
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

60 | P a g e

www.ijacsa.thesai.org

NMVSA Greedy Solution for Vertex Cover Problem

Mohammed Eshtay

Department of Computer Science

Applied Science Private University

Amman, Jordan

Azzam Sleit

Department of Computer Science

University of Jordan

Amman, Jordan

Ahmad Sharieh

Department of Computer Science

University of Jordan

Amman, Jordan

Abstract—Minimum vertex cover (MVC) is a well-known NP-

Complete optimization problem. The importance of MVC in

theory and practical comes from the wide range of its

applications. This paper describes a polynomial time greedy

algorithm to find near optimal solutions for MVC. The new

algorithm NMVAS is a modification of already existed algorithm

called MVAS which uses the same principle of selecting

candidate from the neighborhood of the vertex with a

modification in the selection procedure. A comparative study is

conducted between the NMVAS and MVAS which shows that the

proposed algorithm NMVSA provides better or equal results in

the most cases of the underlying data sets which leads to a better

average approximation ratio of NMVAS. NMVAS inherits the

simplicity of the original algorithm.

Keywords—Vertex Cover Problem (MVC); Combinatorial

Problem; NP-Complete Problem; Approximation Algorithm;

Greedy algorithms; Minimum Independent Set

I. INTRODUCTION

Many problems and concrete situations (networks, vehicle
routing, maps, etc.) are mapped into graphs and then set of
algorithms are developed to manipulate these graphs to reach a
solution for the given problem. Unfortunately many of such
problems cannot be solved exactly in a polynomial time. Such
problems are called intractable but because of their importance
they must be solved.[10]

One option to solve such NP-Problems is to use heuristics.
Heuristics do not guarantee the quality of solution and no
guarantee also on the time required to solve the problem.
Another alternative is to use approximation algorithms. In
approximation algorithms we find a solution with quality
between optimal and r (r>=1) and we can guarantee that the
algorithm will finish running in a reasonable time.

The problem that we are concern about in this paper is
MVC. MVC the minimum vertex cover is a popular NP-
Complete problem with a high importance in theory and
practical computer science.[1].

There are many algorithms proposed to solve this problem.
In this paper we will discuss set of solutions existed in the
literature to solve this problem using approximation
algorithms. In addition we will present new modified algorithm
NMVSA and compare the results with already existed
solutions of the same type.

Vertex cover is equivalent to two other popular
optimization problems: MC (The Maximum Clique Problem)
and MIS (Minimum Independent Set). These three problems
actually can be considered as three different forms of the same
problem. [5,19,20]

The following propositions hold for undirected graph
G(V,E)

 The minimum vertex cover does not contain vertex with
degree zero.

 Every vertex cover contains v or w where w belongs to
set of vertices adjacent to v, for every vertex v.

 If there is a vertex v of degree one, w is adjacent to u,
there is a minimum vertex cover which contains w.

 If there is a vertex v of degree two, {u,w} are adjacent
to u then there is a minimum vertex cover which
contains both u and w or neither of them. [5,19]

Definition: A vertex cover in an undirected graph G is the
subset of vertices S in such that every edge in the graph G is
connected to at least one vertex of S. The size of a vertex cover
is the number of vertices it contains. [1]

Vertex cover takes undirected graph G as input and integer
number S. It tries to find a vertex cover of size S.

The size of the vertex cover is the number of vertices inside
it. If the nodes are weighted by a non-negative number then it
tries to find vertex cover with the minimum weighted vertices
[2,15].

The vertex cover has applications in bio-informatics,
security and networking. An example of vertex cover problem
could be forming a team to perform certain set of tasks then we
must hire enough people to accomplish each certain task. Many
applications can use MVC such as network security,
scheduling, biology and finance [3,16].

There are exact solutions for this problem that guarantee
the optimal solution such as branch and bound but may fail to
give solution within reasonable time for large instances. Other
type of solution is to use heuristic algorithms. Heuristic
algorithms do not guarantee the optimal solutions but they can
find optimal or near optimal solution in a reasonable time
[4,21,22].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

61 | P a g e

www.ijacsa.thesai.org

Fig. 1. Vertex Cover

Notations

Given an undirected graph G(E,V), a vertex cover of a

graph G is a subset of vertices VC V(G) such that every

edge has an end point in VC. (That is, for all e E(G), e VC

≠).

Fig. 1 shows examples of a vertex cover and a minimum
vector cover respectively. The nodes colored red in Fig. 1b are
the nodes selected in the vector cover. The minimum vertex
cover is a vertex cover of smallest possible size that appear in
Fig. 1c.

The remainder of this paper is organized as follows, the
different methods and related work in Section 2, the
terminology, algorithm and the computation complexity in
Section 3. We then discuss and analyze the results of
experiments in section 4. Section 5 contains the conclusions
and points to several directions for further research.

II. RELATED WORK

The NP-Completeness of MVC problem has proved by R
Karp[6]. This means that we don’t have a polynomial time
solution to solve it. The problem is one of the most well
studied problems from researchers in computer science due to
the importance and wide-range of its applications. As I
mentioned earlier we can use approximation algorithms such as
APPROX-VERTEX-COVER and Maximum Degree Greedy
(MDG) to solve the problem.[7]

The Depth First Search algorithm presented by savage [8]
computes the spanning tree at the beginning and then returns
the non-leaves vertices of the depth first search spanning tree
as a vertex cover.

The Maximum Degree Greedy (MDG) algorithm is an
adaptation of a well-known heuristic algorithm used for
extracting the MIS MDG keeps adding the node with the
maximum degree until all edges in the graph are covered.
[7,9,10]

The Greedy Independent Cover (GIC) is an adaptation of
the algorithm presented in. In this algorithm we select the
vertex of the minimum degree and all its neighbors to the
vertex cover, the process continues until we cover all edges.
[10,11]

In the algorithm LISTLEFT is proposed to find vertex
cover based on a list heuristic. In this algorithm the selection of
the vertices is known in advance and cannot be changes.
Another list heuristic algorithm ListRight is proposed in [12].

Many of the previous mentioned methods to solve the
problem of MVC depend on the degree of the vertex itself.
Balaji et al. presented another technique that depends of a
value called the support of the vertex. They proposed
algorithm called vertex support algorithm (VSA). [6,13]

A modification of the VAS is called MVAS where the
selection of the vertex does not depend only on the vertex that
have the maximum the support value but it finds all the vertices
with minimum support value and then it selects the vertex with
minimum support from the list of all neighbors of the selected
vertices. MVAS shows better results in some benchmarks
comparing to original VAS. [6, 13]

Some other solutions depend on genetic algorithms such as
(HVX). Xu and Ma presented solution that uses annealing
algorithms to find the minimum vertex cover. In their work
they show almost 100% approximation ratio for some
benchmarks but they need to apply it on more benchmarks.
[14].

In this paper we are introducing new greedy algorithm
(NMVAS) to find the MVC by modifying MVAS. The results
of applying the two algorithms in a set of benchmark sets are
then compared.

III. TERMINOLOGIES, ALGORITHM AND COMPUTATIONAL

COMPLEXITY

In this section we present the proposed algorithm, the
pseudo code of the algorithm, example to clarify the idea, and
theoretical complexity analysis.

A. Terminology

The selection of vertices in NMVSA algorithm relies on the
degree of the neighborhood vertices. We will introduce the
definition of neighborhood, degree, and support of vertex:

Neighborhood of a vertex: Let G be an undirected graph
G (V, E) where V is set of vertices and E is set of Edges.

|E|=m, |V|=n. For each vV the neighborhood of v-N (v) =

{uV | u is adjacent to v.

Degree of a vertex: The degree of the vertex d (v) is the

number of adjacent neighbors for vertex v V.

The support of a vertex: support of a vertex s (v) is the
sum of degrees of all neighbors of v.

Vertex Cover: Vertex cover c={x V | x=u or v if (v,u) is

an edge eE}

B. The proposed Algorithm

In the proposed algorithm we are trying to find an optimal
or near optimal solution of the vertex cover problem because of
the absence of a polynomial time solution for this NP-
Complete problem. The proposed solution depends on the idea
presented in VAS algorithm [17]. The selections of the vertices
that will be part of the vertex cover rely on the value of
support. Value of support is a value represents the sum of the
degrees of the neighbors of the vertices.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

62 | P a g e

www.ijacsa.thesai.org

The algorithm starts by finding the degree of each vertex
not yet selected in the vertex cover. The degree of the vertex is
the number of adjacent neighbors for vertex. The second stage
after finding the degrees is finding the support value for each
vertex. The algorithm proceeds by finding a list that contains
all vertices that have the minimum support value. The next step
is to select the vertex with the maximum support value among
the neighbors of the vertices of the minimum support value.
After adding the vertex to the vertex cover, all adjacent edges
to this vertex are deleted. The process continues until no more
edges exist.

C. New Modified Vertex Support Algorithm (NMVSA)

The idea of selection in the proposed algorithm NMVSA
shown in the algorithm 1 depends on the fact that the
candidates of vertex cover are adjacent to the vertices with
minimum degrees. [18] NMVSA adds a vertex from the
supporting list with the maximum degree in each iteration to
the vertex cover and delete all edges connected to this vertex.
The process continues until no more edges still in E.

Algorithm 1: NMVSA

Input:

Output:

1: While ()

 //Calculate the degree for each vertex

2: Foreach

 Find d ()

3: minSup =

 //Calculate the support value for each vertex

4: Foreach

 Calculate the support of vi

 If minSup Then

 minSup =

 //Create the list of minimum support vertices

5: Foreach

 If minSup Then

 Add vi to minSupList

 //Find the neighbors of minimum support vertices

6: Foreach

 Add to neighborhoodList

 maxSupNeighbor =

 c = 0 //Candidate vertex

 //Find the vertex to be added to the Vc

7: Foreach

 If maxSupNeighbor Then

 c=

 maxSupNeighbor =

 { |

Step one guarantees that we pass through all edge, at each
iteration we calculate the degrees of all vertices in step 2. In
step 3,4 we find the support value for each vertex and we find
the minimum support value among all vertices. Step 5 finds all
the vertices that have the minimum support value. In step 6 we
find all the neighbors of vertices listed in the minimum support
vertices list. In step 7 we select the vertex with the maximum
support value from the list of all neighbors of the vertices with
minimum support value.

The intuition behind the algorithm is to select the vertices
that connect as much as possible from the vertices that are
located on the edges of the graph.

D. Computational Complexity

According to our terminology, number of vertices is n and
number of edges is m. The complexity of NMVSA can be
obtained as follows: step 2 in the algorithm which is used to
find the degree of each vertex requires). Step 4 which is
used to calculate the support value of each vertex and finding
the minimum support value is taking also. To pick all
the vertices that have supporting value equal to the minimum
support value in step 5 we need . Step 7 requires .
The whole process will be repeated m times in the worst case.

The total running time can be expressed in the following
formula:

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The code of NMVSA has been developed using c++ on a
machine Intel Core 2 Duo 2.1 GHz with 2GB memory. The
algorithm has been compared to three other algorithms -
VSA[17], MVSA[6], and modified MDG[2].

The programs have been executed on part of well-known
dataset DIMACS benchmark set and on BHOSLIB benchmark
set. The effectiveness of the algorithm NMVSA algorithm was
evaluated by executing the algorithm on 40 instances of
BHOSLIB 13 instances of DIMACS dataset.

Table I lists the results of all experiments hold in the
algorithms. Table I consists of two parts. The first part is the
length of the vertex cover found by each of the algorithms. The
second part shows the ratio of the result of each algorithm and
the best results obtained. The first column of the table states the
name of the instance, the second column is the cardinality of
the instance, and the following two columns are the results of
applying MVSA and our proposed algorithm NMVSA
respectively.

The second part of the table is the Approximation ratio of
each of the tested algorithms.

According to Table I we can see that NMVSA gives better
or equal results in all instances that we used from DIMACS
benchmark. also NMVSA gives better results in 4 instances of
BHOSLIB benchmark set and not as good as MVSA in two
instance of BHOSLIB.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

63 | P a g e

www.ijacsa.thesai.org

TABLE II. EXPERIMENTAL RESULTS

Benchmark |V| Optimal Vc MVAS NEW MVAS
Approximation ratio

MVAS NEW MVAS

frb30-15-1 450 420 426 426 1.014 1.014
frb30-15-2 450 420 427 427 1.017 1.017

frb30-15-3 450 420 426 426 1.014 1.014

frb30-15-4 450 420 426 426 1.014 1.014
frb30-15-5 450 420 429 428 1.021 1.019

frb35-17-1 595 560 567 567 1.013 1.013

frb35-17-2 595 560 565 565 1.009 1.009

frb35-17-3 595 560 567 567 1.013 1.013
frb35-17-4 595 560 567 567 1.013 1.013

frb35-17-5 595 560 567 567 1.013 1.013

frb40-19-1 760 720 728 728 1.011 1.011

frb40-19-2 760 720 728 728 1.011 1.011
frb40-19-3 760 720 728 728 1.011 1.011

frb40-19-4 760 720 729 730 1.013 1.014

frb40-19-5 760 720 728 728 1.011 1.011

frb45-21-1 945 900 910 910 1.011 1.011
frb45-21-2 945 900 909 909 1.01 1.01

frb45-21-3 945 900 908 908 1.009 1.009

frb45-21-4 945 900 909 909 1.01 1.01
frb45-21-5 945 900 910 910 1.011 1.011

frb50-23-1 1150 1100 1111 1111 1.01 1.01

frb50-23-2 1150 1100 1111 1111 1.01 1.01

frb50-23-3 1150 1100 1109 1109 1.008 1.008
frb50-23-4 1150 1100 1111 1111 1.01 1.01

frb50-23-5 1150 1100 1112 1112 1.011 1.011

frb53-24-1 1272 1219 1229 1229 1.008 1.008

frb53-24-2 1272 1219 1229 1229 1.008 1.008
frb53-24-3 1272 1219 1230 1230 1.009 1.009

frb53-24-4 1272 1219 1230 1230 1.009 1.009

frb53-24-5 1272 1219 1230 1230 1.009 1.009
frb56-25-1 1400 1344 1355 1355 1.008 1.008

frb56-25-2 1400 1344 1353 1355 1.007 1.008
frb56-25-3 1400 1344 1355 1355 1.008 1.008

frb56-25-4 1400 1344 1357 1357 1.01 1.01

frb56-25-5 1400 1344 1354 1353 1.007 1.007

frb59-26-1 1534 1475 1487 1486 1.008 1.007
frb59-26-2 1534 1475 1487 1487 1.008 1.008

frb59-26-3 1534 1475 1483 1483 1.005 1.005

frb59-26-4 1534 1475 1487 1485 1.008 1.007
frb59-26-5 1534 1475 1487 1487 1.008 1.008

C500.9 500 443 451 451 1.018 1.018

C1000.9 1000 932 945 945 1.014 1.014
C2000.5 2000 1984 1988 1988 1.002 1.002

C2000.9 2000 1920 1934 1933 1.007 1.007

keller4 171 160 160 160 1 1

keller5 776 749 752 751 1.004 1.003
keller6 3361 3302 3311 3311 1.003 1.003

p_hat300-1 300 292 294 294 1.007 1.007

p_hat300-2 300 275 279 279 1.015 1.015

p_hat300-3 300 264 272 271 1.03 1.027
p_hat700-1 700 689 692 692 1.004 1.004

p_hat700-2 700 656 660 660 1.006 1.006

p_hat700-3 700 638 649 649 1.017 1.017

Table II summarizes the results of the execution of the
algorithm. Table II shows that our modified version of MVSA
gave equal results in 40 instances, better solutions in 7
instances and MVSA was better in two instances.

TABLE III. SUMMARY OF RESULTS

 NMVAS

Better 7

Equal 40

Worse 2

V. CONCLUSION

In this paper we developed new algorithm called NMVSA
by modifying existing algorithm called MVSA. We conducted
a comparison study depending on the results of execution on
two different well known benchmark sets. NMVSA gives
optimal or near optimal solutions with average ratio 1.0101on
the instances that we executed the algorithm in. NMVSA
generally shows better results than MVSA algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

64 | P a g e

www.ijacsa.thesai.org

Future work includes trying to get more optimal solutions
and decrease the ratio to be closer to 1

ACKNOWLEDGMENT

The authors are grateful to the Applied Science Private
University, Amman, Jordan for the full financial support
granted to this research project (Grant No. DRGS-2015-2016-
54).

REFERENCES

[1] Cormen, T. H. (2013). Algorithms unlocked. Mit Press.

[2] Cai, S., Su, K., Luo, C., & Sattar, A. (2013). NuMVC: An efficient local
search algorithm for minimum vertex cover. Journal of Artificial
Intelligence Research, 687-716.

[3] Angel, E., Campigotto, R., & Laforest, C. (2012). Implementation and
comparison of heuristics for the vertex cover problem on huge graphs. In
Experimental Algorithms (pp. 39-50). Springer Berlin Heidelberg.

[4] Williamson, D. P., & Shmoys, D. B. (2011). The design of
approximation algorithms. Cambridge university press.

[5] Chandran, L. S., & Grandoni, F. (2005). Refined memorization for
vertex cover. Information Processing Letters, 93(3), 125-131.

[6] Imran, K., & Hasham, K. Modified Vertex Support Algorithm: A New
approach for approximation of Minimum vertex cover. Research Journal
of Computer and Information Technology Sciences ISSN, 2320, 6527.

[7] Bansal, S., & Rana, A. Analysis of Various Algorithms to Solve Vertex
Cover Problem.

[8] Savage, C. (1982). Depth-first search and the vertex cover problem.
Information Processing Letters, 14(5), 233-235.

[9] Bodlaender, H. L., Thilikos, D. M., & Yamazaki, K. (1997). It is hard to
know when greedy is good for finding independent sets. Information
Processing Letters, 61(2), 101-106.

[10] Delbot, F., & Laforest, C. (2010). Analytical and experimental
comparison of six algorithms for the vertex cover problem. Journal of
Experimental Algorithmics (JEA), 15, 1-4.

[11] Halldórsson, M. M., & Radhakrishnan, J. (1997). Greed is good:
Approximating independent sets in sparse and bounded-degree graphs.
Algorithmica, 18(1), 145-163.

[12] Delbot, F., & Laforest, C. (2008). A better list heuristic for vertex cover.
Information Processing Letters, 107(3), 125-127.

[13] Khan, I., & Khan, S. (2014). Experimental Comparison of Five
Approximation Algorithms for Minimum Vertex Cover. International
Journal of u-and e-Service, Science and Technology, 7(6), 69-84.

[14] Xu, X., & Ma, J. (2006). An efficient simulated annealing algorithm for
the minimum vertex cover problem. Neurocomputing, 69(7), 913-916.

[15] Hammo, B., Sleit, A., & El-Haj, M. (2007). Effectiveness of query
expansion in searching the Holy Quran.

[16] Sleit, A., Abusharkh, S., Etoom, R., & Khero, Y. (2012). An enhanced
semi-blind DWT–SVD-based watermarking technique for digital
images. The Imaging Science Journal, 60(1), 29-38.

[17] Balaji, S., Swaminathan, V., & Kannan, K. (2010). Optimization of
unweighted minimum vertex cover. World Academy of Science,
Engineering and Technology, 43, 716-729.

[18] Gajurel, S., & Bielefeld, R. (2012). A fast near optimal vertex cover
algorithm (novca). IJEA, 3(1), 9-18.

[19] Sharieh, A., Al Rawagepfeh, W., Mahafzah, M., & Al Dahamsheh, A.
(2008). An algorithm for finding maximum independent set in a graph.
European Journal of Scientific Research, 23(4), 586-596.

[20] Al-Jaber, & A., Sharieh, A. (2000). Algorithms based on weight factors
for maximum independent set,DIRASAT, Nat. Sci.,27(1), 74–90,.

[21] Sleit, A., Serhan, S., & Nemir, L. (2008, August). A histogram based
speaker identification technique. In Applications of Digital Information
and Web Technologies, 2008. ICADIWT 2008. First International
Conference on the (pp. 384-388). IEEE.

[22] Sleit, A., Qatawneh, M., Al-Sharief, M., Al-Jabaly, R., & Karajeh, O.
(2011). Image Clustering using Color, Texture and Shape Features. KSII
Transactions on Internet & Information Systems, 5(1).

