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Abstract—Minimum vertex cover (MVC) is a well-known NP-

Complete optimization problem. The importance of MVC in 

theory and practical comes from the wide range of its 

applications. This paper describes a polynomial time greedy 

algorithm to find near optimal solutions for MVC. The new 

algorithm NMVAS is a modification of already existed algorithm 

called MVAS which uses the same principle of selecting 

candidate from the neighborhood of the vertex with a 

modification in the selection procedure. A comparative study is 

conducted between the NMVAS and MVAS which shows that the 

proposed algorithm NMVSA provides better or equal results in 

the most cases of the underlying data sets which leads to a better 

average approximation ratio of NMVAS. NMVAS inherits the 

simplicity of the original algorithm. 
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I. INTRODUCTION 

Many problems and concrete situations (networks, vehicle 
routing, maps, etc. ) are mapped into graphs and then set of 
algorithms are developed to manipulate these graphs to reach a 
solution for the given problem.  Unfortunately many of such 
problems cannot be solved exactly in a polynomial time. Such 
problems are called intractable but because of their importance 
they must be solved.[10] 

One option to solve such NP-Problems is to use heuristics. 
Heuristics do not guarantee the quality of solution and no 
guarantee also on the time required to solve the problem. 
Another alternative is to use approximation algorithms. In 
approximation algorithms we find a solution with quality 
between optimal and r (r>=1) and we can guarantee that the 
algorithm will finish running in a reasonable time. 

The problem that we are concern about in this paper is 
MVC. MVC the minimum vertex cover is a popular NP-
Complete problem with a high importance in theory and 
practical computer science.[1]. 

There are many algorithms proposed to solve this problem. 
In this paper we will discuss set of solutions existed in the 
literature to solve this problem using approximation 
algorithms. In addition we will present new modified algorithm 
NMVSA and compare the results with already existed 
solutions of the same type. 

Vertex cover is equivalent to two other popular 
optimization problems: MC (The Maximum Clique Problem) 
and MIS (Minimum Independent Set). These three problems 
actually can be considered as three different forms of the same 
problem. [5,19,20] 

The following propositions hold for undirected graph 
G(V,E) 

 The minimum vertex cover does not contain vertex with 
degree zero. 

 Every vertex cover contains v or w where w belongs to 
set of vertices adjacent to v, for every vertex v. 

 If there is a vertex v of degree one, w is adjacent to u, 
there is a minimum vertex cover which contains w. 

 If there is a vertex v of degree two, {u,w} are adjacent 
to u then there is a minimum vertex cover which 
contains both u and w or neither of them. [5,19] 

Definition: A vertex cover in an undirected graph G is the 
subset of vertices S in such that every edge in the graph G is 
connected to at least one vertex of S. The size of a vertex cover 
is the number of vertices it contains. [1] 

Vertex cover takes undirected graph G as input and integer 
number S. It tries to find a vertex cover of size S. 

The size of the vertex cover is the number of vertices inside 
it. If the nodes are weighted by a non-negative number then it 
tries to find vertex cover with the minimum weighted vertices 
[2,15]. 

The vertex cover has applications in bio-informatics, 
security and networking. An example of vertex cover problem 
could be forming a team to perform certain set of tasks then we 
must hire enough people to accomplish each certain task. Many 
applications can use MVC such as network security, 
scheduling, biology and finance [3,16]. 

There are exact solutions for this problem that guarantee 
the optimal solution such as branch and bound but may fail to 
give solution within reasonable time for large instances. Other 
type of solution is to use heuristic algorithms. Heuristic 
algorithms do not guarantee the optimal solutions but they can 
find optimal or near optimal solution in a reasonable time 
[4,21,22]. 
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Fig. 1. Vertex Cover 

Notations 

Given an undirected graph G(E,V), a vertex  cover of  a  

graph G is  a  subset  of  vertices VC  V(G) such that every 

edge has an end point in VC. (That is, for all e  E(G), e  VC 

≠  ). 

Fig. 1 shows examples of a vertex cover and a minimum 
vector cover respectively. The nodes colored red in Fig. 1b are 
the nodes selected in the vector cover. The minimum vertex 
cover is a vertex cover of smallest possible size that appear in 
Fig. 1c. 

The remainder of this paper is organized as follows, the 
different methods and related work in Section 2, the 
terminology, algorithm and the computation complexity in 
Section 3. We then discuss and analyze the results of 
experiments in section 4. Section 5 contains the conclusions 
and points to several directions for further research. 

II. RELATED WORK 

The NP-Completeness of MVC problem has proved by R 
Karp[6]. This means that we don’t have a polynomial time 
solution to solve it. The problem is one of the most well 
studied problems from researchers in computer science due to 
the importance and wide-range of its applications.  As I 
mentioned earlier we can use approximation algorithms such as 
APPROX-VERTEX-COVER and Maximum Degree Greedy 
(MDG) to solve the problem.[ 7] 

The Depth First Search algorithm presented by savage [8] 
computes the spanning tree at the beginning and then returns 
the non-leaves vertices of the depth first search spanning tree 
as a vertex cover. 

The Maximum Degree Greedy (MDG) algorithm is an 
adaptation of a well-known heuristic algorithm used for 
extracting the MIS MDG keeps adding the node with the 
maximum degree until all edges in the graph are covered. 
[7,9,10] 

The Greedy Independent Cover (GIC) is an adaptation of 
the algorithm presented in. In this algorithm we select the 
vertex of the minimum degree and all its neighbors to the 
vertex cover, the process continues until we cover all edges. 
[10,11] 

In the algorithm LISTLEFT is proposed to find vertex 
cover based on a list heuristic. In this algorithm the selection of 
the vertices is known in advance and cannot be changes. 
Another list heuristic algorithm ListRight is proposed in [12]. 

Many of the previous mentioned methods to solve the 
problem of MVC depend on the degree of the vertex itself. 
Balaji et al. presented another technique that depends of a 
value called the support of the vertex.  They proposed 
algorithm called vertex support algorithm (VSA). [6,13] 

A modification of the VAS is called MVAS where the 
selection of the vertex does not depend only on the vertex that 
have the maximum the support value but it finds all the vertices 
with minimum support value and then it selects the vertex with 
minimum support from the list of all neighbors of the selected 
vertices. MVAS shows better results in some benchmarks 
comparing to original VAS. [6, 13] 

Some other solutions depend on genetic algorithms such as 
(HVX). Xu and Ma presented solution that uses annealing 
algorithms to find the minimum vertex cover. In their work 
they show almost 100% approximation ratio for some 
benchmarks but they need to apply it on more benchmarks. 
[14]. 

In this paper we are introducing new greedy algorithm 
(NMVAS) to find the MVC by modifying MVAS. The results 
of applying the two algorithms in a set of benchmark sets are 
then compared. 

III. TERMINOLOGIES, ALGORITHM AND COMPUTATIONAL 

COMPLEXITY 

In this section we present the proposed algorithm, the 
pseudo code of the algorithm, example to clarify the idea, and 
theoretical complexity analysis. 

A. Terminology 

The selection of vertices in NMVSA algorithm relies on the 
degree of the neighborhood vertices. We will introduce the 
definition of neighborhood, degree, and support of vertex: 

Neighborhood of a vertex: Let G be an undirected graph 
G (V, E) where V is set of vertices and E is set of Edges. 

|E|=m, |V|=n. For each vV the neighborhood of v-N (v) = 

{uV | u is adjacent to v. 

Degree of a vertex: The degree of the vertex d (v) is the 

number of adjacent neighbors for vertex v  V. 

The support of a vertex: support of a vertex s (v) is the 
sum of degrees of all neighbors of v. 

 

Vertex Cover: Vertex cover c={x  V | x=u or v if (v,u) is 

an edge eE} 

B. The proposed Algorithm 

In the proposed algorithm we are trying to find an optimal 
or near optimal solution of the vertex cover problem because of 
the absence of a polynomial time solution for this NP-
Complete problem.  The proposed solution depends on the idea 
presented in VAS algorithm [17]. The selections of the vertices 
that will be part of the vertex cover rely on the value of 
support. Value of support is a value represents the sum of the 
degrees of the neighbors of the vertices. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 3, 2016 

62 | P a g e  

www.ijacsa.thesai.org 

The algorithm starts by finding the degree of each vertex 
not yet selected in the vertex cover. The degree of the vertex is 
the number of adjacent neighbors for vertex. The second stage 
after finding the degrees is finding the support value for each 
vertex. The algorithm proceeds by finding a list that contains 
all vertices that have the minimum support value. The next step 
is to select the vertex with the maximum support value among 
the neighbors of the vertices of the minimum support value. 
After adding the vertex to the vertex cover, all adjacent edges 
to this vertex are deleted. The process continues until no more 
edges exist. 

C. New Modified Vertex Support Algorithm (NMVSA) 

The idea of selection in the proposed algorithm NMVSA 
shown in the algorithm 1 depends on the fact that the 
candidates of vertex cover are adjacent to the vertices with 
minimum degrees. [18] NMVSA adds a vertex from the 
supporting list with the maximum degree in each iteration to 
the vertex cover and delete all edges connected to this vertex. 
The process continues until no more edges still in E. 

Algorithm 1: NMVSA 

Input:         

Output:    

1: While (   ) 

 //Calculate the degree for each vertex 

2: Foreach       

  Find d (  ) 

3: minSup =   

 //Calculate the support value for each vertex 

4: Foreach       

  Calculate the support of vi        

  If       minSup Then 

   minSup =       

 //Create the list of minimum support vertices 

5: Foreach       

  If          minSup Then 

   Add vi to minSupList   

 //Find the neighbors of minimum support vertices 

6: Foreach       

  Add       to neighborhoodList   

 maxSupNeighbor =    

 c = 0  //Candidate vertex 

 //Find the vertex to be added to the Vc 

7: Foreach       

  If          maxSupNeighbor Then 

   c=      

   maxSupNeighbor =       

          

       

     {    |             

Step one guarantees that we pass through all edge, at each 
iteration we calculate the degrees of all vertices in step 2. In 
step 3,4 we find the support value for each vertex and we find 
the minimum support value among all vertices. Step 5 finds all 
the vertices that have the minimum support value. In step 6 we 
find all the neighbors of vertices listed in the minimum support 
vertices list. In step 7 we select the vertex with the maximum 
support value from the list of all neighbors of the vertices with 
minimum support value. 

The intuition behind the algorithm is to select the vertices 
that connect as much as possible from the vertices that are 
located on the edges of the graph. 

D. Computational Complexity 

According to our terminology, number of vertices is n and 
number of edges is m. The complexity of NMVSA can be 
obtained as follows: step 2 in the algorithm which is used to 
find the degree of each vertex requires    ). Step 4 which is 
used to calculate the support value of each vertex and finding 
the minimum support value is taking       also. To pick all 
the vertices that have supporting value equal to the minimum 
support value in step 5 we need     . Step 7 requires    . 
The whole process will be repeated m times in the worst case. 

The total running time can be expressed in the following 
formula: 

 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

The code of NMVSA has been developed using c++ on a 
machine Intel Core 2 Duo 2.1 GHz with 2GB memory. The 
algorithm has been compared to three other algorithms - 
VSA[17], MVSA[6], and modified MDG[2]. 

The programs have been executed on part of well-known 
dataset DIMACS benchmark set and on BHOSLIB benchmark 
set. The effectiveness of the algorithm NMVSA algorithm was 
evaluated by executing the algorithm on 40 instances of 
BHOSLIB 13 instances of DIMACS dataset. 

Table I lists the results of all experiments hold in the 
algorithms. Table I consists of two parts. The first part is the 
length of the vertex cover found by each of the algorithms. The 
second part shows the ratio of the result of each algorithm and 
the best results obtained. The first column of the table states the 
name of the instance, the second column is the cardinality of 
the instance, and the following two columns are the results of 
applying MVSA and our proposed algorithm NMVSA 
respectively. 

The second part of the table is the Approximation ratio of 
each of the tested algorithms. 

According to Table I we can see that NMVSA gives better 
or equal results in all instances that we used from DIMACS 
benchmark. also NMVSA gives better results in 4 instances of  
BHOSLIB benchmark set and not as good as MVSA in two 
instance of BHOSLIB. 
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TABLE II.  EXPERIMENTAL RESULTS

Benchmark |V| Optimal Vc MVAS NEW MVAS 
Approximation ratio 

MVAS NEW MVAS 

frb30-15-1 450 420 426 426 1.014 1.014 
frb30-15-2 450 420 427 427 1.017 1.017 

frb30-15-3 450 420 426 426 1.014 1.014 

frb30-15-4 450 420 426 426 1.014 1.014 
frb30-15-5 450 420 429 428 1.021 1.019 

frb35-17-1 595 560 567 567 1.013 1.013 

frb35-17-2 595 560 565 565 1.009 1.009 

frb35-17-3 595 560 567 567 1.013 1.013 
frb35-17-4 595 560 567 567 1.013 1.013 

frb35-17-5 595 560 567 567 1.013 1.013 

frb40-19-1 760 720 728 728 1.011 1.011 

frb40-19-2 760 720 728 728 1.011 1.011 
frb40-19-3 760 720 728 728 1.011 1.011 

frb40-19-4 760 720 729 730 1.013 1.014 

frb40-19-5 760 720 728 728 1.011 1.011 

frb45-21-1 945 900 910 910 1.011 1.011 
frb45-21-2 945 900 909 909 1.01 1.01 

frb45-21-3 945 900 908 908 1.009 1.009 

frb45-21-4 945 900 909 909 1.01 1.01 
frb45-21-5 945 900 910 910 1.011 1.011 

frb50-23-1 1150 1100 1111 1111 1.01 1.01 

frb50-23-2 1150 1100 1111 1111 1.01 1.01 

frb50-23-3 1150 1100 1109 1109 1.008 1.008 
frb50-23-4 1150 1100 1111 1111 1.01 1.01 

frb50-23-5 1150 1100 1112 1112 1.011 1.011 

frb53-24-1 1272 1219 1229 1229 1.008 1.008 

frb53-24-2 1272 1219 1229 1229 1.008 1.008 
frb53-24-3 1272 1219 1230 1230 1.009 1.009 

frb53-24-4 1272 1219 1230 1230 1.009 1.009 

frb53-24-5 1272 1219 1230 1230 1.009 1.009 
frb56-25-1 1400 1344 1355 1355 1.008 1.008 

frb56-25-2 1400 1344 1353 1355 1.007 1.008 
frb56-25-3 1400 1344 1355 1355 1.008 1.008 

frb56-25-4 1400 1344 1357 1357 1.01 1.01 

frb56-25-5 1400 1344 1354 1353 1.007 1.007 

frb59-26-1 1534 1475 1487 1486 1.008 1.007 
frb59-26-2 1534 1475 1487 1487 1.008 1.008 

frb59-26-3 1534 1475 1483 1483 1.005 1.005 

frb59-26-4 1534 1475 1487 1485 1.008 1.007 
frb59-26-5 1534 1475 1487 1487 1.008 1.008 

C500.9 500 443 451 451 1.018 1.018 

C1000.9 1000 932 945 945 1.014 1.014 
C2000.5 2000 1984 1988 1988 1.002 1.002 

C2000.9 2000 1920 1934 1933 1.007 1.007 

keller4 171 160 160 160 1 1 

keller5 776 749 752 751 1.004 1.003 
keller6 3361 3302 3311 3311 1.003 1.003 

p_hat300-1 300 292 294 294 1.007 1.007 

p_hat300-2 300 275 279 279 1.015 1.015 

p_hat300-3 300 264 272 271 1.03 1.027 
p_hat700-1 700 689 692 692 1.004 1.004 

p_hat700-2 700 656 660 660 1.006 1.006 

p_hat700-3 700 638 649 649 1.017 1.017 

Table II summarizes the results of the execution of the 
algorithm. Table II shows that our modified version of MVSA 
gave equal results in 40 instances, better solutions in 7 
instances and MVSA was better in two instances. 

TABLE III.  SUMMARY OF RESULTS 

  NMVAS 

Better  7 

Equal 40 

Worse 2 

V. CONCLUSION 

In this paper we developed new algorithm called NMVSA 
by modifying existing algorithm called MVSA. We conducted 
a comparison study depending on the results of execution on 
two different well known benchmark sets. NMVSA gives 
optimal or near optimal solutions with average ratio 1.0101on 
the instances that we executed the algorithm in.  NMVSA 
generally shows better results than MVSA algorithm. 
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Future work includes trying to get more optimal solutions 
and decrease the ratio to be closer to 1 
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