Algorithm; Evolutionary DNA Computing Algorithm 

I. INTRODUCTION 

Leonard Adleman was the first person to demonstrate that 
DNA computing could be utilized for computing in a 
laboratory environment and without using conventional 
computing devices. As a paradigm for his novel approach, he 
selected the Hamiltonian Path Problem (HPP) to obtain 
solutions via experimental DNA tests [1]. It is of interest to 
mention that further or more rapid progress would have been 
achieved if he had selected an easier problem. Subsequently, he 
selected the HPP on the use of conventional computers [2].This 
choice opened stimulating avenues and allowed other 
researchers to think more favorably of DNA computing. In 
doing so, he considered that the power of this technique was 
great and involved substantial prospects for parallel computing, 
as is feasible via operations with DNA. Adelman is now 
considered the founding father of DNA computing [3]. 

Currently, DNA computing is an interdisciplinary area in 
which ecologists, biologists, computer scientists, physical 
scientists, mathematicians, chemists, and other related 
specialists identify interesting problems that may be useful for 
the theoretical and practical sides of DNA computing [4]. DNA 
computers are essentially assortments of chosen DNA strands. 
The combinations of these strands imply solutions to a given 
problem that is to be solved. Tools are currently available to 

select the preliminary components and winnow candidate 
solutions. 

The potential of parallel processing algorithms is 
substantial. DNA computing on large problems can involve 
parallel processing, given a preliminary arrangement and 
ample DNA. These challenging tasks are easily and effectively 
accomplished using DNA computing. In contrast, standard 
computers would require substantial parallelism and more 
hardware [2]. On the other hand, DNA computing is 
determined by DNA molecules’ biochemical reactions, which 
they can unsystematically anneal and they might yield 
unsuitable computations. Therefore, the use evolutionary 
computation via DNA might be a good solution. Evolutionary 
computation emphasizes on optimization method and a search 
which is probabilistic. It mimics the organic evolution models 
via using operators such as recombination and randomized 
mutation or so called the progression of interaction between the 
formation of fresh generations and their assessments and the 
choice wherever a sole individual in a populace is affected by 
the surroundings and also by other individuals. It is considered 
that individuals that can perform better in such circumstances, 
they will have greater chances for surviving [5, 6]. 

The contribution of this work is to propose an evolutionary 
DNA algorithm based on the standard DNA algorithm as it is 
presented in this paper to solve the shortest path to increase the 
possibility of having an optimum solution and to improve the 
average cost of the final paths. In the next section, some of the 
techniques and approaches that have been used in the area of 
DNA computing are reviewed and outlined. 

II. RELATED WORKS 

DNA computing was primarily conceived by Leonard 
Adleman; in 1994, Adleman developed the idea of using DNA 
computing to address the HPP [1]. From the primary 
investigations and early tests by Adleman, innovations and 
progress emerged, e.g., a number of Turing machine devices 
were systematically developed and tested. Although the 
primary efforts to exploit this fresh methodology unveiled 
computationally complex problems, it was rapidly and 
conclusively shown that the methods were clearly inapplicable 
to this type of computational algorithm [3, 4, 7, 8]. 

In 1997, a research team led by Ogihara and Ray 
recommended the analysis of Boolean circuits, it is clear that 
Nand Boolean circuits cover only Nand gates. The research 
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team showed that the relationship between the logarithm of the 
maximum fan-out of the Boolean circuit and the runtime slow-
down is proportionate, also they showed that the relationship 
among the product of the size and the maximum fan-out and 
the space complexity is proportionate [ 9, 10, 11, 7, 12, 13]. 

In 2002, researchers from Israel announced a computing 
device based on molecular programming. This computing 
device was constructed from DNA molecules and enzymes in 
contrast to the silicon materials of microchips and integrated 
circuits [14, 12].  Shapiro and his research team wrote in 
Nature that they had created a deoxyribonucleic acid computer 
[14]. The device was able to locate tumor-related entities 
within a cell, and the team was able to produce drugs that 
conferred cancer resistance whenever the disease was detected 
[14, 15]. 

Another study was conducted to determine SSCP 
sensitivity in detecting factor IX mutation [16]. The study 
investigated the blood of hemophilia B patients in Iran. Phenol, 
chloroform and other reagents were used to extract DNA. The 
gene regions were amplified using primer pairs and PCR. PCR 
fragments with improved flexibility were obtained. The study 
concluded that SSCP sensitivity was high in the system 
investigated [16]. 

In 2006, Dimitrova outlined and summarized examples for 
various DNA computing applications such as aqueous 
computing, molecular computing, DNA Turing machines, and 
the nascent field of synthetic biology [15]. In 2008, Abdulla 
successfully inserted a heuristic search in a DNA computing 
algorithm to generate better efficiency and flexibility. That 
study improved the DNA search technique by increasing the 
number of solutions and reducing the running time and 
memory capacity. The modifications of A* and alpha beta 
using DNA produced better results than ordinary A* and alpha 
beta algorithms [17]. 

Hari and his research team have suggested an advanced and 
efficient technique for addressing the problem of minimum 
vertex cover using a DNA computing algorithm. They 
suggested that a DNA computing algorithm could make it 
possible to address problems that are intractable on silicon 
computers. Nevertheless, the study stated that DNA computing 
algorithms are not feasible for solving simple problems due to 
their high degree of parallelism. Thus, computer scientists are 
required to design and elaborate more DNA computing 
algorithms [18]. The same research team has suggested that 
appropriate enzymes and legitimate approaches will 
dynamically shape biology to address more subtle problems 
and reduce the amount of error associated with the use of the 
algorithm. 

The focus of this research paper is to incorporate an 
evolution strategy into DNA computing based only on the 
crossover operator and strategy parameter. This approach is 
expected to enhance or optimize the quality of the final 
solutions by increasing the size of the final solutions and also 
by evolving the most correct solutions to obtain an optimum or 
near optimum solution(s). This optimization could take place 
regardless of the increase in the time and memory capacity of 
the modified algorithm. 

The structure of this paper is as follows. In the next section, 
DNA computing algorithms and operations are described. 
Then, a DNA interpretation for the problem of the shortest path 
is described in detail. Then after, the proposed evolutionary 
DNA computing method is established. Next, experimental 
results are described in detail. Finally, the conclusions are 
outlined. A glossary or list of terminology is presented in 
appendix A at the end of this paper. 

III. DNA COMPUTING ALGORITHM AND OPERATIONS 

Bioinformatics is now viewed as the study of information 
stored in DNA. The strings of letters correspond to 
combinations of the four bases A (adenine), T (thymine), G 
(guanine) and C (cytosine). These strings transmute 
information via convolution operations on the unit cell [18, 
15]. DNA polymerase is the key enzyme. With a specified 
strand of DNA under suitable circumstances, this enzyme 
generates the complementary strand, another Watson-Crick 
DNA sequence in which the letter C stands opposite G, G 
stands opposite C, A stands opposite T and T stands opposite 
A. From the molecular sequence CATGTC, for example, the 
new molecular sequence GTACAG is created by DNA 
polymerase. DNA is regenerated by DNA polymerase. This 
capability allows cells to regenerate and eventually permits the 
investigator to make a replica of the original object of study or 
analysis. The replication of DNA via DNA polymerase is the 
most important life process. DNA polymerase is, in essence, a 
nano-machine. It links to DNA strands, it reads each base, and, 
as it passes, it writes the complementary information as a fresh, 
lengthening strand of DNA [18, 15]. 

The resemblance between the Turing machine and DNA 
polymerase is striking. It is known that Alan Turing created 
and designed a computer in the shape of a toy, which was later 
called the Turing machine. Originally, the device was intended 
to be conceptual and appropriate for precise mathematical 
examination. 

Thus, it was meant to be truly simple, and Alan Turing 
fully succeeded. In one account, the Turing machine is 
described as a limited control device consisting of pairs of 
tapes. The limited control device moves sideways through the 
tape input, reading information. It moves sideways through the 
output of the tape, which reads and writes other data. It is noted 
that the limited control device is programmed with basic 
instructions; it would be easy to code programs for reading the 
letter strings (A, T, C, G) on the input of the tape and produce 
the complementary Watson-Crick string as the tape output. 
Thus, a Turing device can be used for coding different 
programs, e.g., to produce the complementary Watson-Crick 
strings or to play Chess. The key operations of DNA 
computing used in a DNA algorithm are defined below [19, 20, 
17, 21, 15, 22, 23, 24, 25]:- 

a) Watson-Crick pairing, as mentioned above, is 

pervasive; it is obvious that any DNA strand has its Watson-

Crick complement. The pairing will occur when a DNA 

molecule encounters the complement of the original Watson-

Crick strand. Later, both DNA strands will be annealed. Both 

strands join to produce the well-known double helix. 
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b) Polymerases allow the copying of information from 

one molecule to another. The DNA polymerase is able to 

generate strands of DNA complementary to the original 

Watson-Crick DNA string. 

c) Ligases connect molecules. This concept can be 

illustrated with DNA ligase, which creates one single strand 

from two DNA strands. DNA ligase can be utilized in the cell 

to repair disruptions or breaks that can occur in strands of 

DNA. This phenomenon can be observed when skin cells are 

exposed to certain types of light. 

d) Nucleases break down and thereby repress 

deoxyribonucleic and ribonucleic acids. 

e) Gel electrophoresis serves to analyze and segregate 

DNA, RNA and protein macromolecules. It allows 

heterogeneous DNA molecules to be run on a gel with an 

electric current and identified. 

f) Synthesis. Sequences of DNA can be written on paper 

and sent to a synthesis facility. The synthesis facility then 

returns a tube containing 1018 DNA molecules within a few 

days. Each of the molecules contains the specific sequence 

requested. Sequences of approximately 100 nucleotides in 

length can be synthesized dependably in the laboratory. The 

DNA is delivered in dry form in a narrow tube, and the 

molecules appear white in color. 

IV. DNA SOLUTION FOR THE SAMPLE OF NETWORK 

DIAGRAM 

Let a directed graph be given by Graph= (Ver, Edg), where 
Ver is defined as a group of vertices and Edg is defined as a 
group of weights (See Fig. 1). A sequence of these vertices 
such as Ver1, Ver2, Ver3... Vern can define a basic path, as 
long as Ver1, Ver2, Ver3... Vern are considered distinct [2, 8, 
25, 16]. The path length can obviously be calculated by adding 
up every edge weight in the path. Of course, considering 
walking from a specific source to a specific destination, the 
shortest simple path is the path that has the least weight among 
all of the paths in the graph. The objective is to minimize the 
total cost in the directed path. This is, of course, the simple 
shortest path going all the way from the key source to the 
destination. The shortest path problem is a network of several 
nodes and edges that are used to link all of the nodes, and the 
problem can be solved using the standard DNA algorithm. 

 

Fig. 1. Sample of Network Diagram 

The standard DNA algorithm aims to handle the key DNA 
operation stages; these stages include the coding of the 
problem, which is performed in DNA, the production of 

random solutions, the amplification of the random DNA 
solutions using PCR, the elimination of repeated nodes using 
SSCP, and finally the sorting of the final solutions using 
electrophoresis (see Fig. 2). 

 
Fig. 2. Shows Block Diagram of Normal DNA Algorithm for Solving 

Shortest Path Problem 

The key stages of the standard DNA algorithm can be 
described below [2, 16, 15, 26] :- 

a) DNA problem representation (Coding) 

It is obvious that in the graph, each vertex Veri must be 
linked to a specific palindromic 10-mer DNA sequence, which 
is represented via Veri. Therefore, every single edge Veri  
Verj (in the directed graph, a complementary oligonucleotide 
sequence of a 3’ 5-mer of Veri is tracked via a complimentary 
sequence of a 5’ 5-mer of Verj) can be combined. 

b) Building of random pathways (Construction) 

It can be said that every oligonucleotide coding vertex and 
every oligonucleotide coding edge must be combined to build 
random paths in the graph; tweaks or a tweak for each of the 
various sequences can be selected and are kept inside test 
tubes. 

c) DNA path intensification using PCR (Amplification) 

In this stage, the process of intensification is performed. It 
would begin with the source of the vertex and would end at the 
destination of the vertex. Note that 2 specific primers can be 
designed to target the source of the vertex and destination of 
the vertex, which will further amplify the PCR response. 

d) Dismissal of repetitive vertices (Elimination) 

SSCP is a simple and common practice of mutation 
detection. This process prevents nodes from reappearing within 
the strands of DNA. Basically, the PCR serves to proliferate 
and aggregate the region of interest. The subsequent DNA 
would be separated via electrophoresis to produce single-
stranded molecules. 

e) Sequencing of the DNA strands 

At this stage, the strands achieved in stage 4 are sequenced. 
By reading the sequence, the weight of each strand is defined. 
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The desired solution is considered to be the path that has the 
least weight. 

Applying the normal DNA algorithm to solve the shortest 
path problem, the above key operational stages can be 
expressed as follows: 

a) DNA problem representation (Coding) 

This can be performed via random synthesis of a 
palindromic 10-base strand of DNA for every single vertex, 
keeping in mind that Veri signifies the ith vertex (See Table 1). 
Thus, to represent every edge, Veri  Verj, a palindromic 10-
base strand of DNA can be synthesized, which is a sequence 
consisting of the 3’ 5-mer complement of Veri and the 5’ 5-mer 
sequence complement of Verj. The result of the graph (see Fig. 
1) is shown in Table 2. 

b) Building of random pathways (Construction) 

In this stage, all sequences that correspond to both vertices 
Veri and edges Veri  Vj, as synthesized in stage 1, must be 
stored in test tubes to allow ligation. Subsequently, ligation 
will occur when both sequences of the DNA Ver1 
(GCGAGATCTG) and DNA Edge Ver1Ver2 
(TAGACCTTCA) accidentally come into contact with each 
other. 

The fact that the earlier sequence ended via ATCTG and the 
latter sequence started via TAGAC is important because these 
two sequences are complementary. Thus, the annealing process 
will occur. If the resultant composite encounters a sequence 
that matches Ver2 (GAAGTCAGTC), at that point, it may also 
be able to join the composite, as the earlier sequence 
complements the later starting sequence. It can be observed 
that composites can grow lengthwise when edges of DNA 
sequences are joined together via a vertex of DNA sequences. 
Accordingly, the paths can be expressed as follows:- 

Ver3  Ver4  

GTCACGACGAGCCATAGACC  

Ver1  Ver2  Ver3  Ver5  Ver4  Ver6 

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

GGCCATAGACCGATGAGAGTA  

Ver2 Ver3 Ver5  Ver4 

GAAGTCAGTCGTCACGACGAGTTCGTTTAGGCCATAGAC

C 

Ver1 → Ver2  Ver3  Ver5 

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

G  

Ver1  Ver3  Ver4  Ver6 

GCGAGATCTGGTCACGACGAGCCATAGACCGATGAGAG

TA 

Ver1  Ver2  Ver3  Ver5 Ver4  Ver6 

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

GGCCATAGACCGATGAGAGTA  

Ver1 Ver2 Ver5  Ver1  Ver3 Ver5 Ver6 

GCGAGATCTGGAAGTCAGTCGTTCGTTTAGGCGAGATCT

GGTCACGACGAGTTCGTTTAGGATGAGAGTA 

Ver1  Ver2  Ver3 Ver5 Ver6 

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

GGATGAGAGTA 

Ver2  Ver3  Ver4  Ver6 

GAAGTCAGTCGTCACGACGAGCCATAGACCGATGAGAG

TA 

Ver1  Ver3  Ver5  Ver4 

GCGAGATCTGGTCACGACGAGTTCGTTTAGGCCATAGA

CC  

etc. 

c) DNA path intensification using PCR (Amplification) 

The generation of all paths that can hold both source and 
destinations (Vers and Verd) can be accomplished via DNA 
path intensification using PCR. This process occurs as follows: 

I. If the source Ver1 and the destination Ver6 are 
selected, at that point, both primers that correspond to 
the source and destination (Ver1 (GCGAGATCTG) and 
Ver6 (GATGAGAGTA)) are added to the resulting 
solution. Then, the PCR can occur. 

II. Additionally, the GCGAGATCTG primer would anneal 
to its target sequence that is established in the Ver1 
Ver6 path; a similar phenomenon will occur with the 
other primers. 

Consequently, immediately after the accomplishment of 
PCR, every path from the Ver1 source to the Ver6 destination 
can be expressed as follows:- 

Ver1 Ver2 Ver3 Ver5  Ver6  

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

GGATGAGAGTA 

Ver1  Ver2  Ver3  Ver5  Ver4 Ver6 

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

GGCCATAGACCGATGAGAGTA 

Ver1  Ver2  Ver5  Ver1  Ver3  Ver5 Ver6 

GCGAGATCTGGAAGTCAGTCGTTCGTTTAGGCGAGATCT

GGTCACGACGAGTTCGTTTAGGATGAGAGTA 

Ver1  Ver2  Ver4  Ver6 

GCGAGATCTGGAAGTCAGTCGCCATAGACCGATGAGAG

TA 

Ver1 Ver3  Ver5  Ver6 

GCGAGATCTGGTCACGACGAGTTCGTTTAGGATGAGAG

TA 

Ver1 Ver3  Ver5  Ver4  Ver6 

GCGAGATCTGGTCACGACGAGTTCGTTTAGGCCATAGA

CCGATGAGAGTA 

Ver1  Ver2  Ver5  Ver6 

GCGAGATCTGGAAGTCAGTCGTTCGTTTAGGATGAGAGT

A 

d) Dismissal of repetitive vertices (Elimination) 

In this stage, the rule is obviously not to allow the vertices 
to reappear. In other words, repetition is not allowed; thus, 
nodes that are repeated for the second time will be dismissed. 

The process of elimination can be performed via a single-
stranded conformation polymorphism approach (SSCP). A 
hairpin structure can be formed via the series. It can hold 
reappearing nodes that can be connected to their corresponding 
split ends. The strands that hold hairpin loops will eventually 
be eliminated via the SSCP approach. Thus, the representation 
for all paths that have vertex repetition can be expressed as 
follows:- 
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Ver1  Ver2  Ver5  Ver1 Ver3  Ver5  Ver6 

GCGAGATCTGGAAGTCAGTCGTTCGTTTAGGCGAGATCT

GGTCACGACGAGTTCGTTTAGGATGAGAGTA 
It can be observed that with a path Ver1  Ver2 Ver5 

 Ver1  Ver3 Ver5 Ver6, the vertices Ver1 and Ver5 
are repeated. Thus, subsequently disregarding strands with 
loops, the achieved paths are expressed as follows: 

Ver1  Ver2  Ver3  Ver5 Ver6  

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

GGATGAGAGTA 

Ver1  Ver2 Ver3  Ver5  Ver4 Ver6 

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

GGCCATAGACCGATGAGAGTA 

Ver1  Ver2  Ver4 Ver6 

GCGAGATCTGGAAGTCAGTCGCCATAGACCGATGAGAG

TA 

Ver1 Ver3 Ver5  Ver6 

GCGAGATCTGGTCACGACGAGTTCGTTTAGGATGAGAG

TA 

Ver1 Ver3  Ver5 Ver4 Ver6 

GCGAGATCTGGTCACGACGAGTTCGTTTAGGCCATAGA

CCGATGAGAGTA 

Ver1 Ver2  Ver5  Ver6 

GCGAGATCTGGAAGTCAGTCGTTCGTTTAGGATGAGAGT

A 

e) Sequencing of the DNA strands. In this stage, each 

weight path achieved in stage 4 is defined by interpreting the 

equivalent sequence. 

Ver1  Ver2 Ver4  Ver6 

Overall weight for path is 15 

Ver1 Ver2 Ver3  Ver5  Ver6 

Overall weight for path is 13 

Ver1  Ver2  Ver3  Ver5 Ver4  Ver6 

Overall weight for path is 19 

Ver1 Ver3 Ver5 Ver6 

Overall weight for path is 12 

Ver1 Ver3 Ver5  Ver4 Ver6 

Overall weight for path is 18 

Ver1 Ver2  Ver5  Ver6 

Overall weight for path is 13 
Note that Ver1  Ver3  Ver5  Ver6 path produces 12; 

this is the least weight cost. Therefore, Ver1  Ver3  Ver5 
 Ver6 is our solution to the problem path, which holds an 
equivalent DNA sequence that can be described as follows: 

GCGAGATCTGGTCACGACGAGTTCGTTTAGGATGAGAG

TA 

V. PROPOSED EVOLUTIONARY DNA COMPUTING 

The Java programming language is used to design a 
simulation of DNA computing to solve the problem of the 
simple shortest path. The standard DNA algorithm is 
implemented; then, the cleaning stage is used to obtain the 
desired solutions randomly. However, the produced solutions 
that are not desirable are discarded through this stage. The 
shortest path is established; however, there are some 
restrictions that must be addressed:- 

1) It is clear that the DNA algorithm generates random 

solutions that are governed by chance with respect to the DNA 

strands meeting each other or not; thus, the DNA algorithm 

might not produce all of the potential solutions as there is no 

evolutionary progress involved here to produce solutions via 

progress within considerable sequence populations arising 

from the DNA. 

2) In case the DNA algorithm cannot produce all of the 

potential solutions, identification of the best solution is not 

assured. 

3) The random generation solution size can be amplified; 

thus, the number of potential solutions could also be 

amplified. This process will allow us to obtain more final 

solutions; however, the downsides are that the search process 

will take more time and there is a greater need for memory 

capacity. Still, the best solution is not assured. 
There must be other ways to enhance the standard normal 

DNA computing algorithm to obtain more diversity in the 
scope of the produced solutions, to create more correct 
solutions and also to obtain the best solution. In this regard, a 
method is suggested to conglomerate DNA computing with an 
evolutionary algorithm (Evolutionary DNA Computing). 
Evolutionary algorithm features are used in this research to 
produce solutions through progress within substantial sequence 
populations arising from the DNA. This evolutionary algorithm 
will increase the dimensionality of the system by replacing the 
customary filtering approach with an evolutionary approach. 
Thus, the best solutions might be obtained through iterative 
intensification, recombining strand populations, eliminating 
inappropriate solutions included in the population, and 
selecting the best solutions through gel electrophoresis instead 
of mining them from the preliminary population. 

This proposed improvement of the algorithm has four 
modifying operations (See Fig. 3). Each operation has an effect 
on the algorithm, while they all share the same representation 
of the knowledge. The four operations are the following:- 

1) Adding/Replacing the start/end of the PCR-dropped 

strands 
The normal DNA algorithm is modified by 

adding/replacing the start/end of the PCR-dropped strands. The 
first level of enhancement is finished by obtaining all of the 
dropped PCR solutions, adding a start node to the beginning of 
the solution strand, and adding an end node to the end of the 
solution strand. By performing this operation, the PCR-
dropped solution can address PCR solutions in such a manner 
that the chance of obtaining more final solutions will increase. 
Another level that is accomplished using the same function is 
to switch the start and end nodes of the dropped PCR solution 
strand by the desired start/end nodes. This step can add 
diversity to the solution space by increasing the number of 
PCR solutions and consequently increasing the chance of 
obtaining many solutions in the end. These 2 modifications are 
solely applicable to the Shortest Path problem. Details of the 
pseudo code snippet are shown below. 

Replace and Add the start/end of the PCR solution: 

Input: Dropped PCR solution 

Output: Added PCR Test Tube Solution 
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For each dnaStrand in the PCR Test Tube 

    If dnaStrand.length > Size 

 newStrand= replaceStartEnd (dnaStrand) 

 Add newStrand to PCR Test tube 

               newStrand= addStartEnd (dnaStrand) 

              Add newStrand to PCR Test tube 

End For 

replaceStartEnd (dnaStrand) 

replacedStrand= dnaStrand.substring(Size, dnaStrand.length()-Size) 

   Return startNodeStrand+replacedStrand+endNodeStrand 

addStartEnd (dnaStrand) 

 Return startNodeStrand+ dnaStrand +endNodeStrand 

replacedStrand= dnaStrand.substring(Size, dnaStrand.length()-Size) 

 Return startNodeStrand+replacedStrand+endNodeStrand 

addStartEnd (dnaStrand) 

 Return startNodeStrand+ dnaStrand +endNodeStrand 

 
Fig. 3. The proposed technique 

2) Crossovers Dropped in the PCR Solutions 
Modifying the normal DNA algorithm by adding semi-

crossovers of the dropped PCR strands involves applying 
another modification in the algorithm. The process works by 
obtaining the dropped PCR solutions and randomly selecting 
two nodes in the solution strand to be replaced by two random 
nodes obtained from the set of original nodes. This step is 
similar to a semi-crossover operation for increasing the 
possibility of obtaining more solutions. The output of this 
function is sent to the PCR function to obtain the correct PCR 
solutions and to send them to the next function, which is the 
SSCP function. The details of the pseudo code snippet are 
shown below. 

PCR Semi-Crossover: 

Input: Dropped PCR Solution TT, Nodes TT 

Output: Added PCR Test Tube Solution 

For each dnaStrand in PCR Dropped Test Tube 

    If dnaStrand.length > Size 

     While no termination do // two crossovers or break 

       Get random nodeS in dnaStrand 

       Get random NodeS from initial Test Tube 

        Replace nodeS with NodeS 

 Od 

 If isPCR (dnaStrand) // isPCR function already available 

 Add dnaStrand to PCR Test Tube 

          End If 

         End If 

End For 

3) Crossovers Dropped in SCCP Solutions 
Modifying the normal DNA algorithm with semi 

crossovers of the dropped SSCP strands proceeds as follows:- 

This modification is the same as the PCR Semi-Crossover 
but is applied on dropped SSCP solutions, and the difference is 
that the two random nodes are semi-crossed over, but not the 
start/end node, because there are already correct nodes in the 
solutions strand. The output of this function is sent to the SSCP 
function to obtain the correct SSCP solution from within the 
set. Details of the pseudo code snippet are shown below. 

SSCP Semi-Crossover: 

Input: Dropped SSCP Solution TT, Nodes TT 

Output: Added SSCP Test Tube Solution 

For each dnaStrand in the SSCP Dropped Test Tube 

    If dnaStrand.length > Size 

    While no termination do // two crossovers or break 

     Get random nodeS in dnaStrand but not start/end node 

     Get random NodeS from initial Test Tube 

     Replace nodeS with NodeS 

    Od 

If isSSCP (dnaStrand) // isSSCP function already available 

Add dnaStrand to SSCP Test Tube 

End If 

End For 

4) Evolutionary SSCP 
Modifying the normal DNA algorithm with the 

evolutionary approach: 

The following is the real evolutionary improvement to the 
algorithm: the best SSCP solution and 10% of the other SSCP 
solutions (not the best ones) are taken from the SSCP solution 
list. A new generation is made from these selected solutions by 
crossing over one node of the solution randomly and checking 
if any solution is generated with a lower cost; it is used if no 
better solution is generated. The strategy parameter is tuned, 
and instead of crossing over only one node, two nodes are 
crossed over, and the evolution of the algorithm is evaluated. 
The generation of a new population from an initial population 
is continued until either a better solution is obtained or the 
termination criterion is met. Details of the pseudo code snippet 
are shown below. 

SSCP Evolution Strategy: 

Input: SSCP Solution Test Tube, Nodes Test Tube 

Output: Added SSCP Test Tube Solution 

While no termination do // two crossovers or break 

 Get best solution and 10% random solutions 

  For i=0 to EdgesTT.length // number of generations 

    If (new generation worse than previous one) 

     Set crossinOverNodes=2 // strategy parameter setting 
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   Else 

    Set crossinOverNodes=1 

    makeNewGeneration() 

   Get best solution and 10% random solutions from new generation 

End For 

Get best solution from new generation 

End While 

makeNewGeneration() 

While no termination do 

makeSemiCrossOver(currentStrand,Nodes TT) // function is already 

//defined 

add crossedOver strand to new population  

End While 

VI. EXPERIMENTAL RESULTS 

It is clear that the evolutionary SSCP improves the 
algorithm by evolving the solution into a better solution. In the 
next first, second or third generation, a better solution is 
generated by semi-crossovers of the nodes in the current 
generation; occasionally, this occurs in later generations. A 
better indication of the evolutionary improvement is that in 
some iteration, a solution is given even when there is no 
solution found in the normal algorithm. 

An improved DNA computing algorithm for solving 
complex optimization problems is presented in this research 
study. The algorithm not only shows whether a solution exists 
but also provides more possible solutions; hence, the likelihood 
of obtaining the optimum solution is increased. The proposed 
algorithm might be extended to solve other optimization 
problems. This will be shown in the test result tables. To 
improve the algorithm, the focus is on the generation of more 
solutions rather than decreasing the running time or memory 
capacity, as current computers have sufficient CPU speed and 
memory capacity. The variables to be used are defined in the 
results of the Shortest Path Problem; all of the results in this 
section are supported by tables and charts to display the 
intermediate and final results, with statistical curves that 
represent the comparison between the standard DNA and 
improved DNA algorithms. The data tables of the results of the 
DNA Algorithm and Evolutionary DNA Algorithm for solving 
the Shortest Path problem are found below. Table 3 shows the 
solution of the standard DNA algorithm for SPP, which is the 
basic result to be compared with the results generated by the 
improved DNA algorithm. 

Table 4 shows the first improved solution of SPP by the 
DNA algorithm. As explained in the previous sections, the 
algorithm is improved by working on the dropped solution at 
the PCR operation; the first step’s desired start node will be 
added to the beginning of the strand, and the end node is added 
to the end of the strand. At the second step, the beginning node 
and end node of the strand will be replaced by the desired start 
and end nodes. It is clear in the table and by comparing with 
the previous table that the number of PCR solutions is 
dramatically increased (which increases the SSCP solutions 
automatically), which results in having more final solutions 
and a better average cost for the final paths. 

By embedding the crossover operation in the PCR 
operation, as observed below the table, the number of PCR and 
SSCP is increased, which again results in an increased number 

of final solutions and the improvement of the average cost of 
the final paths, but the percentage of improvement is less than 
that of the previous modification. By embedding the SSCP 
crossover in the SSCP operation, the percent increase in the 
SSCP solution is even lower; hence, it has a smaller number of 
final solutions and therefore does not have good improvement 
in the average cost of the final paths. Until now, replacing 
Start/End in the PCR operation generates better results than the 
PCR and SSCP crossover operations. Even combining the PCR 
and SSCP does not yield good results (Tables 5, 6 and 7). 

As is shown in Tables 8, 9 and 10, by Replacing Start/End 
in the PCR Operation with the PCR and SSCP crossover, the 
number of final solutions and the average cost of the final paths 
is improved. Thus, replacing Start/End in the PCR operation 
improves the standard DNA algorithm much more than the 
PCR and SSCP crossover. Tables 11 and 12 show the results of 
the evolutionary SSCP, evolving the resulting SSCP solution 
through several generations until the best SSCP solution is 
obtained. Although the number of PCRs, SSCPs and final 
solutions is low, the average cost of the final route is good; this 
finding indicates that the performance of the algorithm can be 
increased by evolving the final solution rather than increasing 
the search space of the problem. By adding the supportive 
operations to the evolutionary SSCP operation, the result is 
improved. There are more solutions in the end; therefore, the 
possibility of having the optimum or near-optimum solution is 
increased, and the average cost of the final paths is improved as 
well (See Tables 13, 14, 15 and 16). 

The effect of the modifications on the standard DNA 
algorithm and the optimization of the algorithm by obtaining 
more solutions and better results in the end are clearer when 
the above data tables are converted to many distinct charts. The 
section below shows the corresponding charts of the main 
factors of the problems to better highlight the improvement in 
the algorithm. Below, the figures of the DNA Algorithm and 
Evolutionary DNA Algorithm for solving the Shortest Path 
problem can be found. Fig. 4 shows the number of solutions 
versus the number of nodes for the DNA Algorithm and 
Evolutionary DNA Algorithm. Clearly, the number of solutions 
is increased with the proposed evolutionary techniques. 

 
Fig. 4. shows Average No. of PCR Solutions; DNA Algorithm, SSCP Evol, 

SSCP Evol+PCR Corss, SSCP Evol+ SSCP Cross, SSCP Evol+PCR+SSCP 
Cross, SSCP Evol+PCR+SSCP Cross+RepAdd 

Fig. 5 shows the number of PCR solutions versus the 
number of nodes for the DNA Algorithm and Evolutionary 
DNA Algorithm. The PCRCross+RepAdd produced more 
solutions than others 
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Fig. 5. Average No. of PCR Solutions; DNA Algorithm, RepAdd, PCR 

Corss, SSCP Cross, +PCR+SSCP Cross, PCR Cross+RepAdd, SSCP 
Cross+RepAdd 

Fig. 6 shows the number of SSCP solutions versus the 
number of nodes for the DNA Algorithm and Evolutionary 
DNA Algorithm. 

 
Fig. 6. shows,  Average No. of SSCP Solutions; DNA Algorithm, SSCP 

Evol, SSCP Evol+PCR Corss, SSCP Evol+ SSCP Cross, SSCP 

Evol+PCR+SSCP Cross, SSCP Evol+PCR+SSCP Cross+RepAdd 

Fig. 7 shows the number of SSCP solutions versus the 
number of nodes for the DNA Algorithm and Evolutionary 
DNA Algorithm. 

 
Fig. 7. shows – Average No. of SSCP Solutions; DNA Algorithm, RepAdd, 

PCR Corss, SSCP Cross, +PCR+SSCP Cross, PCR Cross+RepAdd, SSCP 

Cross+RepAdd 

Fig. 8 shows the number of solutions versus the number of 
nodes for the DNA Algorithm and Evolutionary DNA 
Algorithm. 

 
Fig. 8. Average No. of Final Solutions; DNA Algorithm, SSCP Evol, SSCP 

Evol+PCR Corss, SSCP Evol+ SSCP Cross, SSCP Evol+PCR+SSCP Cross, 

SSCP Evol+PCR+SSCP Cross+RepAdd 

Fig. 9 shows the number of solutions versus the number of 
nodes for the DNA Algorithm and Evolutionary DNA 
Algorithm. 

 
Fig. 9. Average No. of Final Solutions; DNA Algorithm, RepAdd, PCR 

Corss, SSCP Cross, +PCR+SSCP Cross, PCR Cross+RepAdd, SSCP 
Cross+RepAdd 

Fig. 10 shows the Average path cost versus the number of 
nodes for the DNA Algorithm and Evolutionary DNA 
Algorithm. It is clearly seen that the average path cost using 
DNA algorithm is the most expensive among others. 

 
Fig. 10. Average Path Cost; DNA Algorithm, SSCP Evol, SSCP Evol+PCR 

Corss, SSCP Evol+ SSCP Cross, SSCP Evol+PCR+SSCP Cross, SSCP 

Evol+PCR+SSCP Cross+RepAdd 

Fig. 11 shows the Average Path Cost versus the number of 
nodes for the DNA Algorithm and Evolutionary DNA 
Algorithm. 
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Fig. 11. Average Path Cost; DNA Algorithm, RepAdd, PCR Corss, SSCP Cross, +PCR+SSCP Cross, PCR Cross+RepAdd, SSCP Cross+RepAdd 

TABLE I.  SHOWS VERTICES SND THEIR COMPLIMENTS 

COMPLIMENTS 

Ver1 =  5'GCGAGATCTG3'   Comp: 3'CGCTCTAGAC5' OR   5'CAGATCTCGC3'   

Ver2 =  5'GAAGTCAGTC3'   Comp: 3'CTTCAGTCAG5' OR   5'GACTGACTTC3'   
Ver3 =  5'GTCACGACGA3' Comp: 3'CAGTGCTGCT5' OR   5'TCGTCGTGAC3'   

Ver4 =  5'GCCATAGACC3' Comp: 3'CGGTATCTGG5' OR   5'GGTCTATGGC3'   

Ver5 =  5'GTTCGTTTAG3' Comp: 3’CAAGCAAATC5’   OR   5'CTAAACGAAC3'   
Ver6 =  5'GATGAGAGTA3' Comp: 3'CTACTCTCAT5' OR   5'TACTCTCATC3'   

TABLE II.  SHOWS THE REPRESENTATION OF EDGES SND THEIR CORRESPONDING WEIGHTS 

Edge                      Weight 

Ver1 Ver2= TAGACCTTCA    2 

Ver1 Ver3= TAGACCAGTG   4 

Ver2 Ver3= GTCAGCAGTG    3 
Ver2 Ver4= GTCAGCGGTA   5 

Ver2 Ver5= GTCAGCAAGC   5 
Ver3 Ver4= GACGACGGTA   2 

Ver3 Ver5= GACGACAAGC   2 

Ver4 Ver6= CGGTACTACT   8 
Ver5 Ver4= AAATCCGGTA   4 

Ver5 Ver6= AAATCCTACT   6 

TABLE III.  STANDARD DNA ALGORITHM 
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10 18 6248 55 2 2 2 19 13 27 13 0 0 0 0 0 0 0 
15 23 26198 100 3 3 2 26 17 46 54 0 0 0 0 0 0 0 

20 30 90071 171 4 4 3 38 16 88 172 0 0 0 0 0 0 0 

25 39 170626 267 6 5 3 47 14 142 397 0 0 0 0 0 0 0 
30 47 338264 386 15 8 3 43 30 290 1077 0 0 0 0 0 0 0 

TABLE IV.  IMPROVED DNA ALGORITHM USING REPLACING START/END AT PCR OPERATION 
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10 18 5892 55 186 139 28 16 13 53 7 52 0 186 47 0 0 0 

15 23 23858 101 360 259 57 27 17 48 48 98 0 360 101 0 0 0 
20 30 80279 169 661 498 101 33 16 91 165 164 0 661 163 0 0 0 

25 38 164058 266 1064 699 165 33 14 157 712 259 0 1064 365 0 0 0 

30 47 348691 381 1409 945 222 40 30 288 1219 367 0 1409 464 0 0 0 
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TABLE V.  IMPROVED DNA ALGORITHM USING PCR CROSS OVER 
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10 18 6825 55 87 71 5 18 13 46 27 51 4159 84 16 0 0 0 
15 23 27003 100 194 150 7 22 17 68 81 95 10268 189 43 0 0 0 

20 30 91793 173 454 349 15 31 16 132 610 168 21817 449 104 0 0 0 

25 39 173501 267 461 285 18 45 14 227 532 260 37273 455 176 0 0 0 
30 47 348751 385 520 300 29 42 30 398 1246 363 54790 499 220 0 0 0 

TABLE VI.  IMPROVED DNA ALGORITHM USING SSCP CROSS OVER 
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10 18 5826 55 3 5 2 25 13 25 20 51 0 0 0 45 3 0 

15 23 26540 100 3 13 2 25 17 48 212 96 0 0 0 42 11 0 
20 30 87468 170 4 47 3 39 16 94 263 165 0 0 1 68 44 0 

25 39 168514 264 7 70 3 40 14 148 544 256 0 0 2 248 65 0 

30 47 364737 383 16 195 4 43 30 288 1081 367 0 0 5 656 184 0 

TABLE VII.  IMPROVED DNA ALGORITHM USING PCR+SSCP CROSS OVER 
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10 18 6098 55 60 1457 5 20 13 47 29 52 4290 58 15 173 1412 0 

15 23 27694 99 175 4790 7 23 17 70 96 94 10275 172 51 693 4666 0 
20 30 85079 168 272 9312 11 42 16 142 546 162 20665 267 105 2527 9145 0 

25 39 166696 265 432 17259 18 43 14 252 621 257 36308 425 192 3903 17019 0 

30 47 334954 383 686 26016 37 41 33 458 1309 367 55369 671 310 9978 25640 0 

TABLE VIII.  IMPROVED DNA ALGORITHM USING PCR CROSS OVER + REPLACING START/END AT PCR OPERATION 
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10 18 5911 55 187 137 28 16 13 30 19 52 0 187 50 0 0 0 

15 23 23973 101 359 257 55 27 17 52 60 97 0 359 102 0 0 0 

20 30 82685 169 634 475 98 35 16 95 354 163 0 634 158 0 0 0 
25 39 167655 268 995 645 154 36 14 156 513 262 0 995 351 0 0 0 

30 48 343511 386 1421 898 205 39 30 288 1008 370 0 1421 523 0 0 0 
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TABLE IX.  IMPROVED DNA ALGORITHM USING SSCP CROSS OVER + REPLACING START/END AT PCR OPERATION 
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10 18 5786 55 186 4793 28 16 13 41 31 52 0 186 50 570 4657 0 
15 23 25132 101 360 8347 59 27 17 68 320 98 0 360 94 2554 8081 0 

20 30 84607 169 632 14160 100 32 16 120 391 163 0 632 161 4421 13689 0 

25 39 164140 266 1010 30632 158 34 14 212 696 259 0 1010 342 7742 29964 0 
30 47 346084 380 1397 41136 217 40 30 368 1237 364 0 1397 470 12694 40210 0 

TABLE X.  IMPROVED DNA ALGORITHM USING PCR+SSCP CROSS OVER + REPLACING START/END AT PCR OPERATION 

V
 

E
 

L
IG

 

R
S

G
 

P
C

R
P

 

S
S

C
P

 

G
E

L
P

 

A
P

 

S
P

 

R
T

 

M
C

 

d
r
p

P
C

R
 

p
c
r
C

ro
ss

 

p
c
r
G

en
 

d
r
p

S
S

C
P

 

ss
cp

C
r
o

ss
 

ss
cp

G
e
n

 

e
v
o

lS
S

C
P

c
ro

ss
 

10 18 6523 55 186 4856 29 16 13 71 50 52 0 186 50 429 4719 0 

15 23 25262 100 358 8853 57 26 17 120 381 97 0 358 102 3012 8597 0 
20 30 82588 170 652 13386 105 31 16 215 745 164 0 652 154 4783 12888 0 

25 38 167798 264 1053 31748 162 33 14 369 1209 257 0 1053 360 9255 31055 0 

30 47 338903 381 1404 47527 209 40 30 656 2245 366 0 1404 533 12219 46656 0 

TABLE XI.  IMPROVED DNA ALGORITHM USING EVOLUTIONARY SSCP 
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10 18 6383 55 3 32 3 17 13 1319 1285 51 0 0 0 0 0 11,400 

15 23 25712 100 4 37 3 23 17 1721 664 95 0 0 1 0 0 16,847 
20 30 88395 171 5 46 3 35 16 2093 876 165 0 0 0 0 0 15,270 

25 39 169204 264 7 54 3 37 14 2847 1019 256 0 0 2 0 0 26,411 

30 47 340939 387 16 69 4 42 30 4189 855 371 0 0 5 0 0 11,195 

TABLE XII.  IMPROVED DNA ALGORITHM USING EVOLUTIONARY SSCP + PCR CROSS OVER 
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10 18 6503 55 141 117 5 17 13 1190 1177 51 4416 138 52 0 0 48911 

15 23 28113 101 261 223 7 26 17 1560 1208 96 10645 257 71 0 0 18559 

20 30 88658 171 328 264 10 33 16 2022 477 165 21173 323 105 0 0 18237 
25 39 167883 266 461 326 21 37 14 2619 705 258 36408 454 185 0 0 9635 

30 47 340505 385 478 344 26 43 30 3720 795 370 56308 464 193 0 0 33182 
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TABLE XIII.  IMPROVED DNA ALGORITHM USING EVOLUTIONARY SSCP + SSCP CROSS OVER 
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10 18 6308 55 2 31 2 17 13 1254 967 52 0 0 0 0 0 17900 
15 23 25644 100 3 48 3 24 17 1537 1231 96 0 0 0 48 11 19387 

20 30 92930 171 4 76 3 34 16 2130 459 166 0 0 1 36 32 18593 

25 39 161309 266 8 125 4 38 14 2712 789 257 0 0 2 316 70 26349 
30 47 329616 386 16 369 4 43 30 3500 1120 369 0 0 6 615 301 24955 

 

TABLE XIV.  IMPROVED DNA ALGORITHM USING EVOLUTIONARY SSCP + PCR+SSCP CROSS OVER 
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10 18 5839 55 97 3086 5 17 17 1324 1150 52 4577 94 32 431 2993 48161 
15 23 28748 99 161 2665 7 23 17 1484 1068 96 11258 158 31 1226 2502 22009 

20 30 86501 170 345 10233 13 31 16 2086 829 165 21433 340 113 2483 9961 16995 

25 39 167654 268 382 12767 17 39 14 2653 1208 261 37471 377 146 3875 12480 9759 
30 47 356121 383 555 19193 27 39 30 4100 683 362 54019 536 222 6353 18802 27878 

TABLE XV.  IMPROVED DNA ALGORITHM USING EVOLUTIONARY SSCP + REPLACE/ADD START/END AT PCR OPERATION 
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10 18 6089 55 186 166 29 16 13 1162 1496 52 0 186 49 0 0 24942 

15 23 23191 101 361 285 53 27 17 1471 1091 98 0 361 110 0 0 17620 
20 30 84220 170 666 541 106 28 16 2003 430 166 0 666 167 0 0 15522 

25 39 158626 267 1014 697 152 35 14 2539 890 261 0 1014 367 0 0 28331 

30 47 330718 381 1496 1007 211 38 30 2952 1201 365 0 1496 547 0 0 23650 

TABLE XVI.  IMPROVED DNA ALGORITHM USING EVOLUTIONARY SSCP + PCR+SSCP CROSS OVER + REPLACE/ADD START/END AT PCR OPERATION 
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10 18 5696 55 188 4477 30 16 13 1266 1399 52 0 188 48 855 4308 22460 

15 23 24291 101 361 9325 58 27 17 1442 1187 98 0 361 99 1484 9029 15070 

20 30 81129 169 637 13710 101 31 16 1959 462 165 0 637 163 5782 13195 13177 
25 39 153987 267 1018 34081 151 34 14 2542 1165 261 0 1018 383 8935 33396 24580 

30 47 347375 385 1410 41275 214 39 30 3079 1194 368 0 1410 473 13073 40279 21016 
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VII. CONCLUSIONS 

In this paper, the fundamental ideas of DNA computing and 
evolutionary strategies are presented and elaborated. DNA 
computing is employed to resolve the shortest path 
problem. The results of the DNA computing algorithm are 
obtained and the performance of the algorithm is evaluated. 
Better results are thereby verified. Thus, a suggested 
Evolutionary DNA Algorithm was considered to take 
advantage of the Evolutionary Strategies by being embedded in 
the normal DNA Algorithm to optimize it and hence obtain 
better results. The optimization produces better results; this 
means that the number of solutions is increased; thus, the 
possibility of obtaining optimum solutions is increased as well. 
Additionally, because the evolutionary technique is used, the 
initial resulting solutions are evolved; hence, the average 
quality of the solution generation after generation is increased. 
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APPENDIX A 

AP  Represents the Average Path  
DNA  Deoxyribonucleic Acid   

drpPCR  Represents the number of dropped PCR solutions 
drpSSCP                   Represents the number of dropped SSCP solutions 

E  Represents the number of network edges  

EA  Evolutionary Algorithm    
evolSSCPcross Represents the number of Evolutionary SSCP  

Crossover operations  

GA  Genetic Algorithms   
GELP  Represents the number of Gel Electrophoresis solutions 

GRS  Generate Random Solutions  

HDNA  Heuristic Deoxyribonucleic Acid  
HPP  Hamiltonian Path Problem  

LIG  Represents the number of DNA Ligations  
MC Represents the Memory Capacity of the DNA 

Algorithm  

MER The length of the oligonucleotide is usually denoted by 
"mer" (from Greek meros, "part")   

PCR   Polymerase Chain Reaction  

pcrCross      Represents the number of PCR Crossover operations 
pcrGen   Represents the number of PCR solutions generated by  

Crossover Operation    

PCRP     Represents the number of PCR solutions 
RNA    Ribonucleic Acid 

RSG   Represents the number of Random Solutions Generated 

SP      Represents the Shortest Path 
SPP     Shortest Path Problem  

SSCP   Single Strand Conformation Polymorphism, Represents             

                                    the number of SSCP solutions 
sscpCross   Represents the number of SSCP Crossover operations 

sscpGen                      Represents the number of SSCP solutions generated by 

Crossover Operations   


