
Characterizing End-to-End Delay Performance of
Randomized TCP Using an Analytical Model

Mohammad Shorfuzzaman and Mehedi Masud
Computer Science Department

Taif University, Taif, Saudi Arabia

Md. Mahfuzur Rahman
Dept. of Computer Science and Information Technology

Hajee Mohammad Danesh Science and Technology University
Dhaka, Bangladesh

Abstract—TCP (Transmission Control Protocol) is the main
transport protocol used in high speed network. In the OSI
Model, TCP exists in the Transport Layer and it serves as
a connection-oriented protocol which performs handshaking
to create a connection. In addition, TCP provides end-to-end
reliability. There are different standard variants of TCP (e.g.
TCP Reno, TCP NewReno etc.)which implement mechanisms to
dynamically control the size of congestion window but they do not
have any control on the sending time of successive packets. TCP
pacing introduces the concept of controlling the packet sending
time at TCP sources to reduce packet loss in a bursty traffic
network. Randomized TCP is a new TCP pacing scheme which
has shown better performance (considering throughput, fairness)
over other TCP variants in bursty networks. The end-to-end delay
of Randomized TCP is a very important performance measure
which has not yet been addressed. In the current high speed
networks, it is increasingly important to have mechanisms that
keep end-to-end to delay within an acceptable range. In this
paper, we present the performance evaluation of end-to-end delay
of Randomized TCP. To this end, we have used an analytical
and a simulation model to characterize the end-to-end delay
performance of Randomized TCP.

Keywords—Randomized TCP, end to end delay, congestion
window, TCP pacing, propagation delay, Markov chain.

I. INTRODUCTION

Transmission Control Protocol (TCP) plays a very impor-
tant role in data transmission over network. TCP offers a con-
nection oriented delivery service to the end user applications
and it provides reliable data flows between two processes run-
ning on two end systems. TCP implements data retransmission
mechanism for the packets that are lost during transmission
and thus ensures guaranteed data transfer between the sender
and the receiver. TCP is intelligent enough to understand the
loss of packets that are already sent by implementing timeout
timer at the sender and by using duplicate Acknowledge-
ments messages. TCP implements slow start and congestion
avoidance phases to handle the congestion of the network [1].
However, it cannot fully avoid the packet losses which can
greatly degrade the throughput quality of the transmission
system. This problem becomes very severe when the network
is bursty. The network may have bursty traffic very often due
to buffer overflow and the limited buffer size of intermediate
routers. Researchers found that if the router buffer size can
be made equal to the product of link bandwidth and average
Round Trip Time (RTT) of flows passing through the router,
then the packet loss ratio will be reduced and this will improve
the end-to-end delay performance [2]. But this large amount

of memory implementation will not be feasible and costly as
well. Research is also going on to modify some aspects of TCP
algorithm addressing this problem. TCP pacing is proposed
in which successive data packets are transmitted with some
time intervals in between which can avoid sending packets in
bursts. TCP pacing uses the last Round Trip Time (RTT) to
adjust not only its next congestion window size (how much)
but also the time (when) of sending. The congestion window
is the amount of data the sender is allowed to send to the
network at a time. Randomized TCP improves the paced TCP
to achieve better result. In [3], Chandrayana et al. has proposed
Randomized TCP which randomizes the packet sending time
at sender. Randomized TCP is very similar to paced TCP
but in paced TCP packet sending time at TCP sources are
equally spaced for all flows where in Randomized TCP the
packet sending times are scheduled at different intervals or
randomly for the TCP flows. Randomized TCP solves the
phase effect and biasness problems which are still present
in TCP pacing. Randomized TCP performs better than paced
TCP in improving network throughput, fairness, timeouts and
losses. But all these proposals do not address the end-to-end
delay performance achieved by Randomized TCP [3]. To this
end, this paper evaluates the performance of Randomized TCP
in end-to-end delay. It is highly desired that the Randomized
TCP shows better end-to-end delay performance than paced
TCP. The evaluation shows both network and application layer
performance of Randomized TCP.

The remainder of the paper is organized as follows. We
have discussed the necessary background in Section 2. Related
work relevant to the proposed research and the research
problem are presented in Section 3. Simulation and analytical
modeling are presented in Section 4 and Section 5 respectively.
Finally, Section 6 concludes the paper with some future work.

II. BACKGROUND

A. Congestion Window

Each sending endpoint of a TCP connection possesses a
buffer for storing data which will be transmitted over the
network. On the other hand, receiver side buffering helps the
application to read the data only when it is ready. This also
lets network transfers take place while applications are busy
with other processing, improving overall performance. TCP
uses “flow control” to avoid overflowing the receiver side
buffer. In this case, TCP sends a fixed number of packets
at a time and the size is usually known ‘congestion win-
dow’. This congestion window (cwnd) contains the amount

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

406 | P a g e
www.ijacsa.thesai.org

of data that may be transmitted from the sender buffer. TCP
uses “congestion control” mechanism to dynamically control
congestion window size. In TCP, the window size depends on
the congestion of the network. If there is any packet loss due
to congestion in the network then the window size becomes
very small otherwise it increases for each successful packet
transmission. This congestion control window have a great
impact in the performance of network. In TCP pacing and
Randomized TCP, the sender delays the sending of packets
in addition to the changing of congestion window when it
identifies any congestion in the network.

B. TCP Algorithms

TCP is a very dynamic and reliable congestion control pro-
tocol. It uses acknowledgments and the TCP acknowledgments
created by the destination are returned to the source. TCP
acknowledgments help the sender to know whether the packets
are well received or not. In TCP transmission, lost packets
are interpreted as congestion signals. There are a number of
standard variants of the TCP protocol, such as Tahoe, Reno,
New Reno, Sack and Vegas. One of the main differences
between these TCP versions lies in their methods of recovering
from packet loss due to network congestion. In general, they
differ in the sender side algorithms. FAST TCP is a new high
speed TCP protocol which uses the experienced queuing delay
of the packets to adjust the congestion window size. In our
work, we have used TCP NewReno as a general variant of TCP
to compare the end-to-end delay performance of Randomized
TCP. A detailed account of some of these protocols is given
below.

While TCP Reno produces less bursty traffic than TCP
Tahoe, it is much less robust towards phase effects. The latter
refers to unpredictability in performance resulting from very
small differences in the relative timings of packet arrivals for
different connections sharing a link. Both versions of TCP
appear to have significant drawbacks as a means of providing
data services over multimedia networks, because random loss
resulting from fluctuations in real-time traffic can lead to
significant throughput deterioration in the high bandwidth-
delay product. The performance is degraded when the product
of the loss probability and the square of the bandwidth delay
product is large.

For high bandwidth-delay products, TCP is hideously in-
equitable towards connections with higher propagation delays:
for multiple connections sharing a bottleneck link, the through-
put of a connection is inversely proportional to (a power of)
its propagation delay. It is worth expounding that random loss
causes performance decline in TCP because it does not permit
the TCP window to reach high enough levels to allow superior
link utilization. On the other hand, when the TCP window is
already big and is causing congestion, random early drops of
packets when the link buffer gets too filled can in fact improve
performance and lessen phase effects [4].

Relatively earlier simulation studies of TCP-tahoe in-
clude [5], [6], [7]. Simulations for the simple multi-hop
network considered in [6] showed the oscillations in window
sizes and the inequality of TCP towards connections traversing
a larger number of hops. In [5], the authors consider a number
of TCP connections sharing a bottleneck link. There is no

queueing of acknowledgements, and sources are assumed to
have data to send at all times. As stated earlier, [7] considers
the effect of two-way traffic.

The unfairness of TCP-tahoe against connections with large
round-trip delays and against connections traversing a big
number of congested gateways has also been demonstrated
in other current studies of TCP-tahoe. The heuristic analysis
shows that, for multiple connections sharing a bottleneck link,
the throughput of a connection is inversely proportional to its
round-trip time. Oscillatory behavior and inequality towards
connections with superior propagation delays have also been
noticed in an earlier analytical study of feedback-based con-
gestion control which uses a continuous-time approximation
to the dynamic behavior of a rate-based scheme.

Another adaptive window flow control scheme is proposed
in [8], [9]. The proposed window adaptation mechanism op-
erates in a high bandwidth-delay product, and is based on
asymptotics derived from a queueing model of the network. It
has the disadvantage of requiring more central synchronization
than TCP: the adaptation algorithm for every link must be
acquainted with the distinctiveness of the bottleneck link for
that connection and the relative propagation delays of the other
connections sharing that link. However, the adaptive mecha-
nism itself is much smoother than the drastic window size
changes in TCP, so that a decentralized adaptive scheme based
on a similarly smooth mechanism may defeat the weaknesses
in TCP while not requiring the type of acquaintance understood
in [8], [9].

C. TCP pacing and Randomized TCP

TCP’s congestion control mechanisms can not avoid bursty
traffic flows on high-speed networks. Bustry Traffic produces
higher queueing delays, more packet losses, lower throughput.
TCP pacing is aimed at reducing the burstiness of TCP traffic
and the impact of limited buffers in routers. In TCP pacing, the
packet loss is less and the competing flows face less queueing
delays. In addition to setting TCP’s congestion window which
tells about how much to send, TCP pacing also fixes the
time when to send the packets. In TCP pacing, the sender
sends successive data packets with some equally spaced time
intervals, ∆= RTT

cwnd . In this case, Round Trip Time (RTT) and
cwnd are the key components to adjust the sending time
of packets. Though TCP pacing reduces packet losses and
queueing delays, this scheme is not efficient in addressing
TCP’s “phase effect” problem and it also has biasness against
long flows. When there are a number of competing flows,
phase effect causes a specific section of competing flows to
experience recurrent drops. Randomized TCP is found efficient
to address this problem and it also reduces the baisness
against long flows. In Randomized TCP, the sender sends
successive data packets with randomly spaced time inter-
vals, ∆=RTT (1+x)

cwnd , where x follows a uniform distribution.
Randomized TCP also shows more fairness over Paced TCP
when multiplexed with other standard TCP variants (e.g. TCP
New Reno) [3]. All the researches include traffic performance
such as fairness, throughput of Randomized TCP. But more
application-layer performance like end-to-end delay has not
been addressed. We have evaluated the end-to-end delay
performance of Randomized TCP in this paper. In a recent
work, the authors in [10] propose a transport layer solution to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

407 | P a g e
www.ijacsa.thesai.org

TCP called TCPRand. The idea is to have a randomization of
TCP payload size, which breaks synchronized packet arrivals
between flows from different input ports. The simulation
results show that TCPRand ensures the improvement of TCP
fairness with negligible overheads in all test cases. Prakah et
al. [11] investigate the TCP outcast problem in data center
applications with many-to-one traffic pattern scenario. The
research results found out that with excessive traffic flows,
drop-tail queueing may drop a series of consecutive packets at
each input port having a port blackout. Wu et al. [12] focus
on incast congestion control for TCP in data center networks
using a similar traffic pattern scenario.

D. End-to-end delay

End to end delay can be defined as the time taken by a
packet to reach the destination after it has started from the
source. If the network is not busy then there will not be any
queueing delay. But if the network has bursty traffic then the
queueing delay also affects the end-to-end delay performance.
Processing time of the routers, transmission delay also affect
the end-to-end delay of packets. We have used an analytical
model to characterize the end-to-end delay performance of
Randomized TCP and also evaluate the results with simulation.

E. NS-2 Simulation Environment

NS-2 is a discrete event simulator which has mainly
targeted at networking research. NS-2 provides substantial
simulation support for wired and wireless (local and satellite)
networks. NS-2 provides tools to create any desired networking
environment and also to import any networking aspects (e.g.
TCP, routing, and multicast etc.) for data transmission in that
environment. NS (version-2) is developed under the VINT
project as a joint effort by UC Berkeley, USC/ISI, LBL,
and Xerox PARC. NS-2 is an object oriented simulator and
was written in C++ with OTcl as a front-end. The simulator
handles two class hierarchy: the C++ class hierarchy (compiled
hierarchy), and the class hierarchy within the OTcl interpreter
(interpreted hierarchy) [13]. We have used NS-2 network
simulator for experiments.

III. RELATED WORK

Many applications rely on TCP since TCP has its own
congestion control mechanism and does not bother the network
for that. In [14], self regulating TCP acknowledgement pacing
scheme has been proposed. This work tells about the ACK
pacing technique to reduce the data loss due to congestion
in TCP. In TCP each packet needs to be acknowledged by the
receiver. But in acknowledge pacing scheme, the acknowledges
are delayed by the receiver. ACK pacing uses a matrics
(network load dynamics) to make the receiver understand about
the congestion and allows the receiver acts upon this situation
very smartly. Thus, the authors [14] show the implementation
issues and better performance results of self-regulating ACK
pacing.

In [15], Rezdan et al. tell about TCP Westwood which uses
Bandwidth Share Estimate (BSE) along with RTT to set the
pacing interval for sender side TCP pacing. TCP Westwood
keeps the bottleneck service rate in BSE parameter. There are
two major phases of TCP: slow start phase and congestion

avoidance phase. In this work, TCP pacing is only effective
in the slow start phase. In [16], Garetto et al. present a way
to analyze the bursty TCP traffic in wide area networks and
present ways to characterize “TCP pacing”. The authors use a
simple analytical model to show the traffic (e.g. packet loss)
produced by a large number of TCP connections. In [17],
Chang et al. find out that paced TCP performs better channel
reuse than TCP Reno.

In [18], ElRakabawy et al. introduce gateway adaptive pac-
ing scheme which is mostly effective for the flows from wired
sender to wireless receivers. The gateway device implements
a pacing queue and it sends the queued data obtained from the
wired sender with understanding of the current transmission
rate of the wireless network. This approach includes some
transport layer functionality to the IP layer in the Internet
gateway. In our work, TCP NewReno is used as standard TCP
protocol.

Enachescu et al. has found that buffer size of routers can
be made very small if some performance of link layer can
be sacrificed [19]. FDL (Fiber Delay Line) provides limited
buffering capacity. In [20], TCP pacing is measured using
RTT/cwnd which shows TCP pacing application performance
in the FDL buffers. In this work, the authors find that TCP
Pacing reduces packet loss-rate by decreasing the burstness of
packet arrival and achieves higher throughput. [21] shows the
effects of small buffer in standard TCP as well as TCP pacing.
In our evaluation, It is found that TCP pacing is very useful in
small buffer routers. In recent work, the authors in [22], [23]
have focused on multipath TCP traffic which enables hosts to
send data over multiple paths and has use cases on smartphones
and datacenters. The research results confirm that multipath
TCP operates successfully over the real Internet even with the
middleboxes.

Now, we describe the problem definition for our current
research. TCP does not bother network to handle the flow
control and congestion control rather it is handled by the
end systems. But inside the network the congestion mainly
occurs due to buffer overflow at routers. When the network is
congested, the TCP sender only adjusts the congestion window
and as a result it cannot avoid the packet losses. So, it is very
important to make the TCP sender to delay in sending packets
when the network has bursty traffic. If the TCP sender delays
in sending the packets, then it can reduce packet losses. TCP
pacing has addressed this issue and Randomized TCP improves
the limitations of paced TCP. In this paper, We have evaluated
the end-to-end delay performance of Randomized TCP through
simulation and analytical modeling.

IV. SIMULATION MODELING

A. Simulation Setup

We used NS-2 network simulator to simulate the network
environment. As shown in Figure 1 [24], we considered the
topology of Abilene Network (Internet2). In Abilene network,
there are 11 nodes [node(0,1,2,...10)] and 14 links. There is
a bottleneck link between node(2) and node(6). The channels
between node(2) and node(6) have only 45Mbps bandwidth
whereas all other channels possess 155Mbps bandwidth. We
used the table I for assigning the propagation delay of each
channel. In simulation, we used ‘DropTail queues’ and ‘fixed

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

408 | P a g e
www.ijacsa.thesai.org

Fig. 1: Network Topology [24]

Source Destination Pro. Delay

n(0) n(1) 31.624ms

n(0) n(3) 7.772ms

n(1) n(2) 19.756ms

n(1) n(5) 15.504ms

n(2) n(6) 10.950ms

n(2) n(7) 15.938ms

n(3) n(4) 25.010ms

n(3) n(8) 16.852ms

n(4) n(8) 25.608ms

n(4) n(5) 10.674ms

n(5) n(6) 9.340ms

n(6) n(9) 3.990ms

n(7) n(10) 4.412ms

n(9) n(10) 20.464ms

TABLE I: Propagation Delays [24]

routing’. Drop Tail queue drops newly arriving packets until
the queue finds enough room to accept incoming traffic. In
fixed routing, there is a unique path for each source-destination
pair.

In this simulation, nodal delays are neglected since pro-
cessing delays incurred by packets are comparatively very
less than propagation delays in channels. Using sample run,
we characterized the traffic for the network to obtain ex-
pected utilization of each channel. NS-2 is an open source
simulator and we modified the NS-2 source code (existing
TCP implementation) to implement Randomized TCP. For
this, we modified the ‘delay’ variable in send-much function
(in tcp.cc) by introducing uniform randomization. TCP uses
the ‘delay’ variable to measure the next packet sending time
when the network is bursty. TCP fixes up the delay value
as RTT

cwnd but we introduced a uniform random variable with
this to obtain the characteristics of Randomized TCP. So in
case of Randomized TCP, the delay value is measured by
RTT (1+x)

cwnd , where x follows a uniform distribution. TCP uses
‘t rtt ’ variable for saving RTT values and ‘cwnd ’ variable
saving for current congestion window size. TCP NewReno

Queue Size Randomized NewReno

20 pkts 49.97 ms 51.51 ms

35 pkts 46.86 ms 48.47 ms

50 pkts 45.29 ms 46.76 ms

65 pkts 44.02 ms 44.90 ms

5000 pkts 43.49ms 45.79 ms

TABLE II: End-to-end Delays for different queue size

Fig. 2: End-to-end delays for different queue size

is an already developed module in NS-2. We used TCP
NewReno to compare the performance of Randomized TCP.
In all cases, delay is calculated as the difference between
successful reaching time of each packet at destination and the
starting time from the source. We have only considered the ‘tcp
packets’ for calculating end-to-end delay, and the ‘ack packets’
and ‘connection establishment packets’ are not considered for
delay calculation. We have varied the total number of flows in
the network to control the burst level of the network.

B. Experiments and Results

First of all, we measured the end-to-end delays of Ran-
domized TCP and TCP NewReno by varying the queue size of
channels. The results shown in Table II tell that Randomized
TCP’s performance is peak over TCP NewReno when the
queue size is very small. With the increase of queue sizes,
the delay difference between Randomized TCP and TCP
NewReno becomes narrow or small. In case of infinite buffer,
Randomized TCP also shows good performance over TCP
NewReno. In all these cases, we fixed up the total flow number
as 90 and each packet size as 1000 Bytes.

In the next experiment, we fixed up the queue size as small
(size as 35) and have varied the total number of flows to
change the amount of burst in network. It is found that, for
this small queue size and in high bursty traffic, Randomized
TCP is far better than TCP NewReno. But in infinite buffer
size (we used queue size as 5000) consideration, the burstiness
cannot make significant delay difference between Randomized
TCP and TCP NewReno. We depicted the results in Table III
and in Table IV.

From the above simulation results, it is found that Random-
ized TCP is very good in considering end-to-end delay per-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

409 | P a g e
www.ijacsa.thesai.org

Fig. 3: Performance improvement in Randomized TCP

Total Flow Randomized NewReno

45 43.24 ms 43.34 ms

90 46.86 ms 48.47 ms

135 64.34 ms 107.62 ms

TABLE III: E2E Delays for different bursts (Queue size=35:
as small size)

Fig. 4: E2E Delays for different bursts (Queue size=35)

Total Flow Randomized NewReno

45 39.78 ms 39.78 ms

90 43.49 ms 45.79 ms

135 57.28 ms 58.38 ms

TABLE IV: E2E Delays for different bursts (Queue size=5000:
as infinite size)

Fig. 5: E2E Delays for different bursts (Queue size=5000)

formance. About 3.25% delay improvements can be achieved
for small queue size (Figure 3). Again in bursty network,
Randomized TCP also shows better result over TCP NewReno
when the channels have small buffer (Figure 4, 5).

V. ANALYTICAL MODELING

This analytical model is very similar to the queueing
network model proposed by Lam et al. [25]. It is assumed that
the routers in the network are indexed by i = 1, 2, 3, 4,...,M.
Each router works on First Come First Serve (FCFS) basis and
works at constant rate Ci bits per second. There may be more
than one flow and the flows are indexed by k = 1, 2, 3,......,
K. The first-order Markov Chain with transition probabilities
for a particular flow k is modeled as pk

ij which is the routing
probability to server j from server i and i, j = 1, 2, 3, 4,....,
M.

It is assumed that the packets from k flows arrive at
source node following poisson distribution with γk (packets
per second), where k = 1, 2, 3, 4,....., K. The total external
arrival rate to the network,

γ = γ1 + γ2 + γ3 + γ4 ++ γK . (1)

For a particular flow k, if γk and pkij are given then at
router i the arrival rate of packets (due to a particular flow k),
λik is identified as

λik = γkδik +
M∑
j=1

λjkp
k
ji, (2)

where δik is 1 when i is source node of flow k, otherwise δik
remains zero. So, the total arrival rate at router i (due to all
flows),

λi =

K∑
k=1

λik. (3)

Again, the traffic intensity at router i for a particular flow
k,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

410 | P a g e
www.ijacsa.thesai.org

Total Flow Analytical Simulation

45 33.35 ms 39.78 ms

90 51.86 ms 45.59 ms

135 198.48 ms 57.28 ms

TABLE V: Simulation and Analytical Results

Fig. 6: Analytical vs Simulation Results

ρik =
λik

µCi
, (4)

where µ is used as mean in poisson distribution. The total
traffic intensity at router i for all flows,

ρi =

K∑
k=1

ρik. (5)

This ρi can be used to find out the mean number of packets
in transit within the network,

γT =
M∑
i=1

ρi
1− ρi

=
M∑
i=1

λi

µCi − λi
, ρik =

λik

µCi
. (6)

So, the mean end-to-end delay,

T =
1

γ

M∑
i=1

λi

µCi − λi
. (7)

A. Evaluation

The analytical model assumes customer arrival to follow a
poisson distribution and also assumes the packet size to follow
exponential distribution. But TCP as well as Randomized TCP
does not follow these distributions in packet sending. So there
arose a big difference in analytical and simulation results. We
showed both results in Table V and Figure 6

VI. CONCLUSION

TCP is an important aspect in Computer Networking.
Randomized TCP algorithm finds out a way of obtaining
useful and automated services in data communication. This
can introduce the best usage of the existing resources. The
end-to-end delay evaluation in this paper makes Randomized
TCP a more attractive and useful Transport layer solution. We
compared the end-to-end delays of Randomized TCP and TCP
NewReno by varying the queue size of channels. The results
show that Randomized TCP’s performance is peak over TCP
NewReno when the queue size is very small. With the increase
of queue sizes, the delay difference between Randomized TCP
and TCP NewReno becomes narrow or small. In case of
infinite buffer, Randomized TCP also shows good performance
over TCP NewRenoIt. Thus, the users can easily enjoy their
required best services through Randomized TCP. As a future
work, we are planning to work on different queuing algorithms
with Randomized TCP congestion control mechanism and
specifically implementing a new queue mechanism which
may give better performance in Randomized TCP congestion
control than the existing queue mechanisms.

REFERENCES

[1] J. F. Kurose and K. W. Ross, Computer Netwoking: A top down
approach featuring the internet. Addison Wesley, 2002.

[2] G. Hasegawa, T. Tomioka, K. Tada, and M. Murata, “Simulation
studies on router buffer sizing for short-lived and pacing TCP flows,”
Computer Communications, vol. 31, no. 16, pp. 3789 – 3798, 2008. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6TYP-
4SGKBBD-3/2/cd284735365599e5edd17eac89380d2e

[3] K. Chandrayana, S. Ramakrishnan, B. Sikdar, and S. Kalyanaraman,
“On randomizing the sending times in TCP and other window based
algorithms,” Computer Networks, vol. 50, no. 3, pp. 422–447, 2006.

[4] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions of Networking, vol. 1,
no. 4, pp. 397–413, 1993.

[5] S. Shenker, L. Zhang, and D. D. Clark, “Some observations on the
dynamics of a congestion control algorithm,” Computer Communication
Review, pp. 30–39, 1990.

[6] L. Zhang, “A new architecture for packet switching network protocols,”
Ph. D. dissertation, M.I.T. Lab. Comput. Sci., Cambridge, MA, 1989.

[7] L. Zhang, S. Shenker, and D. D. Clark, “Observations on the dynamics
of a congestion control algorithm: the effects of two-way traffic,” in
Proc. ACM SIGCOMM ’91, 1991, pp. 133–147.

[8] D. Mitra, “Asymptotically optimal design of congestion control for high
speed data networks,” IEEE Trans. Commun., vol. 40, no. 2, pp. 301–
311, 1992.

[9] D. Mitra and J. B. Seery, “Dynamic adaptive windows for high speed
data networks with multiple paths and propagation delays,” Computer
Networks and ISDN Systems, vol. 25, pp. 663–679, 1993.

[10] S. Lee, M. Lee, D. Lee, H. Jung, and B. S. Lee, “Tcprand: Randomizing
tcp payload size for tcp fairness in data center networks,” in Proc. of
IEEE Conference on Computer Communications (INFOCOM), 2015,
pp. 1697 – 1705.

[11] P. Prakash, A. Dixit, Y. C. Hu, and R. Kompella, “The tcp outcast
problem: Exposing unfairness in data center networks,” in Proceedings
of the 9th USENIX Conference on Networked Systems Design and
Implementation. Berkeley, CA, USA: USENIX Association, 2012,
pp. 30–30.

[12] W. Haitao, F. Zhenqian, G. Chuanxiong, and Z. Yongguang, “Ictcp: In-
cast congestion control for tcp in data center networks,” in Proceedings
of the 6th International Conference, ser. Co-NEXT ’10. New York,
NY, USA: ACM, 2010, pp. 13:1–13:12.

[13] F. K and V. K., “Notes and documentaiton, LBNL,”
http://www.isi.edu/nsnam/ns/.

[14] J. Aweya, M. Ouellette, and D. Y. Montuno, “A self-regulating TCP

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

411 | P a g e
www.ijacsa.thesai.org

[15] A. Razdan, A. Nandan, R. Wang, M. Sanadidi, and M. Gerla, “Enhanc-
ing TCP performance in networks with small buffers,” in Proceedings of
the 11th IEEE International Conference on Computer Communications
and Networks. IEEE, 2002, pp. 39–44.

[16] M. Garetto and D. Towsley, “An efficient technique to analyze the
impact of bursty TCP traffic in wide-area networks,” Performance
Evaluation, vol. 65, no. 2, pp. 181 – 202, 2008. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6V13-4NWCGRD-
1/2/0fab98f6270f2f0706849a94e42091bd

[17] C.-Y. Luo, N. Komuro, K. Takahashi, and T. Tsuboi, “Paced TCP:
A dynamic bandwidth probe TCP with pacing in adhoc networks,”
in International Symposium on Personal, Indoor and Mobile Radio
Communications PIMRC. IEEE, 2007, pp. 1–5.

[18] S. M. ElRakabawy, A. Klemm, and C. Lindemann, “TCP with gateway
adaptive pacing for multihop wireless networks with internet connec-
tivity,” Computer Networks, vol. 52, no. 1, pp. 180 – 198, 2008. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6VRG-
4PT29C0-2/2/a5366ee033e4e1a9b831190ad1c0b581

[19] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgar-
den, “Part III: routers with very small buffers,” SIGCOMM Computer

Communication Review, vol. 35, no. 3, pp. 83–90, 2005.
[20] O. Masafumi, I. Maroto, and T. Tatsuro, “Application of TCP pacing to

optical packet network with Fiber Delay Line buffers,” in Proceedings
of the 7th IEEE International Conference on Optical Internet. IEEE,
2008, pp. 1–2.

[21] D. Wischik, “Buffer sizing theory for bursty TCP flows,” in Interna-
tional Zurich Seminar on Communications. IEEE, 2006, pp. 98–101.

[22] Q. Coninck, M. Baerts, B. Hesmans, and O. Bonaventure, “Evaluating
android applications with multipath tcp,” Mobicom 2015, pp. 230–232,
2015.

[23] B. Hesmans, H. Tran-Viet, R. Sadre, and O. Bonaventure, “A first look
at real multipath tcp traffic,” Lecture Notes in Computer Science, vol.
9053, pp. 233–246, 2015.

[24] T. Lakshman and U. Madhow, “The performance of tcp/ip for networks
with high bandwidth-delay products and random loss,” 1997. [Online].
Available: citeseer.ist.psu.edu/lakshman96performance.html

[25] U. of Texas TR-069, “Queueing network model,”
http://www.cs.utexas.edu/ftp/pub/techreports/tr81-167.pdf.

acknowledgement (ACK) pacing scheme,” International Journal
of Network Management, vol. 12, no. 3, pp. 145–163, 2002.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

412 | P a g e
www.ijacsa.thesai.org

