
Modified Grapheme Encoding and Phonemic Rule
to Improve PNNR-Based Indonesian G2P

Suyanto
Department of Computer

Science and Electronics, FMIPA
Gadjah Mada University

Yogyakarta, Indonesia 55281

Sri Hartati
Department of Computer

Science and Electronics, FMIPA
Gadjah Mada University

Yogyakarta, Indonesia 55281

Agus Harjoko
Department of Computer

Science and Electronics, FMIPA
Gadjah Mada University

Yogyakarta, Indonesia 55281

Abstract—A grapheme-to-phoneme conversion (G2P) is very
important in both speech recognition and synthesis. The existing
Indonesian G2P based on pseudo nearest neighbour rule (PNNR)
has two drawbacks: the grapheme encoding does not adapt all
Indonesian phonemic rules and the PNNR should select a best
phoneme from all possible conversions even though they can
be filtered by some phonemic rules. In this paper, a modified
partial orthogonal binary grapheme encoding and a phonemic-
based rule are proposed to improve the performance of PNNR-
based Indonesian G2P. Evaluating on 5-fold cross-validation,
contain 40K words to develop the model and 10K words to
evaluation each, shows that both proposed concepts reduce the
relative phoneme error rate (PER) by 13.07%. A more detail
analysis shows the most errors are from grapheme ⟨e⟩ that can
be dynamically converted into either /E/ or /@/ since four prefixes,
’ber’, ’me’, ’per’, and ’ter’, produce many ambiguous conversions
with basic words and also from some similar compound words
with both different pronunciations for the grapheme ⟨e⟩. A
stemming procedure can be applied to reduce those errors.

Keywords—Modified grapheme encoding; phonemic rule; In-
donesian grapheme-to-phoneme conversion; pseudo nearest neigh-
bour rule

I. INTRODUCTION

A phonemization or letter-to-sound conversion, more com-
monly known as grapheme-to-phoneme conversion (G2P), is
an important module in both speech recognition and speech
synthesis. In general, a G2P is developed using machine
learning-based methods, such as instance-based learning [1],
table lookup with defaults [1], self-learning techniques [2],
hidden Markov model [3], morphology and phoneme history
[4], joint multigram models [5], conditional random fields [6],
Kullback-Leibler divergence-based hidden Markov model [7].
These methods are commonly very complex and designed to
be language independent, but they give varying performances
for some phonemically complex languages, such as English,
Dutch, French, and Germany.

In [8], an information gain tree (IG-tree) with best guest
strategy is proposed to develop a specific G2P for Indonesian
language. It gives PER of 0.99% for training set of 9K words
and testing set of 1K unseen words. Another Indonesian G2P
developed using PNNR [9] produces slightly higher PER than
the IG-tree, around 1.07, but it is capable of disambiguating
homograph words. The PNNR-based G2P has two drawbacks.
Firstly, the designed grapheme encoding does not adapt all

Indonesian phonemic rules. Secondly, the PNNR should select
a best phoneme from all possible conversions even though they
can be filtered using some phonemic rules.

When compare to English, the Indonesian language has
a much simpler phonemization rule. An initial study on 50K
words, collected from the great dictionary of the Indonesian
language (Kamus Besar Bahasa Indonesia Pusat Bahasaor
KBBI) third edition, released in 2008, developed by Pusat
Bahasa, shows that it has 26 graphemes, where 15 graphemes
(57%) are pronounced as certain phonemes without any excep-
tion and the rest 11 graphemes (43%) are pronounced as some
possible phonemes with or without a quite common phonemic
rule, as listed in table I. In this research, all graphemes are
converted into single-phonemic symbol (SPS) to simplify the
alignment process. The SPS are deliberately developed using
characters available in any computer keyboard to simplify the
implementation. But, in this paper any phoneme is written
using the IPA symbol.

In table I, the grapheme ⟨a⟩ can be pronounced as four
possible phonemes: 1) /A/, generally if it is followed by
graphemes those commonly pronounced as consonants, such
as a word ’abad’ (century) that is pronounced as /AbAd/; 2)
/aI/, usually if it is followed by ⟨i⟩ or ⟨y⟩, such as ’abai’
(do not care) that is pronounced as /AbaI/; 3) a diphtong
/aU/, commonly if it is followed by ⟨u⟩ or ⟨w⟩, such as
’harimau’ (tiger) that is pronounced as /hArimaU/; and 4) /A+P/,
commonly if it is followed by ⟨a⟩, ⟨e⟩, ⟨i⟩, ⟨o⟩, or ⟨u⟩, such as
in ’saat’ (sometime) that is pronounced as /sAPAt/, and ’bait’
(couplet) that is pronounced as /bAPit/. The grapheme ⟨a⟩ is
not possible to be pronounced as /aI/ if it is not followed by
⟨i⟩ nor ⟨y⟩. It also not possible to be pronounced as /aU/ if it
is not followed by ⟨u⟩ nor ⟨w⟩. Such phonemic rules can be
actually used to filter possible conversions so that PNNR can
convert a grapheme into a correct phoneme more accurately
and faster.

The grapheme ⟨a⟩ is much more frequently pronounced
as /A/, up to 54K, among the three other phonemes those are
less than 1K. This fact makes ⟨a⟩ can be converted into a
correct phoneme easily. But, grapheme ⟨e⟩ can be pronounced
as five possible phonemes: /E/, /@/, /eI/, /E+P/, and /@+P/. The
biggest challenge is converting this grapheme into /E/ and /@/
since it changes so dynamic without certain phonemic rule
and they have high frequencies and many ambiguities. For

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

430 | P a g e
www.ijacsa.thesai.org

TABLE I: Twenty Six Indonesian Graphemes, Their Possible
Pronunciations in the Single Phonemic Symbol (SPS) and the
International Phonemic Alphabet (IPA) as well as Frequencies
and Percentages in 50K words containing 385K Graphemes

Number Grapheme SPS IPA Frequency Percentage
1 a a A 54,859 14.23%
1 a A aI 979 0.25%
1 a U aU 624 0.16%
1 a 1 A+P 669 0.17%
2 b b b 11,236 2.91%
3 c c Ù 3,667 0.95%
4 d d d 8,077 2.10%
5 e e E 9,851 2.56%
5 e E @ 30,554 7.93%
5 e Y eI 29 0.01%
5 e 2 E+P 36 0.01%
5 e 3 @+P 193 0.05%
6 f f f 2,114 0.55%
7 g g g 6,492 1.68%
7 g * * 11,513 2.99%
8 h h h 5,769 1.50%
8 h * * 245 0.06%
9 i i i 26,685 6.92%
9 i * * 1,047 0.27%
9 i 4 i+P 30 0.01%
10 j j Ã 3,381 0.88%
11 k k k 21,784 5.65%
11 k K x 217 0.06%
11 k * * 19 0.00%
12 l l ë 15,465 4.01%
13 m m m 19,237 4.99%
14 n n n 22,143 5.74%
14 n G N 11,779 3.06%
14 n N ñ 3,741 0.97%
15 o o O 13,763 3.57%
15 o O OI 56 0.01%
15 o 5 O+P 60 0.02%
16 p p p 12,919 3.35%
17 q k k 23 0.01%
18 r r r 24,709 6.41%
19 s s s 17,602 4.57%
19 s S S 206 0.05%
20 t t t 18,981 4.92%
21 u u u 17,926 4.65%
21 u * * 623 0.16%
21 u 6 u+P 19 0.00%
22 v f f 745 0.19%
23 w w w 1,784 0.46%
24 x s s 29 0.01%
25 y y j 1,124 0.29%
25 y * * 2,085 0.54%
26 z z z 397 0.10%

example, a word ’reses’ (recess) is pronounced as /r@sEs/,
but ’resesi’ (recession) is pronounced as /rEsEsi/. A grapheme
⟨e⟩ in ’berang’ (irascible) is converted into /E/, but ⟨e⟩ in
’berangin’ (windy) should be pronounced as /@/. Therefore,
the grapheme ⟨e⟩ is predicted to produce so many errors.

Those facts motivate this research to focus on modifying
the partial orthogonal binary grapheme encoding used in [9]
and incorporating some phonemic rules to reduce the PER of
the PNNR-based Indonesian G2P as well as do a more detail
evaluation to see its drawbacks.

In the following sections, this paper will discuss how
to use PNNR to develop the Indonesian G2P, the proposed
modified partial orthogonal binary grapheme encoding and
the phonemic rule-based phoneme filtering, the experimental
results showing the performance of both proposed concepts,
and the conclusion.

Phonemic rule -based
phoneme filtering

Generated patterns :
*******abai****
******abai*****
*****abai******
****abai*******

Possible conversions :
<a> � [/a/,/1/]
 � [/b/]
<a> � [/a/,/A/,/1/]
<i> � [/i/,/*/]

Phoneme sequence :
/abA*/

PNNR-based G2P

Data preprocessing

Grapheme sequence :
<abai>

Fig. 1: Block Diagram of Indonesian G2P Using PNNR and
Phonemic Rule

II. PNNR-BASED G2P

The block diagram of PNNR-Based G2P is illustrated
by figure 1. Data preprocessing converts a word (grapheme
sequence) into some patterns, where ’*’ in generated patterns
is a symbol for no grapheme and /*/ in possible conversions
is a symbol for no phoneme, while /a/, /1/, and /A/ are single
phonemic symbols for /A/, /A+P/, and /aI/ respectively. The
phonemic rule filters some potential conversions to be selected
by PNNR, for instance the first grapheme ⟨a⟩ followed by
⟨b⟩ in the given grapheme sequence ⟨abai⟩ is possible to be
converted into either /A/ or /A+P/. Finally, the PNNR decides
the best conversion of each given grapheme into the possible
phonemes.

A. Data Preprocessing

The data used to develop a PNNR-based G2P is a pair
of word (sequence of graphemic symbols) and the corre-
sponding pronunciation (sequence of phonemic symbols). The
data preprocessing is the sama as described in [9]. First,
each grapheme should be mapped into a single phonemic
symbol (SPS), as listed in table I. Next, each word should be
aligned to the corresponding phonemic symbols. Then, each
grapheme occurring in the word is consecutively located as the
focus grapheme and the rests on their appropriate contextual
positions using contextual length L = 14 (7 graphemes on the
left and 7 on the right of the focus, as suggested in [9]) as
illustrated by figure 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

431 | P a g e
www.ijacsa.thesai.org

B. Modified Grapheme Encoding

The partial orthogonal binary grapheme encoding described
in [9] has two problems. Firstly, the distance between a
vowel-oriented grapheme and a consonant-oriented grapheme
is exactly same as the distance between two consonant-
oriented graphemes come from different groups or between
a consonant-oriented grapheme and a non-grapheme. This
encoding, in some cases, makes the PNNR do a wrong conver-
sion. Secondly, three graphemes ⟨q⟩, ⟨v⟩, and ⟨x⟩ are encoded
into three unique group although, in fact, those graphemes are
always converted into /k/, /f/, and /s/ respectively.

Based on those facts, the partial orthogonal binary
grapheme encoding in [9] is modified as follow:

1) All graphemes and non-graphemes are divided into
three main categories: vowel-oriented graphemes,
consonant-oriented graphemes, and non-graphemes.
Vowels and consonants are designed to have 6 dif-
ferent bits since they are contextually so different
in a word (sequence of grapheme). For example,
a grapheme ⟨a⟩ followed by a vowel ⟨i⟩ in ’pan-
tai’ (beach) should be pronounced as /aI/, but it
should be converted into /A/ when it is followed
by a consonant ⟨s⟩ ’pantas’ (feasible). But, vowels
and non-graphemes as well as consonants and non-
graphemes have 5 different bits because they have
relatively lower differences. For example, a non-
graphemic symbol ⟨-⟩ in ’berang-berang’ (beaver)
make grapheme ⟨e⟩ pronounced as /@/, but grapheme
⟨e⟩ in ’berang’ (irascible) and ’memberang’ (become
angry) should be pronounced as /E/.

2) In each main category, some small groups developed
by considering the pronunciation similarity of those
graphemes in manner and place of articulation as
described in [10], [11]. Graphemes in a same group
are designed to have 2 different bits since they are
contextually so similar in a word, for instance a
grapheme ⟨n⟩ followed by either ⟨g⟩ or ⟨k⟩ should be
converted into /N/ such as ’bang’ (brother) and ’bank’
(bank) those pronounced as /bAN/. Graphemes in
different groups are designed to have 4 different bits
as they are contextually quite different, for instance
a grapheme ⟨e⟩ preceded by ⟨p⟩ should be converted
into /@/ such as in word ’peran’ (role) that pronounced
as /p@rAn/, but it should be converted into /E/ when
it is preceded by ⟨s⟩ such as in ’seran’ (strip) that
pronounced as /sErAn/. Therefore, graphemes ⟨k⟩ and
⟨g⟩ are grouped into a group, but ⟨p⟩ and ⟨s⟩ are in
a different group.

3) Three graphemes ⟨q⟩, ⟨v⟩, and ⟨x⟩ are encoded into
the same binary code as graphemes ⟨k⟩, ⟨f⟩, and ⟨s⟩
since they are always converted into /k/, /f/, and /s/
respectively.

4) Three non-graphemes ⟨-⟩, ⟨*⟩, and ⟨space⟩ are en-
coded into the same binary codes since they have a
same function in a word, i.e. no grapheme.

The modified partial orthogonal binary encoding for 26
graphemes and 3 non-graphemes (*, -, and space) are listed
in table II. Based on this encoding, two graphemes in a same
small group have two different bits and the Euclidean distance

TABLE II: Modified Partial Orthogonal Binary Encoding for
26 Graphemes and 3 Non-graphemes

Grapheme Modified partial orthogonal binary code
a 0011000
e 0010100
i 001001000000000000000000000000000000000000000
o 001000100000000000000000000000000000000000000
u 001000010000000000000000000000000000000000000
b 110000001100000000000000000000000000000000000
p 110000001010000000000000000000000000000000000
t 110000000001100000000000000000000000000000000
d 110000000001010000000000000000000000000000000
k 110000000000001100000000000000000000000000000
q 110000000000001100000000000000000000000000000
g 110000000000001010000000000000000000000000000
c 110000000000000001100000000000000000000000000
j 110000000000000001010000000000000000000000000
f 110000000000000000001100000000000000000000000
v 110000000000000000001100000000000000000000000
s 110000000000000000000001100000000000000000000
x 110000000000000000000001100000000000000000000
z 110000000000000000000001010000000000000000000
m 110000000000000000000000001100000000000000000
n 110000000000000000000000001010000000000000000
h 110000000000000000000000000001100000000000000
r 110000000000000000000000000000000001100000000
l 110000000000000000000000000000000000011000000
w 110000000000000000000000000000000000000110000
y 110000000000000000000000000000000000000001100
* 0100011
- 0100011

space 0100011

between them is
√
2. Those in different small group, but

in a same main category, have four different bits and their
Euclidean distance is 2. A vowel and a non-grapheme or a
consonant and a non-grapheme have five different bits and their
Euclidean distance is

√
5. A vowel and a consonant have six

different bits and their Euclidean distance is
√
6. This encoding

is expected to improve the capability of PNNR in classifying
a pattern of grapheme sequence into a correct phoneme.

C. Phonemic Rule-based Phoneme Filtering

The fifteen phonemic rules, to filter some potential
phonemes to be selected by PNNR, are listed in table III. The
first column is premise evaluating the focus grapheme (FG)
and the first contextual graphemes on the left (L1) and right
(R1). The second one is consequent containing one or more
impossible phonemes (IP) to filter the possible conversions.

A grapheme is subject to two or more rules so that number
of possible conversion to be lower. For example, grapheme ¡a¿
can be converted into four differenet phonemes: /A/, /aI/, /aU/,
or /A+P/. But, ¡a¿ in grapheme sequence ¡aku¿ is subject to
both rule 1 and 2 so that the grapheme is not possible to
be converted into phoneme /aI/ nor /aU/. Hence, ¡a¿ in the
grapheme sequence ¡aku¿ is only to be converted into /A/ or
/A+P/.

D. Pseudo Nearest Neighbour Rule

The PNNR used here works in the same way as in [9]. It
selects the best possible phonemes by finding the minimum
total distance between the current pattern and the possible
phonemes (classes) taking into account the k closest patterns.
The total distance is calculated using equation 1, where uj is
the weight for the j-th neighbour, L is the contextual length, dli

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

432 | P a g e
www.ijacsa.thesai.org

TABLE III: Phonemic Rules to Filter Some Potential
Phonemes (Conversion Classes), where FG is the Focus
Grapheme, IP is Impossible Phoneme(s), L1 and R1 is the First
Contextual Grapheme on the Left and the Right Respectively

Premise Consequent
FG is ⟨a⟩ and R1 is not member {⟨i⟩,⟨y⟩} IP is /aI/
FG is ⟨a⟩ and R1 is not member {⟨u⟩,⟨w⟩} IP is /aU/
FG is ⟨e⟩ and R1 is not member {⟨i⟩,⟨y⟩} IP is /eI/
FG is ⟨e⟩ and R1 is not member {⟨a⟩,⟨e⟩,⟨i⟩,⟨o⟩,⟨u⟩} IP is {/E+P/,/E+P/}
FG is ⟨g⟩ and L1 is not member {⟨n⟩} IP is /*/
FG is ⟨i⟩ and L1 is not member {⟨a⟩,⟨e⟩,⟨o⟩} IP is /*/
FG is ⟨i⟩ and R1 is not member {⟨a⟩,⟨e⟩,⟨o⟩} IP is /i+P/
FG is ⟨k⟩ and R1 is not member {⟨h⟩} IP is /x/
FG is ⟨n⟩ and R1 is not member {⟨c⟩,⟨j⟩,⟨s⟩} IP is /ñ/
FG is ⟨n⟩ and R1 is not member {⟨g⟩,⟨k⟩} IP is /N/
FG is ⟨o⟩ and R1 is not member {⟨i⟩,⟨y⟩} IP is /OI/
FG is ⟨s⟩ and R1 is not member {⟨y⟩} IP is /S/
FG is ⟨u⟩ and L1 is not member {⟨a⟩} IP is /*/
FG is ⟨u⟩ and R1 is not member {⟨a⟩,⟨e⟩,⟨o⟩} IP is /u+P/
FG is ⟨y⟩ and L1 is not member {⟨n⟩,⟨s⟩} IP is /*/

and dri are the distances of the i-th contextual grapheme on the
left and right calculated using the modified partial orthogonal
binary grapheme encoding, and wi is the weight for the i-th
contextual grapheme.

T =
k∑

j=1

uj

L/2∑
i=1

(dliwi + driwi) (1)

The neighbourhood weight for the j-th neighbour, uj , is
formulated by equation 2, where c is an power constant as
introduced in [9].

uj =
1

jc
(2)

The graphemic contextual weight used here is an exponen-
tially decaying function as proposed in [9]. It is formulated
by equation 3, where wi is the weight for the i-th contextual
grapheme, p is an exponential constant, and L is the graphemic
contextual length distributed equally into left and right of the
focus. Thus, the first contextual grapheme has the maximum
weight since it is the most important grapheme in deciding the
best phoneme, whereas the last one has the minimum.

wi = pL/2−i+1 (3)

III. EXPERIMENTAL RESULTS

The dataset used in this research is a set of 50K words with
corresponding pronunciation (phonemic symbols) collected
from the great dictionary of the Indonesian language (Kamus
Besar Bahasa Indonesia Pusat Bahasaor KBBI) third edition,
released in 2008, developed by Pusat Bahasa. To get a valid
evaluation, the PNNR-based G2P model is tested using 5-fold
cross-validation. First, the dataset is randomly split into five
subsets {1, 2, 3, 4, 5} of 10K different words each. Next, five
datasets: A, B, C, D, and E, are developed to contain 40K for
parameter tuning and 10K for evaluation. Dataset A consists
of {1, 2, 3, 4} for parameter tuning and {5} for evaluation,
dataset B consists of {1, 2, 3, 5} for parameter tuning and {4}
for evaluation, and so on.

1 2 3 4 5 6 7 8 9 10
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

Neighbourhood size k

A
ve

ra
ge

 P
E

R

Fig. 2: Average PER of PNNR-based G2P for Varying Neigh-
bourhood Size k

A. Optimum Parameters

Three parameters of PNNR, the neighbourhood size k, the
power constant of neighbourhood weight c, and the exponential
constant for graphemic contextual weight p, are tuned using
the five fold datasets. The first parameter to be tuned is k
since it is so varying based on the problem that it is difficult
to be predicted, while the optimum c is assumed to be 1.0
and the optimum p is predicted to be 2.0. Here the PNNR is
evaluated for varying k with c = 1.0 and p = 2.0. The result
in figure 2 shows that when k = 1 produces very high PER
since considering only one neighbour can lead PNNR to be a
too general classifier. It also gives high PER when considers
so many neighbours that make it too specific in classifying a
pattern. The PNNR produces the lowest PER on k = 6.

Next, the PNNR with k = 6 and p = 2.0 is analyzed using
varying c. The result illustrated by figure 3 shows that when c
is less than 1.0 the PNNR yields high PER since a low c makes
the closest neighbour has quite similar distance to the further
ones. It also produces high PER when c is 1.7 or more since a
high c makes the closest neighbour has too high distance and
the further ones are too low. It produces the lowest PER when
c = 1.6.

The PNNR with k = 6 and c = 1.6 is then evaluated using
varying p. The result in figure 4 shows that very small p, less
than 1.7, make the PNNR yields high PER because the closest
contextual graphemes has a similar importance to the further
ones. It gives the lowest average PER, around 0.93%, when p
= 1.9.

B. Modified Grapheme Encoding and Phonemic Rule

Next, the PNNR-based G2P using modified grapheme
encoding and phonemic rule is cross-validated using five fold
datasets. The experimental result in table IV shows that it
significantly reduces both PER, up to 13.07%, and WER,
around 12.13%, relative to the Indonesian PNNR-based G2P
proposed in [9].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

433 | P a g e
www.ijacsa.thesai.org

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

Power constant for neighborhood weight c

A
ve

ra
ge

 P
E

R

Fig. 3: Average PER of PNNR-based G2P for Varying Power
Constant for Neighbourhood Weight c

1.6 1.7 1.8 1.9 2 2.1 2.2
0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

Exponential constant for contextual weight p

A
ve

ra
ge

 P
E

R

Fig. 4: Average PER of PNNR-based G2P for Varying Expo-
nential Constant for Contextual Weight p

TABLE IV: Advantage of Modified Grapheme Encoding and
Phonemic Rule for PNNR-based G2P

PNNR-based G2P PER (%) WER (%)
Without phonemic rule 1.07 7.67
With phonemic rule and modified grapheme encoding 0.93 6.74

C. Most Errors

As predicted in the introduction, the grapheme ⟨e⟩ produces
most errors, up to 82%. This is caused by two problems:
1) Four prefixes, ’ber’, ’me’, ’per’, and ’ter’, produce many
ambiguous conversions with basic words. For example, a
grapheme ⟨e⟩ in a basic word ’berang’ (irascible) is converted
into /E/, but ⟨e⟩ in a derivative word ’berangin’ (windy) should
be pronounced as /@/ since ’ber’ is a prefix for the basic
word ’angin’ (wind) that is always pronounced as /b@r/. A

grapheme ⟨e⟩ in a basic word ’memang’ (indeed) is converted
into /E/, but ⟨e⟩ in a derivative word ’memangsa’ (to prey)
should be pronounced as /@/ since ’me’ is a prefix for the
basic word ’mangsa’ (prey) that is always pronounced as
/m@/. A grapheme ⟨e⟩ in a basic word ’peroksida’ (peroxide)
is converted into /E/, but ⟨e⟩ in a derivative word ’perokok’
(smoker) should be pronounced as /@/ since ’pe’ is a prefix for
the basic word ’rokok’ (cigarette) that is always pronounced as
/p@/. A grapheme ⟨e⟩ in a basic word ’pering’ (tuberculosis)
is converted into /E/, but ⟨e⟩ in a derivative word ’teringat’
(remembered) should be pronounced as /@/ since ’ter’ is a
prefix for the basic word ’ingat’ (remember) that is always
pronounced as /t@r/; 2) A grapheme ⟨e⟩ in some similar
compound words can be dynamically pronounced as either /E/
or /@/, such as a word ’termoelektris’ (thermo-electric) that is
pronounced as /t@rmoEëEktris/, but ’termoelektrisitas’ (thermo-
electricity) should be pronounced as /tErmoEë@ktrisitAs/. A
word ’reses’ (recess) is pronounced as /r@sEs/, but ’resesi’
(recession) is pronounced as /rEsEsi/. Such cases are very hard
to be solved by the PNNR.

IV. CONCLUSION

A 5-fold cross-validation shows the modified partial or-
thogonal binary grapheme encoding and phonemic rule are
capable of reducing the relative PER by 13.07%. A detail
analysis shows the most errors, up to 82%, come from
grapheme ⟨e⟩ that can be dynamically converted into either
/E/ or /@/ since four prefixes, ’ber’, ’me’, ’per’, and ’ter’,
produce many ambiguous conversions with basic words and
also from some similar compound words with both different
pronunciations for grapheme ⟨e⟩, such as a word ’reses’
(recess) that is pronounced as /r@sEs/ but ’resesi’ (recession) is
pronounced as /rEsEsi/. In the future, a stemming procedure can
be incorporated to find the basic words from the derivatives
with the four prefixes in order to reduce such errors.

ACKNOWLEDGMENT

The first author is an employee of Telkom Foundation of
Education (Yayasan Pendidikan Telkom, YPT) as a lecturer
at School of Computing, Telkom University (former: Telkom
Institute of Technology). Now he is pursuing a doctoral pro-
gram on Computer Science, Department of Computer Science
and Electronics, Faculty of Mathematics and Natural Sciences,
Gadjah Mada University. This work is supported by YPT with
grant number: 15/SDM-06/YPT/2013.

REFERENCES

[1] A. V. D. Bosch and W. Daelemans, “Data-oriented methods
for grapheme-to-phoneme conversion,” in The sixth conference
on European chapter of the Association for Computational
Linguistics (EACL). Morristown, NJ, USA: Association for
Computational Linguistics, 1993, pp. 45–53. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=976744.976751

[2] F. Yvon, P. B. D. Mareu, C. Alessandro, M. Bagein, G. Bailly, F. Be,
S. Foukia, V. Auberge, J. Goldman, E. Keller, D. O. Shaughnessy,
V. Pagel, B. Zellner, F. Sannier, and J. Ve, “Objective evaluation
of grapheme to phoneme conversion for text-to-speech synthesis in
French,” Computer Speech & Language, vol. 12, no. 4, pp. 393–410,
1998.

[3] P. Taylor, “Hidden Markov Models for Grapheme to Phoneme Conver-
sion,” in INTERSPEECH, 2005, pp. 1973–1976.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

434 | P a g e
www.ijacsa.thesai.org

[4] U. D. Reichel and F. Schiel, “Using Morphology and Phoneme History
to improve Grapheme-to-Phoneme Conversion,” in INTERSPEECH.
ISCA, 2005, pp. 1937–1940.

[5] M. Bisani and H. Ney, “Joint-sequence models for grapheme-to-
phoneme conversion,” Speech Communication, vol. 50, no. 5, pp. 434–
451, 2008.

[6] D. Wang and S. King, “Letter-to-sound Pronunciation Prediction Using
Conditional Random Fields,” IEEE Signal Processing Letters, vol. 18,
no. 2, pp. 122–125, 2011.

[7] R. Rasipuram, M. M. Doss, and L. Epfl, “Combining Acoustic Data
Driven G2P and Letter-to-Sound Rules for Under Resource Lexicon
Generation,” in INTERSPEECH. ISCA, 2012, pp. 1818–1821.

[8] A. Hartoyo and Suyanto, “An improved Indonesian grapheme-to-
phoneme conversion using statistic and linguistic information,” Interna-
tional Journal Research in Computing Science (IJRCS), vol. 46, no. 1,
pp. 179–190, 2010.

[9] Suyanto and A. Harjoko, “Nearest neighbour-based Indonesian G2P
conversion,” Telkomnika (Telecommunication, Computing, Electronics,
and Control), vol. 12, no. 2, pp. 389–396, 2014.

[10] H. Alwi, S. Dardjowidjojo, H. Lapoliwa, and A. M. Moeliono, Tata
Bahasa Baku Bahasa Indonesia (The Standard Indonesian Grammar),
3rd ed. Jakarta: Balai Pustaka, 1998.

[11] A. Chaer, Fonologi Bahasa Indonesia (Indonesian Phonology). Jakarta:
Rineka Cipta, 2009.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

435 | P a g e
www.ijacsa.thesai.org

