
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

9 | P a g e

www.ijacsa.thesai.org

Portable Facial Recognition Jukebox Using

Fisherfaces (Frj)

Richard Mo

Department of Electrical and Computer Engineering

The University of Michigan - Dearborn

Dearborn, USA

Adnan Shaout

Department of Electrical and Computer Engineering

The University of Michigan - Dearborn

Dearborn, USA

Abstract—A portable real-time facial recognition system that

is able to play personalized music based on the identified

person’s preferences was developed. The system is called

Portable Facial Recognition Jukebox Using Fisherfaces (FRJ).

Raspberry Pi was used as the hardware platform for its relatively

low cost and ease of use. This system uses the OpenCV open

source library to implement the computer vision Fisherfaces

facial recognition algorithms, and uses the Simple DirectMedia

Layer (SDL) library for playing the sound files. FRJ is cross-

platform and can run on both Windows and Linux operating

systems. The source code was written in C++. The accuracy of

the recognition program can reach up to 90% under controlled

lighting and distance conditions. The user is able to train up to 6

different people (as many as will fit in the GUI). When

implemented on a Raspberry Pi, the system is able to go from

image capture to facial recognition in an average time of 200ms.

Keywords—Facial Recognition; Raspberry Pi; Computer

Vision; GNU/Linux Operating System; OpenCV; C++

I. INTRODUCTION

Facial Recognition is a very difficult topic and
computationally strenuous application. However with the
advent of newer technology, computers are running faster and
faster. New facial detection and recognition techniques are also
being developed that are quicker and more reliable. For
instance, a revolutionary change to object detection came in
2001 by Viola and Jones when they invented the Haar-based
cascade classifier. The accuracy of the Haar can be up to 95%
for detecting frontal faces. Still, an even faster technique was
the LBP feature detector developed by Ahonen, Hadid and
Pietikainen in 2006 [1] [2] [3]. LBP stand for local binary
patterns and is potentially several times faster than Haar-based
detectors albeit 10-20% less accurate.

Once an object (or face) is detected and an image is
preprocessed, there still needs to be a way to train and
recognize a new object when presented to the facial recognition
system. In 1901 Karl Pearson proposed the technique of
Principle Component Analysis, which transforms a set of
possibly correlated variables (raw pixels of trained faces) into a
smaller set of uncorrelated variables (eigenvectors and
eigenvalues). The theory is that in a higher dimensional
dataset, most of the information can be described by a few
components. These components are called the principal
components and are responsible for the most variance in the
data [4].The Eigenfaces representation of faces uses this PCA
method to train and store the model used for recognition.
However the PCA method has a flaw in that it does not

consider any of the classes (different people) and organizes the
principle components purely based on the highest variance the
component generates. In the case that an external source (such
as light) is generating the variance, the principle components
may not contain much discriminative information at all. To
combat this issue, another class-specific reduction algorithm
was developed by Sir R. A. Fisher and uses Linear
Discriminant Analysis (LDA). The method was successfully
used to classify flowers in his 1936 paper entitled “The use of
multiple measurements in taxonomic problems”. In this way,
features are found to maximize the ratio of between-classes
variation to within-classes variation as opposed to just
maximizing overall variation [4]. Thus the recognition
algorithm is more robust to external sources such as light. This
method is called the Fisherfaces algorithm and is the same
algorithm used by the FRJ system.

These advances make it more possible to design real-time
portable facial recognition systems, such as the one
implemented in this paper. While there are plenty of facial
recognition software available in the market today, none
provide the feature to play a person’s favorite song upon
recognition. Also, unlike some systems that use still images to
detect faces, our system is a real time system that dynamically
detects and recognizes a face depending on the mode of the
system [5]. This paper presents a cost-effective solution that is
cross-platform (Windows and Linux OS) to train faces of
different people and upon recognition of a trained person can
either play a song or personalized greeting. The system uses all
off-the-shelf components that are easily accessible and does
not require special infrared cameras as other systems do [6].
Playing a person’s favorite song is useful in boosting a
person’s morale in much of the same way people use a jukebox
to liven a place up. This Facial Recognition Jukebox can also
be used to distinguish between different moods (emotion) of a
person based on facial expression and play a different song
accordingly. Through this emotional recognition it can enable
the user or other people in the user’s vicinity to become aware
of the current user’s state of emotion.

Further improvements to facial recognition algorithms still
need to be made. With today’s technology and algorithms
facial recognition is not reliable enough to be used for a true
security system. However, they can still be used for other
purposes that do not require as high reliability such as playing
personalized music or generating a face cartoon [7].
Improvements can be made to make the training set less reliant
on lighting conditions or angles in which the person is oriented.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

10 | P a g e

www.ijacsa.thesai.org

The paper is organized as follows: Section II will present
the new FRJ system design, Section III will present the
experimental results, Section IV will describe how to use the
system, and Section V will present the conclusion remarks.

II. SYSTEM OVERVIEW

A. FRJ System Design

The design of the FRJ system can be split into the
following major categories: 1. Face Detection 2. Face
Preprocessing 3. Face Training 4. Face Recognition 5. Playing
Music 6. Saving/Loading Data. A high level block diagram for
the code can be seen in Figure 1. The green block illustrates the
detection mode. This part of the code is always running by
default. First, it acquires a new image and look for a face and
eyes. Once the face and eyes are detected there is some
preprocessing done to that face region of the image to be used
in the next block. The purple Collect Face block code is
triggered when a user clicks on the Add Person button and will
add preprocessed faces for the corresponding person selected.
Once the user indicates they are done collecting faces the code
continues to the yellow Training Mode block. In this block the
Fisherfaces algorithm model is trained using the preprocessed
faces and associated face labels (essentially classes). Upon
completion of training the code automatically transitions to the
red Recognition mode block.

 In recognition mode the program basically checks if the
captured face matches any of the trained faces and upon
matching will play the personalized music of the recognized
person. In the event that no person is recognized the code goes
back to acquiring the next image and no special action is taken.
Side tasks include the ability to save faces so that the user does
not need to train a new data set each time. This goes hand in
hand with the loading faces functionality being the function to
load the previously saved faces. The user can also delete all the
faces if they wish to start over in their training. The side tasks
are all mouse click based and do not follow the normal process
flow as the main functions.

The setup of the overall system can be seen in Figure 2.
More detail on the specific components in the setup will be
explained in later sections of the paper.

Fig. 1. High Level Block Diagram for Code

Fig. 2. a. Light fixture b. Webcam c. Display d. Raspberry Pi e. Speaker f.

Mouse g. Keyboard

B. Hardware Used

The computer used in the FRJ system is the Raspberry Pi as
seen in Figure 3. It has a 900 MHz quad core ARM Cortex-A7
CPU and a Broadcom VideoCore IV @250 MHz GPU. It
contains 1GB of RAM. The reason Raspberry Pi was used is it
is a relatively cheap prototyping board and contains enough
processing power for the computationally intensive algorithms
used for the facial recognition.

Fig. 3. Raspberry Pi Model B: credit card sized mini-computer used to

compile and execute C++ code

The Logitech HD Webcam C270 was used as the image
capture device as it is UVC compatible, meaning that it is
capable of streaming video and has a USB interface. Figure 4
shows the webcam. It captures images at 30 frames/sec.
Through software the frame is set to 480 pixels height by 640
pixels width.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

11 | P a g e

www.ijacsa.thesai.org

Fig. 4. Logitech HD Webcam C270

The rest of the components have some flexibility such as
the mouse, keyboard, speaker, and light fixture. The mouse and
keyboard are used to interface with the Raspberry Pi Raspbian
Linux Operating system to click on buttons as well as type in
commands on the command line. The speaker outputs the
music file or personalized greeting. Finally, the light fixture is
used to control the lighting such that there is strong uniform
light on the face during training.

C. Software Used

Source code was written in C++ as it is a faster computer
language for real time systems (as opposed to MATLAB). The
OpenCV library was used for the computer vision functions
and the Simple DirectMedia Layer (SDL) library was used for
playing sound. Both libraries are cross-platform libraries and
thus the system is cross-platform compatible over Linux and
Windows Operating Systems.

D. Detection Mode

In detection mode, the program first tries to identify if a
face exists within the captured frame. Many pre-trained models
are available in the OpenCV official website for the frontal
face and eyes. Our program uses the Local Binary Patterns
(LBP) classifier for the face (lbpcascade_frontalface.xml) since
it can be a few times quicker than the Haar classifier and thus
better for real-time processes. LBP is a little less accurate than
the Haar (10-20%) however we will then require detection of
both eyes within the face for added reliability.

Once the face is detected, the program will then look for
both eyes inside the face to be used in the preprocessing
section of the code. Both actual eyes must be detected in order
for the preprocessing to work correctly as will be evident in the
preprocessing section discussed later. Problems will occur if
the eye detector is simply used over the region of the whole
face as can be seen in Figure 5. This is because some objects of
the face can appear to be eye-like and will be misdetected as
eyes, such as the nostril. The solution to the misdetection in
eyes is to specify top left and top right regions of the face to
search for the left eye and right eye respectively. These regions
are based on geometric restrictions in which the majority of
human eyes will be located in with respect to the face.
Reduction in the search region for the eyes not only reduces the
processing time but also increases the reliability of detection of
the eyes. Correct detection of the face and eyes can be shown
in Figure 6.

Fig. 5. More than two “Eyes” are detected if the eye classifier is used over

the whole face

Fig. 6. Correct detection of the face and both eyes

E. Preprocessing

The preprocessing section is a very important section of the
code that conditions the detected face images so that it makes it
easier to train the facial recognition model and recognize faces.

First the image is converted to grayscale to reduce the data
size as an RGB image would have 3 times the number of
pixels. From the detection mode the program is able to detect
both eyes within a detected face.

Figure 7 shows the two specified regions in which the
program uses to search for both eyes. Once both eyes are
detected the program calculates the distance between the eyes
and then scales the whole face accordingly such that the
distance between the eyes is always the same. The eyes are
also adjusted so that they are horizontal and at a specified
height.

Finally an elliptical mask is placed on the face to crop out
any hair or shadows that may appear on the neck. The end
result is a normalized 70 by 70 pixel of a preprocessed face as
can be seen in Figure 7.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

12 | P a g e

www.ijacsa.thesai.org

Fig. 7. Preprocessing the face: the position of the eyes are used to scale,

rotate, and translate the face

F. Training

The user is able to initiate training after they are done
collecting faces. The training set can be initiated with the
adding of new faces per the Add Person button or can be
loaded with the Load button to load faces that were stored
previously. An example of a training set is shown in figure 8.
The training set should contain different facial expressions,
angles and lighting conditions for each person to be robust for
recognition later. If the set of faces is trained under strong light
on the right side of face and during the recognition mode the
user as strong light on the left side of the face, the system will
have do a poor job of recognizing the given person. The
objective is to get more variation between the different faces so
as more information is stored in the principle components.
Thus the training set should contain more different conditions
to get better results.

Fig. 8. Subset of training set

G. Recognition

Using the eigenvectors and eigenvalues trained in the
model during the training phase, the program then takes the
current preprocessed face and projects it into the PCA
subspace. It then takes the projection and reconstructs the face
into an image again.

If the query image is indeed part of the training set, then the
reconstruction should be very good. The program then
compares the reconstructed image to the preprocessed image
using doing an L

2
 relative error norm calculation. A threshold

is set for this error. An error calculated that is below the
threshold will indicate a match detected. Figure 9 shows an
example of a match identified by the program between the face
detected and the face of person 2 as can be seen by the green
rectangle drawn on person 2’s face.

Fig. 9. Example of a recognized face

III. EXPERIMENTAL RESULTS

Under controlled lighting and distance conditions, the FRJ
system is able to achieve up to 90% accuracy in recognizing
the correct person. The lamp used was an 1800 lumen lamp
with color temperature of 6500 Kelvin. A set distance of 55 ± 5
cm from the webcam was defined. The program can
accommodate up to 6 unique people within the GUI for
training and recognition.

In terms of timing, two devices were tested for the
detection rate and recognition rate, and the speeds can be seen
in table 1. The first device was the Raspberry Pi in which our
portable program will run. The second device was a
benchmarking device and was a Toshiba Laptop computer.
Comparing the two, the Toshiba Laptop computer was faster
by only 50ms. The Raspberry Pi was still able to go from
image capture to recognition within an average time of 200ms.
Anything less than 1 second will not be perceivable to the user
so using the Raspberry Pi is sufficient.

TABLE I. DETECTION AND RECOGNITION TIMING

Device

Image capture
to face detection
average time,
detection mode (ms)

Image capture to
face recognition average
time, recognition mode
(ms)

Raspberry Pi:
Model B

164.05 199.85

Toshiba Laptop:
CPU@2.20 GHz,

6GB Insatlled

Memory (RAM)

95.5 155.5

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

13 | P a g e

www.ijacsa.thesai.org

IV. USING THE FRJ SYSTEM

A. Detection mode

No special action is needed for detection mode. The
program will automatically start detecting the face and put a
yellow rectangle over it and put green circles over the detected
eyes. Figure 10 shows an example of detection mode.

Fig. 10. Example of a recognized face

B. Training Faces for the program

To add people to train click on the “Add Person” button.
This will add a person to the training set. Each time a picture is
taken the frame within the yellow rectangle will flash white to
alert the user. Notice that in the Collect Face mode, the person
who is getting new faces trained will have a red rectangle over
their face. The most recent captured face of each person will be
shown on the right edge of the GUI. Figure 11 shows an
example of a Collect Face mode face. If the user wants to add
more faces to a person already on the screen, the user simply
needs to click the most recent picture of said person and then
the program will commence collecting faces for that person.

Fig. 11. Example of a face getting collected for the facial recognition model

C. Training Mode

After the user has finished collecting faces, the user must
click on an area in the GUI not occupied by a face or button.
This will commence the training of the preprocessed faces into
the model. After the model is finished training the program will
automatically switch to recognition mode. Figure 12 shows an
example for the training mode.

Fig. 12. Faces that were previously collected are now being used to train the

model

D. Recognition Mode

In recognition mode, once a captured face is recognized with
one of the people in the training set a green rectangle will be
shown over the recognized person’s most recent face and the
music file corresponding to that person will play. Figure 13
shows an example for the recognition mode.

The music folder contains the music files as shown in
figure 14. The first person corresponds to music file 0.wav.
The second person corresponds to music file 1.wav and so on.

Fig. 13. The correct face is recognized

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

14 | P a g e

www.ijacsa.thesai.org

Fig. 14. The music folder

E. Saving Faces

The program will automatically save faces in the Collect
Faces mode into the .bmp format. These images will be stored

at <working directory>/images/new_face/ as shown in
figure 15.

F. Loading Faces

Pressing the “Load” button will load the faces that stored in
<working directory>/images/

This feature makes it convenient in that the user does not
have to train the model each time with each person at startup as
these faces were previously saved.

Fig. 15. Collected face directory

G. Deleting Faces

The user can choose to delete faces and essentially start all
over in the training process. To delete all the faces the user
must click on the “Delete All” button.

V. CONCLUSION

A system called the Portable Facial Recognition Jukebox
Using Fisherfaces (FRJ) was developed and provides a
convenient portable machine that plays a person’s favorite
song or a personalized greeting upon recognition of a person’s
face. The system is implemented on the Raspberry Pi Model B
hardware platform and uses OpenCV and Simple DirectMedia
Layer libraries for computer vision and media play
respectively.

Source code was written in C++. Additional functionality
was added to be able to save and load faces trained previously.
Currently the system is able to achieve up to 90% accuracy in
recognizing the correct trained person under controlled lighting
and distance conditions. Up to 6 unique people can be trained
as dictated by the size of the GUI. As implemented on the
Raspberry Pi, the image capture to facial recognition average
time is within 200 ms.

Future work for this project would be to further increase the
accuracy of the system by improving upon the Fisherfaces
algorithm or by introducing better training mechanisms to be
more robust to different environments and people. Also
improvements to the HMI/GUI can be made so that it is easier
for the user to save and load faces.

REFERENCES

[1] D. L. Baggio, “Face Recognition using Eigenfaces or Fisherfaces,” in
Mastering OpenCV with Practical Computer Vision Projects.
Birmingham, UK: Packt Publishing, 2012, ch. 8, pp. 231–268.

[2] D. Lee et al., “A Face Detection and Recognition System based on
Rectangular Feature Orientation,” International Conference on System
Science and Engineering, 2010.

[3] Face Description with Local Binary Patterns: Application to Face
Recognition, T. Ahonen, A. Hadid and M. Pietikäinen, Proceedings of
the IEEE Transactions on PAMI 2006, Vol. 28, Issue 12

[4] OpenCV Development Team (2015, Feb 25), Face Recognition with
OpenCV [Online]. Available:
http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.htm
l, [Accessed October 25 2015]

[5] P. Laytner et al., “Robust Face Detection from Still Images,” IEEE
Symposium, 2014.

[6] M. Weng et al., “Remote Surveillance System for Driver Drowsiness in
Real-time Using Low-cost Embedded Platform,” IEEE International
Conference on Vehicular Electronics and Safety, 2008.

[7] K. Wang, “Implementation of Face Cartoon Maker System Based on
Android,” Fourth International Conference on Intelligent Control and
Information Processing, 2013.

