
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

109 | P a g e

www.ijacsa.thesai.org

Improving DNA Computing Using Evolutionary

Techniques

Godar J. Ibrahim

Software Engineering

College of Engineering

Salahadin university-Erbil

Hawler, Kurdistan

Tarik A. Rashid

Software Engineering

College of Engineering

Salahadin university-Erbil

Hawler, Kurdistan

Ahmed T. Sadiq

Software Engineering

College of Engineering

Salahadin university-Erbil

Hawler, Kurdistan

Abstract—the field of DNA Computing has attracted many

biologists and computer scientists as it has a biological interface,

small size and substantial parallelism. DNA computing depends

on DNA molecules’ biochemical reactions which they can

randomly anneal and they might accidentally cause improper or

unattractive computations. This will inspire opportunities to use

evolutionary computation via DNA. Evolutionary Computation

emphasizes on probabilistic search and optimization methods

which are mimicking the organic evolution models. The research

work aims at offering a simulated evolutionary DNA computing

model which incorporates DNA computing with an evolutionary

algorithm. This evolutionary approach provides the likelihood

for increasing dimensionality through replacing the typical

filtering method by an evolutionary one. Thus, via iteratively

increasing and recombination a population of strands,

eliminating incorrect solutions from the population, and choosing

the best solutions via gel electrophoresis, an optimal or near-

optimal solution can be evolved rather than extracted from the

initial population.

Keywords—Parallel Computation; DNA Computation

Algorithm; Evolutionary DNA Computing Algorithm

I. INTRODUCTION

Leonard Adleman was the first person to demonstrate that
DNA computing could be utilized for computing in a
laboratory environment and without using conventional
computing devices. As a paradigm for his novel approach, he
selected the Hamiltonian Path Problem (HPP) to obtain
solutions via experimental DNA tests [1]. It is of interest to
mention that further or more rapid progress would have been
achieved if he had selected an easier problem. Subsequently, he
selected the HPP on the use of conventional computers [2].This
choice opened stimulating avenues and allowed other
researchers to think more favorably of DNA computing. In
doing so, he considered that the power of this technique was
great and involved substantial prospects for parallel computing,
as is feasible via operations with DNA. Adelman is now
considered the founding father of DNA computing [3].

Currently, DNA computing is an interdisciplinary area in
which ecologists, biologists, computer scientists, physical
scientists, mathematicians, chemists, and other related
specialists identify interesting problems that may be useful for
the theoretical and practical sides of DNA computing [4]. DNA
computers are essentially assortments of chosen DNA strands.
The combinations of these strands imply solutions to a given
problem that is to be solved. Tools are currently available to

select the preliminary components and winnow candidate
solutions.

The potential of parallel processing algorithms is
substantial. DNA computing on large problems can involve
parallel processing, given a preliminary arrangement and
ample DNA. These challenging tasks are easily and effectively
accomplished using DNA computing. In contrast, standard
computers would require substantial parallelism and more
hardware [2]. On the other hand, DNA computing is
determined by DNA molecules’ biochemical reactions, which
they can unsystematically anneal and they might yield
unsuitable computations. Therefore, the use evolutionary
computation via DNA might be a good solution. Evolutionary
computation emphasizes on optimization method and a search
which is probabilistic. It mimics the organic evolution models
via using operators such as recombination and randomized
mutation or so called the progression of interaction between the
formation of fresh generations and their assessments and the
choice wherever a sole individual in a populace is affected by
the surroundings and also by other individuals. It is considered
that individuals that can perform better in such circumstances,
they will have greater chances for surviving [5, 6].

The contribution of this work is to propose an evolutionary
DNA algorithm based on the standard DNA algorithm as it is
presented in this paper to solve the shortest path to increase the
possibility of having an optimum solution and to improve the
average cost of the final paths. In the next section, some of the
techniques and approaches that have been used in the area of
DNA computing are reviewed and outlined.

II. RELATED WORKS

DNA computing was primarily conceived by Leonard
Adleman; in 1994, Adleman developed the idea of using DNA
computing to address the HPP [1]. From the primary
investigations and early tests by Adleman, innovations and
progress emerged, e.g., a number of Turing machine devices
were systematically developed and tested. Although the
primary efforts to exploit this fresh methodology unveiled
computationally complex problems, it was rapidly and
conclusively shown that the methods were clearly inapplicable
to this type of computational algorithm [3, 4, 7, 8].

In 1997, a research team led by Ogihara and Ray
recommended the analysis of Boolean circuits, it is clear that
Nand Boolean circuits cover only Nand gates. The research

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

110 | P a g e

www.ijacsa.thesai.org

team showed that the relationship between the logarithm of the
maximum fan-out of the Boolean circuit and the runtime slow-
down is proportionate, also they showed that the relationship
among the product of the size and the maximum fan-out and
the space complexity is proportionate [9, 10, 11, 7, 12, 13].

In 2002, researchers from Israel announced a computing
device based on molecular programming. This computing
device was constructed from DNA molecules and enzymes in
contrast to the silicon materials of microchips and integrated
circuits [14, 12]. Shapiro and his research team wrote in
Nature that they had created a deoxyribonucleic acid computer
[14]. The device was able to locate tumor-related entities
within a cell, and the team was able to produce drugs that
conferred cancer resistance whenever the disease was detected
[14, 15].

Another study was conducted to determine SSCP
sensitivity in detecting factor IX mutation [16]. The study
investigated the blood of hemophilia B patients in Iran. Phenol,
chloroform and other reagents were used to extract DNA. The
gene regions were amplified using primer pairs and PCR. PCR
fragments with improved flexibility were obtained. The study
concluded that SSCP sensitivity was high in the system
investigated [16].

In 2006, Dimitrova outlined and summarized examples for
various DNA computing applications such as aqueous
computing, molecular computing, DNA Turing machines, and
the nascent field of synthetic biology [15]. In 2008, Abdulla
successfully inserted a heuristic search in a DNA computing
algorithm to generate better efficiency and flexibility. That
study improved the DNA search technique by increasing the
number of solutions and reducing the running time and
memory capacity. The modifications of A* and alpha beta
using DNA produced better results than ordinary A* and alpha
beta algorithms [17].

Hari and his research team have suggested an advanced and
efficient technique for addressing the problem of minimum
vertex cover using a DNA computing algorithm. They
suggested that a DNA computing algorithm could make it
possible to address problems that are intractable on silicon
computers. Nevertheless, the study stated that DNA computing
algorithms are not feasible for solving simple problems due to
their high degree of parallelism. Thus, computer scientists are
required to design and elaborate more DNA computing
algorithms [18]. The same research team has suggested that
appropriate enzymes and legitimate approaches will
dynamically shape biology to address more subtle problems
and reduce the amount of error associated with the use of the
algorithm.

The focus of this research paper is to incorporate an
evolution strategy into DNA computing based only on the
crossover operator and strategy parameter. This approach is
expected to enhance or optimize the quality of the final
solutions by increasing the size of the final solutions and also
by evolving the most correct solutions to obtain an optimum or
near optimum solution(s). This optimization could take place
regardless of the increase in the time and memory capacity of
the modified algorithm.

The structure of this paper is as follows. In the next section,
DNA computing algorithms and operations are described.
Then, a DNA interpretation for the problem of the shortest path
is described in detail. Then after, the proposed evolutionary
DNA computing method is established. Next, experimental
results are described in detail. Finally, the conclusions are
outlined. A glossary or list of terminology is presented in
appendix A at the end of this paper.

III. DNA COMPUTING ALGORITHM AND OPERATIONS

Bioinformatics is now viewed as the study of information
stored in DNA. The strings of letters correspond to
combinations of the four bases A (adenine), T (thymine), G
(guanine) and C (cytosine). These strings transmute
information via convolution operations on the unit cell [18,
15]. DNA polymerase is the key enzyme. With a specified
strand of DNA under suitable circumstances, this enzyme
generates the complementary strand, another Watson-Crick
DNA sequence in which the letter C stands opposite G, G
stands opposite C, A stands opposite T and T stands opposite
A. From the molecular sequence CATGTC, for example, the
new molecular sequence GTACAG is created by DNA
polymerase. DNA is regenerated by DNA polymerase. This
capability allows cells to regenerate and eventually permits the
investigator to make a replica of the original object of study or
analysis. The replication of DNA via DNA polymerase is the
most important life process. DNA polymerase is, in essence, a
nano-machine. It links to DNA strands, it reads each base, and,
as it passes, it writes the complementary information as a fresh,
lengthening strand of DNA [18, 15].

The resemblance between the Turing machine and DNA
polymerase is striking. It is known that Alan Turing created
and designed a computer in the shape of a toy, which was later
called the Turing machine. Originally, the device was intended
to be conceptual and appropriate for precise mathematical
examination.

Thus, it was meant to be truly simple, and Alan Turing
fully succeeded. In one account, the Turing machine is
described as a limited control device consisting of pairs of
tapes. The limited control device moves sideways through the
tape input, reading information. It moves sideways through the
output of the tape, which reads and writes other data. It is noted
that the limited control device is programmed with basic
instructions; it would be easy to code programs for reading the
letter strings (A, T, C, G) on the input of the tape and produce
the complementary Watson-Crick string as the tape output.
Thus, a Turing device can be used for coding different
programs, e.g., to produce the complementary Watson-Crick
strings or to play Chess. The key operations of DNA
computing used in a DNA algorithm are defined below [19, 20,
17, 21, 15, 22, 23, 24, 25]:-

a) Watson-Crick pairing, as mentioned above, is

pervasive; it is obvious that any DNA strand has its Watson-

Crick complement. The pairing will occur when a DNA

molecule encounters the complement of the original Watson-

Crick strand. Later, both DNA strands will be annealed. Both

strands join to produce the well-known double helix.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

111 | P a g e

www.ijacsa.thesai.org

b) Polymerases allow the copying of information from

one molecule to another. The DNA polymerase is able to

generate strands of DNA complementary to the original

Watson-Crick DNA string.

c) Ligases connect molecules. This concept can be

illustrated with DNA ligase, which creates one single strand

from two DNA strands. DNA ligase can be utilized in the cell

to repair disruptions or breaks that can occur in strands of

DNA. This phenomenon can be observed when skin cells are

exposed to certain types of light.

d) Nucleases break down and thereby repress

deoxyribonucleic and ribonucleic acids.

e) Gel electrophoresis serves to analyze and segregate

DNA, RNA and protein macromolecules. It allows

heterogeneous DNA molecules to be run on a gel with an

electric current and identified.

f) Synthesis. Sequences of DNA can be written on paper

and sent to a synthesis facility. The synthesis facility then

returns a tube containing 1018 DNA molecules within a few

days. Each of the molecules contains the specific sequence

requested. Sequences of approximately 100 nucleotides in

length can be synthesized dependably in the laboratory. The

DNA is delivered in dry form in a narrow tube, and the

molecules appear white in color.

IV. DNA SOLUTION FOR THE SAMPLE OF NETWORK

DIAGRAM

Let a directed graph be given by Graph= (Ver, Edg), where
Ver is defined as a group of vertices and Edg is defined as a
group of weights (See Fig. 1). A sequence of these vertices
such as Ver1, Ver2, Ver3... Vern can define a basic path, as
long as Ver1, Ver2, Ver3... Vern are considered distinct [2, 8,
25, 16]. The path length can obviously be calculated by adding
up every edge weight in the path. Of course, considering
walking from a specific source to a specific destination, the
shortest simple path is the path that has the least weight among
all of the paths in the graph. The objective is to minimize the
total cost in the directed path. This is, of course, the simple
shortest path going all the way from the key source to the
destination. The shortest path problem is a network of several
nodes and edges that are used to link all of the nodes, and the
problem can be solved using the standard DNA algorithm.

Fig. 1. Sample of Network Diagram

The standard DNA algorithm aims to handle the key DNA
operation stages; these stages include the coding of the
problem, which is performed in DNA, the production of

random solutions, the amplification of the random DNA
solutions using PCR, the elimination of repeated nodes using
SSCP, and finally the sorting of the final solutions using
electrophoresis (see Fig. 2).

Fig. 2. Shows Block Diagram of Normal DNA Algorithm for Solving

Shortest Path Problem

The key stages of the standard DNA algorithm can be
described below [2, 16, 15, 26] :-

a) DNA problem representation (Coding)

It is obvious that in the graph, each vertex Veri must be
linked to a specific palindromic 10-mer DNA sequence, which
is represented via Veri. Therefore, every single edge Veri
Verj (in the directed graph, a complementary oligonucleotide
sequence of a 3’ 5-mer of Veri is tracked via a complimentary
sequence of a 5’ 5-mer of Verj) can be combined.

b) Building of random pathways (Construction)

It can be said that every oligonucleotide coding vertex and
every oligonucleotide coding edge must be combined to build
random paths in the graph; tweaks or a tweak for each of the
various sequences can be selected and are kept inside test
tubes.

c) DNA path intensification using PCR (Amplification)

In this stage, the process of intensification is performed. It
would begin with the source of the vertex and would end at the
destination of the vertex. Note that 2 specific primers can be
designed to target the source of the vertex and destination of
the vertex, which will further amplify the PCR response.

d) Dismissal of repetitive vertices (Elimination)

SSCP is a simple and common practice of mutation
detection. This process prevents nodes from reappearing within
the strands of DNA. Basically, the PCR serves to proliferate
and aggregate the region of interest. The subsequent DNA
would be separated via electrophoresis to produce single-
stranded molecules.

e) Sequencing of the DNA strands

At this stage, the strands achieved in stage 4 are sequenced.
By reading the sequence, the weight of each strand is defined.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

112 | P a g e

www.ijacsa.thesai.org

The desired solution is considered to be the path that has the
least weight.

Applying the normal DNA algorithm to solve the shortest
path problem, the above key operational stages can be
expressed as follows:

a) DNA problem representation (Coding)

This can be performed via random synthesis of a
palindromic 10-base strand of DNA for every single vertex,
keeping in mind that Veri signifies the ith vertex (See Table 1).
Thus, to represent every edge, Veri Verj, a palindromic 10-
base strand of DNA can be synthesized, which is a sequence
consisting of the 3’ 5-mer complement of Veri and the 5’ 5-mer
sequence complement of Verj. The result of the graph (see Fig.
1) is shown in Table 2.

b) Building of random pathways (Construction)

In this stage, all sequences that correspond to both vertices
Veri and edges Veri Vj, as synthesized in stage 1, must be
stored in test tubes to allow ligation. Subsequently, ligation
will occur when both sequences of the DNA Ver1
(GCGAGATCTG) and DNA Edge Ver1Ver2
(TAGACCTTCA) accidentally come into contact with each
other.

The fact that the earlier sequence ended via ATCTG and the
latter sequence started via TAGAC is important because these
two sequences are complementary. Thus, the annealing process
will occur. If the resultant composite encounters a sequence
that matches Ver2 (GAAGTCAGTC), at that point, it may also
be able to join the composite, as the earlier sequence
complements the later starting sequence. It can be observed
that composites can grow lengthwise when edges of DNA
sequences are joined together via a vertex of DNA sequences.
Accordingly, the paths can be expressed as follows:-

Ver3 Ver4

GTCACGACGAGCCATAGACC

Ver1 Ver2 Ver3 Ver5 Ver4 Ver6

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

GGCCATAGACCGATGAGAGTA

Ver2 Ver3 Ver5 Ver4

GAAGTCAGTCGTCACGACGAGTTCGTTTAGGCCATAGAC

C

Ver1 → Ver2 Ver3 Ver5

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

G

Ver1 Ver3 Ver4 Ver6

GCGAGATCTGGTCACGACGAGCCATAGACCGATGAGAG

TA

Ver1 Ver2 Ver3 Ver5 Ver4 Ver6

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

GGCCATAGACCGATGAGAGTA

Ver1 Ver2 Ver5 Ver1 Ver3 Ver5 Ver6

GCGAGATCTGGAAGTCAGTCGTTCGTTTAGGCGAGATCT

GGTCACGACGAGTTCGTTTAGGATGAGAGTA

Ver1 Ver2 Ver3 Ver5 Ver6

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

GGATGAGAGTA

Ver2 Ver3 Ver4 Ver6

GAAGTCAGTCGTCACGACGAGCCATAGACCGATGAGAG

TA

Ver1 Ver3 Ver5 Ver4

GCGAGATCTGGTCACGACGAGTTCGTTTAGGCCATAGA

CC

etc.

c) DNA path intensification using PCR (Amplification)

The generation of all paths that can hold both source and
destinations (Vers and Verd) can be accomplished via DNA
path intensification using PCR. This process occurs as follows:

I. If the source Ver1 and the destination Ver6 are
selected, at that point, both primers that correspond to
the source and destination (Ver1 (GCGAGATCTG) and
Ver6 (GATGAGAGTA)) are added to the resulting
solution. Then, the PCR can occur.

II. Additionally, the GCGAGATCTG primer would anneal
to its target sequence that is established in the Ver1
Ver6 path; a similar phenomenon will occur with the
other primers.

Consequently, immediately after the accomplishment of
PCR, every path from the Ver1 source to the Ver6 destination
can be expressed as follows:-

Ver1 Ver2 Ver3 Ver5 Ver6

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

GGATGAGAGTA

Ver1 Ver2 Ver3 Ver5 Ver4 Ver6

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

GGCCATAGACCGATGAGAGTA

Ver1 Ver2 Ver5 Ver1 Ver3 Ver5 Ver6

GCGAGATCTGGAAGTCAGTCGTTCGTTTAGGCGAGATCT

GGTCACGACGAGTTCGTTTAGGATGAGAGTA

Ver1 Ver2 Ver4 Ver6

GCGAGATCTGGAAGTCAGTCGCCATAGACCGATGAGAG

TA

Ver1 Ver3 Ver5 Ver6

GCGAGATCTGGTCACGACGAGTTCGTTTAGGATGAGAG

TA

Ver1 Ver3 Ver5 Ver4 Ver6

GCGAGATCTGGTCACGACGAGTTCGTTTAGGCCATAGA

CCGATGAGAGTA

Ver1 Ver2 Ver5 Ver6

GCGAGATCTGGAAGTCAGTCGTTCGTTTAGGATGAGAGT

A

d) Dismissal of repetitive vertices (Elimination)

In this stage, the rule is obviously not to allow the vertices
to reappear. In other words, repetition is not allowed; thus,
nodes that are repeated for the second time will be dismissed.

The process of elimination can be performed via a single-
stranded conformation polymorphism approach (SSCP). A
hairpin structure can be formed via the series. It can hold
reappearing nodes that can be connected to their corresponding
split ends. The strands that hold hairpin loops will eventually
be eliminated via the SSCP approach. Thus, the representation
for all paths that have vertex repetition can be expressed as
follows:-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

113 | P a g e

www.ijacsa.thesai.org

Ver1 Ver2 Ver5 Ver1 Ver3 Ver5 Ver6

GCGAGATCTGGAAGTCAGTCGTTCGTTTAGGCGAGATCT

GGTCACGACGAGTTCGTTTAGGATGAGAGTA
It can be observed that with a path Ver1 Ver2 Ver5

 Ver1 Ver3 Ver5 Ver6, the vertices Ver1 and Ver5
are repeated. Thus, subsequently disregarding strands with
loops, the achieved paths are expressed as follows:

Ver1 Ver2 Ver3 Ver5 Ver6

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

GGATGAGAGTA

Ver1 Ver2 Ver3 Ver5 Ver4 Ver6

GCGAGATCTGGAAGTCAGTCGTCACGACGAGTTCGTTTA

GGCCATAGACCGATGAGAGTA

Ver1 Ver2 Ver4 Ver6

GCGAGATCTGGAAGTCAGTCGCCATAGACCGATGAGAG

TA

Ver1 Ver3 Ver5 Ver6

GCGAGATCTGGTCACGACGAGTTCGTTTAGGATGAGAG

TA

Ver1 Ver3 Ver5 Ver4 Ver6

GCGAGATCTGGTCACGACGAGTTCGTTTAGGCCATAGA

CCGATGAGAGTA

Ver1 Ver2 Ver5 Ver6

GCGAGATCTGGAAGTCAGTCGTTCGTTTAGGATGAGAGT

A

e) Sequencing of the DNA strands. In this stage, each

weight path achieved in stage 4 is defined by interpreting the

equivalent sequence.

Ver1 Ver2 Ver4 Ver6

Overall weight for path is 15

Ver1 Ver2 Ver3 Ver5 Ver6

Overall weight for path is 13

Ver1 Ver2 Ver3 Ver5 Ver4 Ver6

Overall weight for path is 19

Ver1 Ver3 Ver5 Ver6

Overall weight for path is 12

Ver1 Ver3 Ver5 Ver4 Ver6

Overall weight for path is 18

Ver1 Ver2 Ver5 Ver6

Overall weight for path is 13
Note that Ver1 Ver3 Ver5 Ver6 path produces 12;

this is the least weight cost. Therefore, Ver1 Ver3 Ver5
 Ver6 is our solution to the problem path, which holds an
equivalent DNA sequence that can be described as follows:

GCGAGATCTGGTCACGACGAGTTCGTTTAGGATGAGAG

TA

V. PROPOSED EVOLUTIONARY DNA COMPUTING

The Java programming language is used to design a
simulation of DNA computing to solve the problem of the
simple shortest path. The standard DNA algorithm is
implemented; then, the cleaning stage is used to obtain the
desired solutions randomly. However, the produced solutions
that are not desirable are discarded through this stage. The
shortest path is established; however, there are some
restrictions that must be addressed:-

1) It is clear that the DNA algorithm generates random

solutions that are governed by chance with respect to the DNA

strands meeting each other or not; thus, the DNA algorithm

might not produce all of the potential solutions as there is no

evolutionary progress involved here to produce solutions via

progress within considerable sequence populations arising

from the DNA.

2) In case the DNA algorithm cannot produce all of the

potential solutions, identification of the best solution is not

assured.

3) The random generation solution size can be amplified;

thus, the number of potential solutions could also be

amplified. This process will allow us to obtain more final

solutions; however, the downsides are that the search process

will take more time and there is a greater need for memory

capacity. Still, the best solution is not assured.
There must be other ways to enhance the standard normal

DNA computing algorithm to obtain more diversity in the
scope of the produced solutions, to create more correct
solutions and also to obtain the best solution. In this regard, a
method is suggested to conglomerate DNA computing with an
evolutionary algorithm (Evolutionary DNA Computing).
Evolutionary algorithm features are used in this research to
produce solutions through progress within substantial sequence
populations arising from the DNA. This evolutionary algorithm
will increase the dimensionality of the system by replacing the
customary filtering approach with an evolutionary approach.
Thus, the best solutions might be obtained through iterative
intensification, recombining strand populations, eliminating
inappropriate solutions included in the population, and
selecting the best solutions through gel electrophoresis instead
of mining them from the preliminary population.

This proposed improvement of the algorithm has four
modifying operations (See Fig. 3). Each operation has an effect
on the algorithm, while they all share the same representation
of the knowledge. The four operations are the following:-

1) Adding/Replacing the start/end of the PCR-dropped

strands
The normal DNA algorithm is modified by

adding/replacing the start/end of the PCR-dropped strands. The
first level of enhancement is finished by obtaining all of the
dropped PCR solutions, adding a start node to the beginning of
the solution strand, and adding an end node to the end of the
solution strand. By performing this operation, the PCR-
dropped solution can address PCR solutions in such a manner
that the chance of obtaining more final solutions will increase.
Another level that is accomplished using the same function is
to switch the start and end nodes of the dropped PCR solution
strand by the desired start/end nodes. This step can add
diversity to the solution space by increasing the number of
PCR solutions and consequently increasing the chance of
obtaining many solutions in the end. These 2 modifications are
solely applicable to the Shortest Path problem. Details of the
pseudo code snippet are shown below.

Replace and Add the start/end of the PCR solution:

Input: Dropped PCR solution

Output: Added PCR Test Tube Solution

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

114 | P a g e

www.ijacsa.thesai.org

For each dnaStrand in the PCR Test Tube

 If dnaStrand.length > Size

 newStrand= replaceStartEnd (dnaStrand)

 Add newStrand to PCR Test tube

 newStrand= addStartEnd (dnaStrand)

 Add newStrand to PCR Test tube

End For

replaceStartEnd (dnaStrand)

replacedStrand= dnaStrand.substring(Size, dnaStrand.length()-Size)

 Return startNodeStrand+replacedStrand+endNodeStrand

addStartEnd (dnaStrand)

 Return startNodeStrand+ dnaStrand +endNodeStrand

replacedStrand= dnaStrand.substring(Size, dnaStrand.length()-Size)

 Return startNodeStrand+replacedStrand+endNodeStrand

addStartEnd (dnaStrand)

 Return startNodeStrand+ dnaStrand +endNodeStrand

Fig. 3. The proposed technique

2) Crossovers Dropped in the PCR Solutions
Modifying the normal DNA algorithm by adding semi-

crossovers of the dropped PCR strands involves applying
another modification in the algorithm. The process works by
obtaining the dropped PCR solutions and randomly selecting
two nodes in the solution strand to be replaced by two random
nodes obtained from the set of original nodes. This step is
similar to a semi-crossover operation for increasing the
possibility of obtaining more solutions. The output of this
function is sent to the PCR function to obtain the correct PCR
solutions and to send them to the next function, which is the
SSCP function. The details of the pseudo code snippet are
shown below.

PCR Semi-Crossover:

Input: Dropped PCR Solution TT, Nodes TT

Output: Added PCR Test Tube Solution

For each dnaStrand in PCR Dropped Test Tube

 If dnaStrand.length > Size

 While no termination do // two crossovers or break

 Get random nodeS in dnaStrand

 Get random NodeS from initial Test Tube

 Replace nodeS with NodeS

 Od

 If isPCR (dnaStrand) // isPCR function already available

 Add dnaStrand to PCR Test Tube

 End If

 End If

End For

3) Crossovers Dropped in SCCP Solutions
Modifying the normal DNA algorithm with semi

crossovers of the dropped SSCP strands proceeds as follows:-

This modification is the same as the PCR Semi-Crossover
but is applied on dropped SSCP solutions, and the difference is
that the two random nodes are semi-crossed over, but not the
start/end node, because there are already correct nodes in the
solutions strand. The output of this function is sent to the SSCP
function to obtain the correct SSCP solution from within the
set. Details of the pseudo code snippet are shown below.

SSCP Semi-Crossover:

Input: Dropped SSCP Solution TT, Nodes TT

Output: Added SSCP Test Tube Solution

For each dnaStrand in the SSCP Dropped Test Tube

 If dnaStrand.length > Size

 While no termination do // two crossovers or break

 Get random nodeS in dnaStrand but not start/end node

 Get random NodeS from initial Test Tube

 Replace nodeS with NodeS

 Od

If isSSCP (dnaStrand) // isSSCP function already available

Add dnaStrand to SSCP Test Tube

End If

End For

4) Evolutionary SSCP
Modifying the normal DNA algorithm with the

evolutionary approach:

The following is the real evolutionary improvement to the
algorithm: the best SSCP solution and 10% of the other SSCP
solutions (not the best ones) are taken from the SSCP solution
list. A new generation is made from these selected solutions by
crossing over one node of the solution randomly and checking
if any solution is generated with a lower cost; it is used if no
better solution is generated. The strategy parameter is tuned,
and instead of crossing over only one node, two nodes are
crossed over, and the evolution of the algorithm is evaluated.
The generation of a new population from an initial population
is continued until either a better solution is obtained or the
termination criterion is met. Details of the pseudo code snippet
are shown below.

SSCP Evolution Strategy:

Input: SSCP Solution Test Tube, Nodes Test Tube

Output: Added SSCP Test Tube Solution

While no termination do // two crossovers or break

 Get best solution and 10% random solutions

 For i=0 to EdgesTT.length // number of generations

 If (new generation worse than previous one)

 Set crossinOverNodes=2 // strategy parameter setting

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

115 | P a g e

www.ijacsa.thesai.org

 Else

 Set crossinOverNodes=1

 makeNewGeneration()

 Get best solution and 10% random solutions from new generation

End For

Get best solution from new generation

End While

makeNewGeneration()

While no termination do

makeSemiCrossOver(currentStrand,Nodes TT) // function is already

//defined

add crossedOver strand to new population

End While

VI. EXPERIMENTAL RESULTS

It is clear that the evolutionary SSCP improves the
algorithm by evolving the solution into a better solution. In the
next first, second or third generation, a better solution is
generated by semi-crossovers of the nodes in the current
generation; occasionally, this occurs in later generations. A
better indication of the evolutionary improvement is that in
some iteration, a solution is given even when there is no
solution found in the normal algorithm.

An improved DNA computing algorithm for solving
complex optimization problems is presented in this research
study. The algorithm not only shows whether a solution exists
but also provides more possible solutions; hence, the likelihood
of obtaining the optimum solution is increased. The proposed
algorithm might be extended to solve other optimization
problems. This will be shown in the test result tables. To
improve the algorithm, the focus is on the generation of more
solutions rather than decreasing the running time or memory
capacity, as current computers have sufficient CPU speed and
memory capacity. The variables to be used are defined in the
results of the Shortest Path Problem; all of the results in this
section are supported by tables and charts to display the
intermediate and final results, with statistical curves that
represent the comparison between the standard DNA and
improved DNA algorithms. The data tables of the results of the
DNA Algorithm and Evolutionary DNA Algorithm for solving
the Shortest Path problem are found below. Table 3 shows the
solution of the standard DNA algorithm for SPP, which is the
basic result to be compared with the results generated by the
improved DNA algorithm.

Table 4 shows the first improved solution of SPP by the
DNA algorithm. As explained in the previous sections, the
algorithm is improved by working on the dropped solution at
the PCR operation; the first step’s desired start node will be
added to the beginning of the strand, and the end node is added
to the end of the strand. At the second step, the beginning node
and end node of the strand will be replaced by the desired start
and end nodes. It is clear in the table and by comparing with
the previous table that the number of PCR solutions is
dramatically increased (which increases the SSCP solutions
automatically), which results in having more final solutions
and a better average cost for the final paths.

By embedding the crossover operation in the PCR
operation, as observed below the table, the number of PCR and
SSCP is increased, which again results in an increased number

of final solutions and the improvement of the average cost of
the final paths, but the percentage of improvement is less than
that of the previous modification. By embedding the SSCP
crossover in the SSCP operation, the percent increase in the
SSCP solution is even lower; hence, it has a smaller number of
final solutions and therefore does not have good improvement
in the average cost of the final paths. Until now, replacing
Start/End in the PCR operation generates better results than the
PCR and SSCP crossover operations. Even combining the PCR
and SSCP does not yield good results (Tables 5, 6 and 7).

As is shown in Tables 8, 9 and 10, by Replacing Start/End
in the PCR Operation with the PCR and SSCP crossover, the
number of final solutions and the average cost of the final paths
is improved. Thus, replacing Start/End in the PCR operation
improves the standard DNA algorithm much more than the
PCR and SSCP crossover. Tables 11 and 12 show the results of
the evolutionary SSCP, evolving the resulting SSCP solution
through several generations until the best SSCP solution is
obtained. Although the number of PCRs, SSCPs and final
solutions is low, the average cost of the final route is good; this
finding indicates that the performance of the algorithm can be
increased by evolving the final solution rather than increasing
the search space of the problem. By adding the supportive
operations to the evolutionary SSCP operation, the result is
improved. There are more solutions in the end; therefore, the
possibility of having the optimum or near-optimum solution is
increased, and the average cost of the final paths is improved as
well (See Tables 13, 14, 15 and 16).

The effect of the modifications on the standard DNA
algorithm and the optimization of the algorithm by obtaining
more solutions and better results in the end are clearer when
the above data tables are converted to many distinct charts. The
section below shows the corresponding charts of the main
factors of the problems to better highlight the improvement in
the algorithm. Below, the figures of the DNA Algorithm and
Evolutionary DNA Algorithm for solving the Shortest Path
problem can be found. Fig. 4 shows the number of solutions
versus the number of nodes for the DNA Algorithm and
Evolutionary DNA Algorithm. Clearly, the number of solutions
is increased with the proposed evolutionary techniques.

Fig. 4. shows Average No. of PCR Solutions; DNA Algorithm, SSCP Evol,

SSCP Evol+PCR Corss, SSCP Evol+ SSCP Cross, SSCP Evol+PCR+SSCP
Cross, SSCP Evol+PCR+SSCP Cross+RepAdd

Fig. 5 shows the number of PCR solutions versus the
number of nodes for the DNA Algorithm and Evolutionary
DNA Algorithm. The PCRCross+RepAdd produced more
solutions than others

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

116 | P a g e

www.ijacsa.thesai.org

Fig. 5. Average No. of PCR Solutions; DNA Algorithm, RepAdd, PCR

Corss, SSCP Cross, +PCR+SSCP Cross, PCR Cross+RepAdd, SSCP
Cross+RepAdd

Fig. 6 shows the number of SSCP solutions versus the
number of nodes for the DNA Algorithm and Evolutionary
DNA Algorithm.

Fig. 6. shows, Average No. of SSCP Solutions; DNA Algorithm, SSCP

Evol, SSCP Evol+PCR Corss, SSCP Evol+ SSCP Cross, SSCP

Evol+PCR+SSCP Cross, SSCP Evol+PCR+SSCP Cross+RepAdd

Fig. 7 shows the number of SSCP solutions versus the
number of nodes for the DNA Algorithm and Evolutionary
DNA Algorithm.

Fig. 7. shows – Average No. of SSCP Solutions; DNA Algorithm, RepAdd,

PCR Corss, SSCP Cross, +PCR+SSCP Cross, PCR Cross+RepAdd, SSCP

Cross+RepAdd

Fig. 8 shows the number of solutions versus the number of
nodes for the DNA Algorithm and Evolutionary DNA
Algorithm.

Fig. 8. Average No. of Final Solutions; DNA Algorithm, SSCP Evol, SSCP

Evol+PCR Corss, SSCP Evol+ SSCP Cross, SSCP Evol+PCR+SSCP Cross,

SSCP Evol+PCR+SSCP Cross+RepAdd

Fig. 9 shows the number of solutions versus the number of
nodes for the DNA Algorithm and Evolutionary DNA
Algorithm.

Fig. 9. Average No. of Final Solutions; DNA Algorithm, RepAdd, PCR

Corss, SSCP Cross, +PCR+SSCP Cross, PCR Cross+RepAdd, SSCP
Cross+RepAdd

Fig. 10 shows the Average path cost versus the number of
nodes for the DNA Algorithm and Evolutionary DNA
Algorithm. It is clearly seen that the average path cost using
DNA algorithm is the most expensive among others.

Fig. 10. Average Path Cost; DNA Algorithm, SSCP Evol, SSCP Evol+PCR

Corss, SSCP Evol+ SSCP Cross, SSCP Evol+PCR+SSCP Cross, SSCP

Evol+PCR+SSCP Cross+RepAdd

Fig. 11 shows the Average Path Cost versus the number of
nodes for the DNA Algorithm and Evolutionary DNA
Algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

117 | P a g e

www.ijacsa.thesai.org

Fig. 11. Average Path Cost; DNA Algorithm, RepAdd, PCR Corss, SSCP Cross, +PCR+SSCP Cross, PCR Cross+RepAdd, SSCP Cross+RepAdd

TABLE I. SHOWS VERTICES SND THEIR COMPLIMENTS

COMPLIMENTS

Ver1 = 5'GCGAGATCTG3' Comp: 3'CGCTCTAGAC5' OR 5'CAGATCTCGC3'

Ver2 = 5'GAAGTCAGTC3' Comp: 3'CTTCAGTCAG5' OR 5'GACTGACTTC3'
Ver3 = 5'GTCACGACGA3' Comp: 3'CAGTGCTGCT5' OR 5'TCGTCGTGAC3'

Ver4 = 5'GCCATAGACC3' Comp: 3'CGGTATCTGG5' OR 5'GGTCTATGGC3'

Ver5 = 5'GTTCGTTTAG3' Comp: 3’CAAGCAAATC5’ OR 5'CTAAACGAAC3'
Ver6 = 5'GATGAGAGTA3' Comp: 3'CTACTCTCAT5' OR 5'TACTCTCATC3'

TABLE II. SHOWS THE REPRESENTATION OF EDGES SND THEIR CORRESPONDING WEIGHTS

Edge Weight

Ver1 Ver2= TAGACCTTCA 2

Ver1 Ver3= TAGACCAGTG 4

Ver2 Ver3= GTCAGCAGTG 3
Ver2 Ver4= GTCAGCGGTA 5

Ver2 Ver5= GTCAGCAAGC 5
Ver3 Ver4= GACGACGGTA 2

Ver3 Ver5= GACGACAAGC 2

Ver4 Ver6= CGGTACTACT 8
Ver5 Ver4= AAATCCGGTA 4

Ver5 Ver6= AAATCCTACT 6

TABLE III. STANDARD DNA ALGORITHM

V

E

L
IG

R
S

G

P
C

R
P

S
S

C
P

G
E

L
P

A
P

S
P

R
T

M
C

d
r
p

P
C

R

p
c
r
C

ro
ss

p
c
r
G

en

d
r
p

S
S

C
P

ss
cp

C
r
o

ss

ss
cp

G
e
n

e
v
o

lS
S

C
P

c
ro

ss

10 18 6248 55 2 2 2 19 13 27 13 0 0 0 0 0 0 0
15 23 26198 100 3 3 2 26 17 46 54 0 0 0 0 0 0 0

20 30 90071 171 4 4 3 38 16 88 172 0 0 0 0 0 0 0

25 39 170626 267 6 5 3 47 14 142 397 0 0 0 0 0 0 0
30 47 338264 386 15 8 3 43 30 290 1077 0 0 0 0 0 0 0

TABLE IV. IMPROVED DNA ALGORITHM USING REPLACING START/END AT PCR OPERATION

V

E

L
IG

R
S

G

P
C

R
P

S
S

C
P

G
E

L
P

A
P

S
P

R
T

M
C

d
r
p

P
C

R

p
c
r
C

ro
ss

p
c
r
G

en

d
r
p

S
S

C
P

ss
cp

C
r
o

ss

ss
cp

G
e
n

e
v
o

lS
S

C
P

c
ro

ss

10 18 5892 55 186 139 28 16 13 53 7 52 0 186 47 0 0 0

15 23 23858 101 360 259 57 27 17 48 48 98 0 360 101 0 0 0
20 30 80279 169 661 498 101 33 16 91 165 164 0 661 163 0 0 0

25 38 164058 266 1064 699 165 33 14 157 712 259 0 1064 365 0 0 0

30 47 348691 381 1409 945 222 40 30 288 1219 367 0 1409 464 0 0 0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

118 | P a g e

www.ijacsa.thesai.org

TABLE V. IMPROVED DNA ALGORITHM USING PCR CROSS OVER
V

E

L
IG

R
S

G

P
C

R
P

S
S

C
P

G
E

L
P

A
P

S
P

R
T

M
C

d
r
p

P
C

R

p
c
r
C

ro
ss

p
c
r
G

en

d
r
p

S
S

C
P

ss
cp

C
r
o

ss

ss
cp

G
e
n

e
v
o

lS
S

C
P

c
ro

ss

10 18 6825 55 87 71 5 18 13 46 27 51 4159 84 16 0 0 0
15 23 27003 100 194 150 7 22 17 68 81 95 10268 189 43 0 0 0

20 30 91793 173 454 349 15 31 16 132 610 168 21817 449 104 0 0 0

25 39 173501 267 461 285 18 45 14 227 532 260 37273 455 176 0 0 0
30 47 348751 385 520 300 29 42 30 398 1246 363 54790 499 220 0 0 0

TABLE VI. IMPROVED DNA ALGORITHM USING SSCP CROSS OVER

V

E

L
IG

R
S

G

P
C

R
P

S
S

C
P

G
E

L
P

A
P

S
P

R
T

M
C

d
r
p

P
C

R

p
c
r
C

ro
ss

p
c
r
G

en

d
r
p

S
S

C
P

ss
cp

C
r
o

ss

ss
cp

G
e
n

e
v
o

lS
S

C
P

c
ro

ss

10 18 5826 55 3 5 2 25 13 25 20 51 0 0 0 45 3 0

15 23 26540 100 3 13 2 25 17 48 212 96 0 0 0 42 11 0
20 30 87468 170 4 47 3 39 16 94 263 165 0 0 1 68 44 0

25 39 168514 264 7 70 3 40 14 148 544 256 0 0 2 248 65 0

30 47 364737 383 16 195 4 43 30 288 1081 367 0 0 5 656 184 0

TABLE VII. IMPROVED DNA ALGORITHM USING PCR+SSCP CROSS OVER

V

E

L
IG

R
S

G

P
C

R
P

S
S

C
P

G
E

L
P

A
P

S
P

R
T

M
C

d
r
p

P
C

R

p
c
r
C

ro
ss

p
c
r
G

en

d
r
p

S
S

C
P

ss
cp

C
r
o

ss

ss
cp

G
e
n

e
v
o

lS
S

C
P

c
ro

ss

10 18 6098 55 60 1457 5 20 13 47 29 52 4290 58 15 173 1412 0

15 23 27694 99 175 4790 7 23 17 70 96 94 10275 172 51 693 4666 0
20 30 85079 168 272 9312 11 42 16 142 546 162 20665 267 105 2527 9145 0

25 39 166696 265 432 17259 18 43 14 252 621 257 36308 425 192 3903 17019 0

30 47 334954 383 686 26016 37 41 33 458 1309 367 55369 671 310 9978 25640 0

TABLE VIII. IMPROVED DNA ALGORITHM USING PCR CROSS OVER + REPLACING START/END AT PCR OPERATION

V

E

L
IG

R
S

G

P
C

R
P

S
S

C
P

G
E

L
P

A
P

S
P

R
T

M
C

d
r
p

P
C

R

p
c
r
C

ro
ss

p
c
r
G

en

d
r
p

S
S

C
P

ss
cp

C
r
o

ss

ss
cp

G
e
n

e
v
o

lS
S

C
P

c
ro

ss

10 18 5911 55 187 137 28 16 13 30 19 52 0 187 50 0 0 0

15 23 23973 101 359 257 55 27 17 52 60 97 0 359 102 0 0 0

20 30 82685 169 634 475 98 35 16 95 354 163 0 634 158 0 0 0
25 39 167655 268 995 645 154 36 14 156 513 262 0 995 351 0 0 0

30 48 343511 386 1421 898 205 39 30 288 1008 370 0 1421 523 0 0 0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

119 | P a g e

www.ijacsa.thesai.org

TABLE IX. IMPROVED DNA ALGORITHM USING SSCP CROSS OVER + REPLACING START/END AT PCR OPERATION

V

E

L
IG

R
S

G

P
C

R
P

S
S

C
P

G
E

L
P

A
P

S
P

R
T

M
C

d
r
p

P
C

R

p
c
r
C

ro
ss

p
c
r
G

en

d
r
p

S
S

C
P

ss
cp

C
r
o

ss

ss
cp

G
e
n

e
v
o

lS
S

C
P

c
ro

ss

10 18 5786 55 186 4793 28 16 13 41 31 52 0 186 50 570 4657 0
15 23 25132 101 360 8347 59 27 17 68 320 98 0 360 94 2554 8081 0

20 30 84607 169 632 14160 100 32 16 120 391 163 0 632 161 4421 13689 0

25 39 164140 266 1010 30632 158 34 14 212 696 259 0 1010 342 7742 29964 0
30 47 346084 380 1397 41136 217 40 30 368 1237 364 0 1397 470 12694 40210 0

TABLE X. IMPROVED DNA ALGORITHM USING PCR+SSCP CROSS OVER + REPLACING START/END AT PCR OPERATION

V

E

L
IG

R
S

G

P
C

R
P

S
S

C
P

G
E

L
P

A
P

S
P

R
T

M
C

d
r
p

P
C

R

p
c
r
C

ro
ss

p
c
r
G

en

d
r
p

S
S

C
P

ss
cp

C
r
o

ss

ss
cp

G
e
n

e
v
o

lS
S

C
P

c
ro

ss

10 18 6523 55 186 4856 29 16 13 71 50 52 0 186 50 429 4719 0

15 23 25262 100 358 8853 57 26 17 120 381 97 0 358 102 3012 8597 0
20 30 82588 170 652 13386 105 31 16 215 745 164 0 652 154 4783 12888 0

25 38 167798 264 1053 31748 162 33 14 369 1209 257 0 1053 360 9255 31055 0

30 47 338903 381 1404 47527 209 40 30 656 2245 366 0 1404 533 12219 46656 0

TABLE XI. IMPROVED DNA ALGORITHM USING EVOLUTIONARY SSCP

V

E

L
IG

R
S

G

P
C

R
P

S
S

C
P

G
E

L
P

A
P

S
P

R
T

M
C

d
r
p

P
C

R

p
c
r
C

ro
ss

p
c
r
G

en

d
r
p

S
S

C
P

ss
cp

C
r
o

ss

ss
cp

G
e
n

e
v
o

lS
S

C
P

c
ro

ss

10 18 6383 55 3 32 3 17 13 1319 1285 51 0 0 0 0 0 11,400

15 23 25712 100 4 37 3 23 17 1721 664 95 0 0 1 0 0 16,847
20 30 88395 171 5 46 3 35 16 2093 876 165 0 0 0 0 0 15,270

25 39 169204 264 7 54 3 37 14 2847 1019 256 0 0 2 0 0 26,411

30 47 340939 387 16 69 4 42 30 4189 855 371 0 0 5 0 0 11,195

TABLE XII. IMPROVED DNA ALGORITHM USING EVOLUTIONARY SSCP + PCR CROSS OVER

V

E

L
IG

R
S

G

P
C

R
P

S
S

C
P

G
E

L
P

A
P

S
P

R
T

M
C

d
r
p

P
C

R

p
c
r
C

ro
ss

p
c
r
G

en

d
r
p

S
S

C
P

ss
cp

C
r
o

ss

ss
cp

G
e
n

e
v
o

lS
S

C
P

c
ro

ss

10 18 6503 55 141 117 5 17 13 1190 1177 51 4416 138 52 0 0 48911

15 23 28113 101 261 223 7 26 17 1560 1208 96 10645 257 71 0 0 18559

20 30 88658 171 328 264 10 33 16 2022 477 165 21173 323 105 0 0 18237
25 39 167883 266 461 326 21 37 14 2619 705 258 36408 454 185 0 0 9635

30 47 340505 385 478 344 26 43 30 3720 795 370 56308 464 193 0 0 33182

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

120 | P a g e

www.ijacsa.thesai.org

TABLE XIII. IMPROVED DNA ALGORITHM USING EVOLUTIONARY SSCP + SSCP CROSS OVER
V

E

L
IG

R
S

G

P
C

R
P

S
S

C
P

G
E

L
P

A
P

S
P

R
T

M
C

d
r
p

P
C

R

p
c
r
C

ro
ss

p
c
r
G

en

d
r
p

S
S

C
P

ss
cp

C
r
o

ss

ss
cp

G
e
n

e
v
o

lS
S

C
P

c
ro

ss

10 18 6308 55 2 31 2 17 13 1254 967 52 0 0 0 0 0 17900
15 23 25644 100 3 48 3 24 17 1537 1231 96 0 0 0 48 11 19387

20 30 92930 171 4 76 3 34 16 2130 459 166 0 0 1 36 32 18593

25 39 161309 266 8 125 4 38 14 2712 789 257 0 0 2 316 70 26349
30 47 329616 386 16 369 4 43 30 3500 1120 369 0 0 6 615 301 24955

TABLE XIV. IMPROVED DNA ALGORITHM USING EVOLUTIONARY SSCP + PCR+SSCP CROSS OVER

V

E

L
IG

R
S

G

P
C

R
P

S
S

C
P

G
E

L
P

A
P

S
P

R
T

M
C

d
r
p

P
C

R

p
c
r
C

ro
ss

p
c
r
G

en

d
r
p

S
S

C
P

ss
cp

C
r
o

ss

ss
cp

G
e
n

e
v
o

lS
S

C
P

c
ro

ss

10 18 5839 55 97 3086 5 17 17 1324 1150 52 4577 94 32 431 2993 48161
15 23 28748 99 161 2665 7 23 17 1484 1068 96 11258 158 31 1226 2502 22009

20 30 86501 170 345 10233 13 31 16 2086 829 165 21433 340 113 2483 9961 16995

25 39 167654 268 382 12767 17 39 14 2653 1208 261 37471 377 146 3875 12480 9759
30 47 356121 383 555 19193 27 39 30 4100 683 362 54019 536 222 6353 18802 27878

TABLE XV. IMPROVED DNA ALGORITHM USING EVOLUTIONARY SSCP + REPLACE/ADD START/END AT PCR OPERATION

V

E

L
IG

R
S

G

P
C

R
P

S
S

C
P

G
E

L
P

A
P

S
P

R
T

M
C

d
r
p

P
C

R

p
c
r
C

ro
ss

p
c
r
G

en

d
r
p

S
S

C
P

ss
cp

C
r
o

ss

ss
cp

G
e
n

e
v
o

lS
S

C
P

c
ro

ss

10 18 6089 55 186 166 29 16 13 1162 1496 52 0 186 49 0 0 24942

15 23 23191 101 361 285 53 27 17 1471 1091 98 0 361 110 0 0 17620
20 30 84220 170 666 541 106 28 16 2003 430 166 0 666 167 0 0 15522

25 39 158626 267 1014 697 152 35 14 2539 890 261 0 1014 367 0 0 28331

30 47 330718 381 1496 1007 211 38 30 2952 1201 365 0 1496 547 0 0 23650

TABLE XVI. IMPROVED DNA ALGORITHM USING EVOLUTIONARY SSCP + PCR+SSCP CROSS OVER + REPLACE/ADD START/END AT PCR OPERATION

V

E

L
IG

R
S

G

P
C

R
P

S
S

C
P

G
E

L
P

A
P

S
P

R
T

M
C

d
r
p

P
C

R

p
c
r
C

ro
ss

p
c
r
G

en

d
r
p

S
S

C
P

ss
cp

C
r
o

ss

ss
cp

G
e
n

e
v
o

lS
S

C
P

c
ro

ss

10 18 5696 55 188 4477 30 16 13 1266 1399 52 0 188 48 855 4308 22460

15 23 24291 101 361 9325 58 27 17 1442 1187 98 0 361 99 1484 9029 15070

20 30 81129 169 637 13710 101 31 16 1959 462 165 0 637 163 5782 13195 13177
25 39 153987 267 1018 34081 151 34 14 2542 1165 261 0 1018 383 8935 33396 24580

30 47 347375 385 1410 41275 214 39 30 3079 1194 368 0 1410 473 13073 40279 21016

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

121 | P a g e

www.ijacsa.thesai.org

VII. CONCLUSIONS

In this paper, the fundamental ideas of DNA computing and
evolutionary strategies are presented and elaborated. DNA
computing is employed to resolve the shortest path
problem. The results of the DNA computing algorithm are
obtained and the performance of the algorithm is evaluated.
Better results are thereby verified. Thus, a suggested
Evolutionary DNA Algorithm was considered to take
advantage of the Evolutionary Strategies by being embedded in
the normal DNA Algorithm to optimize it and hence obtain
better results. The optimization produces better results; this
means that the number of solutions is increased; thus, the
possibility of obtaining optimum solutions is increased as well.
Additionally, because the evolutionary technique is used, the
initial resulting solutions are evolved; hence, the average
quality of the solution generation after generation is increased.

REFERENCES

[1] M. Adleman, “ Molecular computation of solutions to combinatorial
problems,” Science, vol. 266, pp. 1021-1024, 1994.

[2] S. Hari, K. Rajeev and S. Vikas, “An approach towards the solution of
NP-Complete Problem,” Report and Opinion, vol. 3, no. 5, 2011.

[3] D. Boneh, C. Dunworth, J. Lipton and I. Sgall, “On the computational
power of DNA,” Discrete Applied Mathematics, vol. 71, pp. 79–94,
1996.

[4] L. Kari, G. Gloor and Y. Sheng, “Using DNA to solve the Bounded Post
Correspondence Problem,” Theoretical Computer Science, vol. 231, no.
2, pp. 192–203, 2000.

[5] G. Gautam and C. Biswanath, “A cascaded pairwise biomolecular
sequence alignment technique using evolutionary algorithm,”
Information Sciences, 2014.

[6] C. Rudy, M. Buyong, N. Ruth and S. Amarda, “Mapping the
Conformation Space of Wildtype and Mutant H-Ras with a Memetic,
Cellular, and Multiscale Evolutionary Algorithm,” PLoS Computational
Biology; 2015.

[7] S. Junnarkar, “In Just a new Drops, A Breakthrough in Computing,”
New York Times; 1997.

[8] F. Mancini, “New perspectives on the Ising model,” the June, vol. 45,
no. 4, pp. 497-514, 2005.

[9] M. Ogihara M and A. Ray, “Simulating Boolean circuits on a DNA
computer, Algorithmica, Published by Springer, vol. 25, pp. 239–250,
1999.

[10] T. Bäck, N. Kok and G. Rozenberg, “Evolutionary computation as a
paradigm for DNA-based computing,” In Landweber, L.F. and
Winfree,E. (eds), Evolution as Computation. DIMACS workshop,
Princeton, January 1999. Springer-Verlag, Heidelberg, Germany, pp.
15–40, 2003.

[11] T. Bäck, “Evolutionary Computation as a Paradigm for DNA-Based
Computing, “ Natural Computing Series; 2002.

[12] S. Lovgren, “Computer Made from DNA and Enzymes,” National
Geographic; 2003.

[13] H. Ahrabian and D. Nowzari, “DNA Simulation of Nand Boolean
Circuits,” AMO - Advanced Modeling and Optimization, vol 6, No. 2,
pp 33-41, 2004.

[14] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar R. and E. Shapiro,” An
autonomous molecular computer for logical control of gene expression,”
Nature, vol. 429, no. 6990, pp. 423–429, 2004.

[15] N. Dimitrova,”Intelligent Algorithms in Ambient and Biomedical
Computing,” The Many Strands of DNA Computing, vol. 7, pp. 21-35,
2006.

[16] N. Nafiseh, Z.Sirous, L. Manigeh, K. Esmat, K. Morteza,” Rapi and
sensitive detection of point mutations and DNA polymorphisms in
Factor IX Gene by using the Single Strand Conformation Polymorphism
(SSCP),” the fourth biotechnology congress, Krmansha, Iran, 2005.

[17] S. Abdullah, “An improved DNA Computing approach using Heuristic
Techniques, “ Ph.D. Thesis, Computer Sciences Department, University
of Technology Baghdad, Iraq, 2008.

[18] S. Hari S., K. Rajeev K. and S. Vikas, “An approach towards the
solution of NP-Complete Problem,” Report and Opinion, vol. 3, no. 5,
2011.

[19] M. Adleman, ”Computing with DNA, The manipulation of DNA to
solve mathematical problems is redefining what is meant by
computation,” Copyright Scientific American, Inc, 1998.

[20] M. Amos, “DNA Computing,” Invited article for the Encyclopedia of
Complexity and System Science, Springer, Manchester Metropolitan
University, United Kingdom, 2008.

[21] R. Sekhar, ”DNA Computing-Graph Algorithms. Department of
Mathematics,” Indian Institute of Technology, This work is partially
supported by Com2MaC-KOSEF, Korea; 2010.

[22] G. Ibrahim, ” Improving DNA Computing using Evolutionary
Algorithms,” Master Thesis. Software Engineering, College of
Engineering, Salahaddin University, Hawler, Kurdistan, 2012.

[23] M. Yamamoto, N. Matsuura, T. Shiba, Y. Kawazoe and A. Ohuchi,
“DNA Computing, Solutions of Shortest Path Problems by
Concentration Control,” Lecture Notes in Computer Science, Springer
link, 2002, vol. 2340, pp. 203-212.

[24] J. Orlin, R. Ahuja, D. Simchi-Levi, S. Chopra, B. Golden and B. Kaku, “
Networks and Flows,” Discrete Mathematics and Its Applications, CRC
Press; 1999.

[25] T. Ootaa and Y. Yasuib, “Toric Sasaki-Einstein manifolds and Heun
equations, Nuclear Physics, Section B, vol. 742, no. 1–3, 2006.

[26] B. Datta and N Nilakantan, “Two-dimensional weak pseudomanifolds
on eight vertices, “ Proceedings of the Indian Academy of Sciences -
Mathematical Sciences, vol. 112, no. 2, pp. 257-281, 2002.

[27] A. Simovici and C. Djeraba, “Advanced Information and Knowledge
Processing, Mathematical Tools for Data Mining, Set Theory, Partial
Orders, Combinatorics,” Springer-Verlag London Limited, 2008.

APPENDIX A

AP Represents the Average Path
DNA Deoxyribonucleic Acid

drpPCR Represents the number of dropped PCR solutions
drpSSCP Represents the number of dropped SSCP solutions

E Represents the number of network edges

EA Evolutionary Algorithm
evolSSCPcross Represents the number of Evolutionary SSCP

Crossover operations

GA Genetic Algorithms
GELP Represents the number of Gel Electrophoresis solutions

GRS Generate Random Solutions

HDNA Heuristic Deoxyribonucleic Acid
HPP Hamiltonian Path Problem

LIG Represents the number of DNA Ligations
MC Represents the Memory Capacity of the DNA

Algorithm

MER The length of the oligonucleotide is usually denoted by
"mer" (from Greek meros, "part")

PCR Polymerase Chain Reaction

pcrCross Represents the number of PCR Crossover operations
pcrGen Represents the number of PCR solutions generated by

Crossover Operation

PCRP Represents the number of PCR solutions
RNA Ribonucleic Acid

RSG Represents the number of Random Solutions Generated

SP Represents the Shortest Path
SPP Shortest Path Problem

SSCP Single Strand Conformation Polymorphism, Represents

 the number of SSCP solutions
sscpCross Represents the number of SSCP Crossover operations

sscpGen Represents the number of SSCP solutions generated by

Crossover Operations

