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Abstract—Images have become main sources for the informa-
tion, learning, and entertainment, but due to the advancement
and progress in multimedia technologies, millions of images are
shared on Internet daily which can be easily duplicated and
redistributed. Distribution of these duplicated and transformed
images cause a lot of problems and challenges such as piracy,
redundancy, and content-based image indexing and retrieval. To
address these problems, copy detection system based on local
features are widely used. Initially, keypoints are detected and
represented by some robust descriptors. The descriptors are
computed over the affine patches around the keypoints, these
patches should be repeatable under photometric and geometric
transformations. However, there exist two main challenges with
patch based descriptors, (1) the affine patch over the keypoint
can produce similar descriptors under entirely different scene or
the context which causes “ambiguity”, and (2) the descriptors
are not enough “distinctive” under image noise. Due to these
limitations, the copy detection systems suffer in performance. We
present a framework that makes descriptor more distinguishable
and robust by influencing them with the texture and gradients
in vicinity. The experimental evaluation on keypoints matching
and image copy detection under severe transformations shows
the effectiveness of the proposed framework.

Keywords—Content-based image copy detection, SIFT, CSLBP,
robust descriptors, patch based descriptors

I. INTRODUCTION

With the availability of Internet and powerful open access
image editing tools, it has become so easy and convenient to
edit the images and distribute to others. Millions of images
are shared and uploaded daily on image sharing sites such as
Facebook, Flicker, and ImageShake. Image databases are in-
creasing exponentially in size which causes so many problems
for efficient image indexing and retrieval such as image piracy
and redundancy. Much of work has been reported to address
these problems. However, partial image copy detection and
near duplicate detection are still very challenging [1], [2].

Generally, Image retrieval applications can be categorized
into three types: near duplicate image detection, image copy
detection, and similar image detection. In near duplicate de-
tection, the task is to detect all image copies along with many
other challenges such as the same scene captured by different
viewpoint or captured on the different time. Image copy
detection and partial duplicate detection are interchangeably
used [1] and this is the subset of near duplicate image detection
— original image is altered with changes in color, scale, partial
occlusion, rotation, etc. Finally, similar image detection tends
to find those images which are similar based on their visual

contents, texture, or attributes. Similar image detection appli-
cations are widely used by many image search engines such
as Google image. In these applications global features such as
color histograms, variance, and image entropy are mostly used.
In this paper, we mainly focus on content-based image copy
detection which comprises of image copy detection and near
duplicate image detection, these applications are potentially
needed for piracy, copyright violation, and efficient image
searching.

There are two famous techniques to prevent copyright
violation; Watermarking and Content Based Copy Detection
(CBCD), respectively. Watermarking technique involves em-
bedding the information in the digital signal in such a way that
it is difficult to remove [3] and carried along with the signal
whenever distributed or shared. The information in watermark
can be visible or invisible, whereas invisible information is
widely used. There are many schemes proposed for digital
watermarking such as spectrum watermarks [4], quantization
watermarks [5], and blind detection watermarks [6]. Water-
marking is the process of the identification of codes that
store the information of the owner. The main challenges for
watermarks are the translation, scale change, rotation, and
cropping. For watermarking systems, signatures are extracted
before distribution which makes this technique not feasible
for on-line applications where digital signals are already
distributed. Whereas, CBCD is the complementary approach
to watermarking. In CBCD systems, robust signatures or fin-
gerprints from query images are extracted, and then compared
to the signatures or fingerprints of gallery images (database)
to determine whether the query image has the copy in given
gallery or not. One of the main advantages of CBCD system
over watermarking is that signature extraction is not required
before distribution, signature or fingerprint can be called the
feature vector of the digital content. The feature vector should
be distinguishable, robust and efficient [7]. The main challenge
for CBCD systems is that the copy of digital content can be
modified or transformed to deceive the copy detection systems.
The list of top 10 challenge transformations are shown in
Table I.

Local keypoint descriptors are widely used to represent
the images in CBCD. Firstly, keypoints are detected from
the images, these keypoints should have high repeatability
under various affine and geometrical transformations. Some
of the most successful algorithms for keypoint detection
include SIFT [8], SURF [9], and Harris and Hessian affine
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TABLE I
LIST OF CHALLENGES FOR COPY DETECTION

# Description
C1 Camcording
C2 Picture in picture
C3 Insertions of pattern
C4 JPEG compression
C5 Change of illumination
C6 Cropping
C7 Blurring
C8 Image flipping
C9 Text insertion
C10 Decrease in image quality – This includes combination

of all nine challenges along with image shifting, contrast,
and image morphing

keypoints [10]. Secondly, local patches around the keypoint are
estimated [10]. Thirdly, robust and discriminative descriptors
which are invariant to many transformations such as scale,
rotation, affine distortion, 3D viewpoint change, image noise,
and illumination change are computed [8]. Finally, image is
represented by the set of local keypoint descriptors which
are later used for image retrieval, object recognition, copy
detection, augmented reality and many others.

The two main limitation for this practice are: (1) key-
point descriptor is the representation of local image patch
which is centered to keypoint, this patch can produce the
similar descriptor under entirely different scene or context
(ambiguity), and (2) the similar patch can produce different
descriptors under image noise (indiscrimination). The example
of ambiguity and indiscrimination are shown Figure 1.

To overcome these limitation, geometric relationship be-
tween local features is widely used by researchers in the
application of visual object categorization and copy detection
[11]–[14]. It has been argued that the performance of local
features is significantly improved from bag of visual words to
bag of pair of visual words [12]. But there are some limitations
such as (1) the combination of possible visual word pairs
grow quadratically w.r.t the vocabulary size. To overcome this
problem, different features are used on these pair of visual
words [15]. (2) Different features can be treated as its second
limitation as they require additional information like class
labels and does not necessarily lead to better performance [15].
These two limitations are discussed in Morioka et al [14],
where they propose a reverse technique. Instead paring the
visual words, they pair the raw descriptors before learning the
visual words. It has been experimentally shown that paring
before visual words learning is more effective then visual word
paring themselves [13], [14].

In this paper, we extend our previous work [16]. We
propose a framework to improve the performance of patch
based descriptors for CBCD. In our framework, the descriptors
are enriched by geometrically spatial relationship around the
keypoint region which makes descriptor more discriminative.
The rest of the paper is organized as follows. In Section II,
we briefly discuss some related work for content-based image
copy detection. In Section III, two famous descriptors are
explained, and different approaches to make them robust are

(a) (b)

(c) (d)
Fig. 1. SIFT descriptor matching, (a) and (c) SIFT descriptor, (b) and
(d) neighbor base SIFT descriptor with two neighbors. Where (a) shows the
indiscriminateness of SIFT descriptors and (c) shows the ambiguity.

discussed. In Section IV, detail experimental evaluation is
given, and paper is concluded in Section V.

II. RELATED WORK

This section is divided into two parts. In first part, we briefly
discuss about image copy detection, and in second part, we
briefly explain two famous patch based descriptors.

A. Content-based image copy detection

Content-based copy detection has been boosted for last six
year due to local features. Local features have been proven to
be more resistant and robust for severe image transformations
compared to global features. The descriptor SIFT [8] is
also one of the major reasons for local features popularity.
Many CBCD and image retrieval systems have been proposed
based on SIFT and other local features such as GLOH [17],
CSLBP [18], SURF [9], and BIG-OH [19].

Chang et al. [20] proposed RIME (Replicated IMage dE-
tector) to detect pirated copies of images on Internet using
wavelets and color space. The system has good accuracy for
basic types of transformations. Kim [21] use Discrete Cosine
Transform (DCT) for CBCD, as DCT is more robust to many
distortions and changes in images. They converted the images
into YUV format and only Y component is used in proposed
method, as they argue that colors do not play important
role in copy detection but colors are vital part in image
retrieval (images similar based on color, texture, or objects).
They successfully detected the copies of the test images with
and without modifications, however they fail to detect the
copies with 90◦ or 270◦ rotation [22]. Basit et al. [23], [24]
proposed a method joint localization to track the target with
unmanned vehicles. The method fuses the robot kinematics
and target dynamics in single space model to produce better
results. The global features are efficient for simple types of
transformations, however, in case of severe transformations
the performance of global features is very poor, for example,
in case of cropping, occlusion, and aspect ratio change.

Xu et al. [25] proposed CBCD system based on SIFT
and spatial features. They detect homogeneous and larger
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circular patches using SIFT detector, and then multi-resolution
histograms are computed as feature vectors. However, the
performance of this system is poor in occlusion types of
transformations. Zhou et al. [2] proposed a framework for
partial image copy detection for large scale applications by
using bag-of-visual-words model. They quantized the SIFT
in descriptor space and orientation space. They encode the
spatial layout of keypoints by XMAP and YMAP strategy,
which helps to remove the outliers. However, their framework
is not effective for object retrieval type of applications.

B. Patch based descriptors

Most of the successful feature point descriptors described
in the literature can be classified into two types: those based
on gradient histograms [8], [9], [17], [26] and those based
on local pixel intensity differences without explicit gradient
calculations [18], [27]–[29] We will call the latter group
“intensity-based” descriptors. Two famous descriptors are used
in the proposed framework for experiments: Scale-invariant
feature transform (SIFT) [8], and Center-Symmetric Local
Binary Pattern (CSLBP) [18].

1) Center-Symmetric Local Binary Pattern: CSLBP is an
extension of Local Binary Patterns (LBP). In LBP, each pixel
value p is compared with its N neighbors with radial distance
R. If the pixel value of p is less then its neighbors then output
is set to one else output is set to zero. For every p there will be
N comparisons and the output for each pixel p will be of N
bits and that can be presented by decimal number. In practice,
the values of N and R are 8 and 1, respectively. For a given
image or patch, the histogram of LBP is computed where
the length of histogram is 2N . Whereas, CSLBP is quantized
representation of LBP . In CSLBP , instead of comparing
each neighbor with p, only center-symmetric neighbors are
compared:

CSLBPN,R,T (p) =
∑N

2
i=1 s(|ni| − |ni+N

2
|)2i−1,

s(j) =

{
1 j > T
0 otherwise

(1)

The length of histogram in CSLBP is 2
N
2 which is quite

shorter than the histogram of LBP . The suggested values for
N,R and T are 8, 1, 0.01, respectively.

To compute the CSLBP descriptor, the given patch P is
divided into spatial grid of Gx × Gy and the histogram of
CSLBP is computed for each cell. Finally, all histograms are
concatenated to one vector. The length of CSLBP descriptor
is Gx × Gy × 2

N
2 . That is quite often the double of SIFT

descriptor. For our experiments the values for CSLBPN,R,T

are CSLBP8,1,0.01, and the highest efficiency is obtained by
keeping Gx = 4 and Gy = 4 that makes CSLBP the length
of 256.

2) Scale-Invariant Feature Transform: The SIFT descriptor
is the representation of gradient orientation histograms. To
compute the SIFT descriptor,the given patch P is divided
into grid of Gx × Gy . In each cell the gradient magnitude,

(a) (b)
Fig. 2. Neighbor based descriptor computation. (a) shows the keypoints with
their elliptical patches, and (b) shows the neighbors of one randomly selected
keypoint.

g(x, y), and orientation, θ(x, y), are computed for each pixel.
The gradient orientation are quantized into 8 directions and
histogram of quantized orientation is computed. Each sample
added to histogram is weighted by its gradient magnitude and
Gaussian weight. For Gaussian weight, circular window with a
σ that is 1.5 times that of the scale of keypoint is taken [8]. The
Gaussian weight is used to give more preference to those pixels
that are near to center. Finally, gradient orientation histograms
of all cells are concatenated to one vector, SIFT. The maximum
efficiency of SIFT is also obtained by keeping the Gx = 4
and Gy = 4. Therefore, the SIFT descriptor is of 128 length
(8× 4× 4).

III. METHODOLOGY FOR DESCRIPTORS COMPUTATION

In this section, we explain our methodology for descriptors
computation which improves the performance for CBCD.

A. Feature Extraction and Matching

Local keypoints are extracted and represented as q =
(x, y, θ, σ,Pq,d

c
q), where x and y are the coordinates, θ is

dominant orientation, σ is scale, P is 2D affine region of size
41×41 centered q, and d is a descriptor vector around keypoint
and c ∈ {CSLBP,SIFT, . . .}.

Two images are said to be similar, or match, if they have
many similar descriptors. Two descriptors d1 and d2 are said
to be similar if they are close to each other based on some
distance measure. In our framework, we have used Euclidean
distance as distance measure. The Euclidean distance is de-
fined as

E(d1,d2) =

√√√√ m∑
i=1

(d1(i)− d2(i))2, (2)

More specifically, given two images Q and R with local
keypoints sets E and F , respectively, we perform nearest
neighbor (NN) matching subject to a reliability constraint. We
consider the keypoint pair (ei, fj), where ei ∈ E, fj ∈ F , to
be similar if their descriptors di and dj satisfy the following
two conditions for distance measure E(·, ·):
• Nearest neighbors

E(di,dj) = min
dk∈F

E(di,dk) (3)
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• Reliable match

Tm · E(di,dj) < min
dl∈F,l 6=j

E(di,dl) (4)

where Tm > 1 is a threshold ensuring a stable match
under noise conditions.

This method is widely used in computer vision applica-
tions [8], [17], [18]. The descriptors with this configuration
will be represented by sign D. To make matching fast, we use
lookup table in which precomputed distances are stored. In
our implementation of descriptors, we used unsigned 8-bits for
each element of descriptor vector. Let N = {0, 1, 2, . . . , 255}
be the unsigned 8-bit arrays, then T is a function defined as
follow:

T : N ×N → D (5)

where D contains the squared difference between two un-
signed 8-bits values. Making use of T as lookup table,
Euclidean distance can be redefined as follow:

E(d1,d2) =

√√√√ m∑
i=1

T (d1(i),d2(i)) (6)

Using T we can save two mathematical operations, sub-
traction and squaring (multiplication). We linearly increase the
database size of descriptors and find the first nearest neighbor
for single descriptor.

B. Geometrical influenced descriptors computation

For given image, local keypoints are detected. For detected
keypoints, affine patches are estimated and normalized and
finally respective descriptors are computed, as suggested by
Mikolajczyk and Schmid [17]. For keypoints, Harris-affine
detector is used which calculates the elliptical like patches for
corner like structures [10], [30], [31]. On average, Harris-affine
detector returns 1400 points by keeping default parameters on
OVG dataset.

For keypoint patch normalization and then descriptor com-
putation, we have used the same steps suggested by Mikola-
jczyk and Schmid [17].

The performance of descriptors can’t be increased by in-
creasing their dimensions with different configuration values
of spatial grid (Gx and Gy) nor by increasing the region size
around the keypoint (shown in Figure 5). We use different
configuration to enrich the descriptor vectors by the gradients
or texture in the vicinity. We aim to improve the performance
of descriptors before quantization like computation of visual
words or codebooks.

1) Configuration I: Pairing K spatially close feature de-
scriptors: In this approach, we use K nearest neighbor
approach. Each keypoint q is paired with other keypoint
descriptor r which is nearest neighbor of q in descriptor space.
We name this approach nearest neighbor descriptor (NND)
paring from now onwards. This approach is sensitive to image
noise which are discussed in detail in experimental section.

2) Configuration II: Increasing the patch size: To add the
spatial information around the keypoint patch, we increase the
patch size. The patch size of each keypoint is selected based
on their scale to make keypoint scale invariant. Since, the
patch Pq for given keypoint q is invariant to scale and affine
distortions, therefore, in general scenario the performance of
descriptors can be decreased. However, in case of CBCD, the
performance is neither increased nor decreased. Experiments
show that the performance in case of JPEG compression is
increased.

3) Configuration III: Pairing neighbor region descriptors:
In this configuration, we enrich the keypoint descriptors by
the geometrical texture and gradient in vicinity. Instead of
increasing the scale or adding an other keypoint descriptor
to given keypoint descriptor dq , we take some local image
patches near Pq and add the gradient or intensity information
to dq . This is achieved by taking an other point(s) (x′, y′) at
the pixel distance Rn from keypoint q, the patch over (x′, y′)
is computed by keeping the same parameters of keypoint q
except (x, y), finally newly computed descriptors are concate-
nated to dq . The example of neighbor local image patches
near keypoints is shown in Figure 2. During experiments,
we take upto N neighbor points, where N = 4 and name
it neighbor based descriptors (NBD). It is not necessarily
needed to compute the full length descriptors from neighbor
points. We take less number of spatial grid around the patch
to compute the descriptors.

The value of Rn is carefully selected. Since, we are using
elliptical regions, so we take vertex or co-vertex points for the
distance of Rn so that neighbor patches have region overlap
with P as shown in Figure 2.

IV. EXPERIMENTS AND RESULTS

To validate the performance of our proposed framework we
experiment on two applications. In first one, keypoint match-
ing accuracy provided by homography are computed under
different types of image transformations. The transformations
mainly include C4, C5 and C7, the list of transformations
can be seen in Table I. In second application, the performance
is shown for image retrieval application. For image retrieval,
query image is matched with all the images and ranked
list based on distances is obtained. The images during this
experiments have severe transformations which are the mixture
of all listed transformations listed in Table I.

A. Benchmark Datasets

Two different benchmark datasets are used to validate the
features. Dataset provided by oxford vision group (OVG)1

is used for first application experiment. This is standard
dataset and used in many papers [17], [18], [32], [33], which
comprises of challenging geometric and photometric transfor-
mations. Three types of transformations are used in this experi-
ment: illumination change, image blur (also scale change), and
JPEG compression. For any given distortion (transformation)

1http://www.robots.ox.ac.uk/~vgg/research/affine/
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Fig. 3. Dataset used in image-to-image matching for partial image copy detection.

G, base image I0 of some particular scene is provided with five
more gradual distorted images, S = {I0, I1, . . . , I5}. Since,
distortion get severe gradually therefore Iz has less severe
transformation compared to Iz+1 where z ∈ {1, 2, . . . , 4},
all images in dataset are related by homography. Detail on
acquisition of images and transformations in the dataset can
be found in the original work [10], [17].

In second experiment, image retrieval datasets known as
PICDD [1], [2] and Oxford [34] are used. In PICDD dataset,
the images are collected and manually annotated of different
scenes and objects. We randomly select 10 objects/scenes
with their 10 transformed copies, the transformations are the
union of all transformations listed in Table I. The example of
random sample from PICDD dataset is shown in Figure 3. The
second dataset, Oxford dataset [34], contains 11 landmarks
with 55 query images among total of 5K images obtained
from Flicker 2.

B. Evaluation matrices

The precision, recall and F-score are used as evaluation
matrices

recall =
# correct matches

Total correspondences

precision =
#correct matches

Total matches

F -score = 2× precision× recall
precision+ recall

(7)

For point-to-point correspondences, the number of correct
matches and total correspondences are determined by the
overlap error [10], [17]. The overlap error is the estimation
of region overlap in case of transformations, and can easily be
estimated with the help of homography, more details can be

2http://www.flickr.com/
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Fig. 4. Performance of NND for Experiment I

found in original work [10], [17]. The values of precision and
recall are obtained by the changing the T which is explained
in Section III-A. In case of F-score, precision is computed on
gradually increasing recall and only the maximum values of
F-score are reported. For Experiment II, precision is computed
on ranked list. For each image there are 10 copies in database.

C. Experiment I: Point to point correspondences

In this experiment, local keypoints are detected from im-
ages {I0, I1, . . . , I5}. All descriptors SIFT, CSLBP, NBD-
SIFT, NBD-CSLBP, NND-SIFT, NND-CSLBP, DSIFT, and
DCSLBP are computed from all keypoints in all images. In
each transformation, image I0 is matched with rest of the 5
gradual deformed copies. Due to the page and space limitation,
we only report the correct and false matches between one pair
imagesI0 and I3). As explained in previous section that images
are related by homography and number correct matches are
obtained by overlap error, and due to homography total number
of correspondences are already know. For matching we used
the methodology explained in Section III-A. We visualize the
correct and false matches by recall vs 1-precision, and F-score.

D. Experiment II: Image retrieval

For Experiment II and dataset PICDD, there are 100 images
including 10 query images. For image IQ, similarity based
matching with all the images in databases are computed. Based
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TABLE II
LIST OF SPATIAL GRID CONFIGURATION USED FOR DESCRIPTOR

COMPUTATION. FOR CONF 1 TO CONF 4, NEIGHBORS ARE
PROGRESSIVELY INCREASED FROM 1 TO 4.

Type Description
Conf 1 Spatial grid around keypoint and neigh-

bor is 1 x 2.
Conf 2 Spatial grid around keypoint and neigh-

bor is 2 x 2.
Conf 3 Spatial grid around keypoint is 3 x 3

and grid around neighbors is 2 x 2.
Conf 4 Spatial grid around keypoint and neigh-

bor is 3 x 3.
SIFT / CSLBP Spatial grid size {(2 × 2), (3 ×

3), . . . , (6× 6)}
DCSLBP Double support region around keypoint

for CSLBP
DSIFT Double support region around keypoint

for SIFT

on similarity score rank list is maintained. The similarity score
between IQ and image Id is computed as follow

M(IQ, Id) =
|IQ ∪ Id|
|IQ|

× 100 (8)

where |IQ ∪ Id| represents the similar features between IQ
and Id, and |IQ| is total number of features in image IQ.
The retrieval accuracy is shown in Figure 6. It can be seen
that NBD SIFT retrieve, on average, top three images as true
positives whereas all other descriptors retrieve only top one as
true positive.

We also evaluate the performance of NBD descriptors on
larger dataset (Oxford dataset). We follow same steps used
in BIGOH [19]. We evaluate the retrieval performance of
proposed descriptors by mean average precision (mAP). This
is obtained by computing the matching scores of query images
with all the images in the database exhaustively. Rank list is
obtained for every query image and calculate the precision
of retrieval at that cutoff (the number of copies divided by
the number of gallery images with match score above the
threshold), and finally mean of average precision is calculated.
The mAP is shown in Table III.

E. Results and Discussions

The NND does not add any improvement in descriptors
performance as they are very sensitive to image noise. It
has been observed that keypoint changes their position in
features space over small distortion. The chances to get 1-
NN after some image noise is very small. The performance
of NND is shown in Figure 4, NND-SIFT and NND-CSLBP
are obtained by paring the keypoint descriptors with their
first nearest neighbor descriptor. For Configuration II and
III, we use different configuration values of spatial grid over
patch before descriptors computation. The list of spatial grid
configurations is shown in Table II. The different configuration
of spatial grid show that descriptors performance can not be
improved while increasing the spatial grid size. Whereas, it
can be seen that equivalent performance is achieved with
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Fig. 6. Performance of SIFT and Neighbor SIFT for image retrieval.

reduced dimensions in the case of NBD descriptors. The
descriptors performance for Configuration II and III is shown
in Figure 5. For Configuration II, we can see that descriptor
performance is not improved. There is only slight different in
F-score except JPEG compression, D-CSLBP is better then
CSLBP. For Configuration III (neighbor based descriptors),
the performance of SIFT and CSLBP is increased. We also
get equal performance despite of lower dimensions.

Descriptors computed on many neighbors give better perfor-
mance, but if the position of keypoint is drastically changed
then these descriptors give poor performance. Based on ex-
periments, we recommend to use up to three neighbors. It
can be seen that only increasing the scale does not bring any
improvement. Instead it improves when descriptor computed
from it original patch is concatenated with its neighbors, as
affine region around the keypoint have vital contribution for
descriptor robustness.

The framework also shows good performance for image
retrieval experiment where severely transformed copies of
query images are retrieved based on their descriptors matching.
Neighbor based descriptors increase the discrimination power
and also decrease the ambiguity. The discriminative power
of SIFT after enriching it by its neighbor can be seen in
Figure 6, where the values of Gx and Gy are (3 × 3), and
for neighbor patches it is 2 × 2 (only two neighbors are
used). The NBD descriptors contains more local information
around the keypoint patch therefore when matching score of
SIFT and NBD SIFT is computed on true negative images
are very different. Ideally, the average matching score with
true negative images should be zero but it is not obtained
in practical. The average matching score of NBD SIFT is 0.5
whereas for SIFT it is 3.7 on true negative images. This clearly
shows that NBD based descriptors have less ambiguity. An
example of image-to-image matching based on local keypoints
is shown in Figure 1 where it is can be seen that NBD SIFT
does not have any matching between different images and have
correct matching in case of similar images with symmetric
structure.

V. CONCLUSION

This paper introduces the neighbor based descriptors. De-
scriptors are influenced by the texture and gradient in vicinity.
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TABLE III
RETRIEVAL ACCURACY (MAP) OF ALL DESCRIPTORS ON LARGER DATASET.

Datasets SIFT CSLBP GLOH NBD SIFT NBD CSLBP D-SIFT PCA-SIFT
PICDD 0.644 0.510 0.690 0.730 0.590 0.601 0.663
Oxford 0.711 0.602 0.711 0.767 0.610 0.612 0.690
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Fig. 5. Results of Keypoint matching for neighbor based descriptors. Top row shows the performance of CSLBP, and bottom row shows of SIFT. Configuration
of descriptors computation are shown in Table II. During descriptor computation one to for neighbors are used.

Results on two famous descriptors, SIFT and CSLBP, are
shown in Figure 5 and Figure 6. We obtained better perfor-
mance despite of lower length after influencing the descriptor
by their neighbors on particular transformations. Currently, we
are trying to explore the retrieval efficiency for very large
datasets in real time. Computation of neighbor descriptors
increases the computation time. We can also compute hybrid
descriptors, adding the power of different descriptors into one.
For example, keypoint descriptor can be computed by SIFT
and neighbors can be computed by CSLBP or visa-versa.
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