
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

88 | P a g e

www.ijacsa.thesai.org

Regression Test-Selection Technique Using

Component Model Based Modification: Code to Test

Traceability

Ahmad A. Saifan

Department of Computer Information Systems

Yarmouk University

Irbid, Jordan

Mohammed Akour

Department of Computer Information Systems

Yarmouk University

Irbid, Jordan

Iyad Alazzam

Department of Computer Information Systems

Yarmouk University

Irbid, Jordan

Feras Hanandeh

The Hashemite University

Zarqa, Jordan

Abstract—Regression testing is a safeguarding procedure to

validate and verify adapted software, and guarantee that no

errors have emerged. However, regression testing is very costly

when testers need to re-execute all the test cases against the

modified software. This paper proposes a new approach in

regression test selection domain. The approach is based on meta-

models (test models and structured models) to decrease the

number of test cases to be used in the regression testing process.

The approach has been evaluated using three Java applications.

To measure the effectiveness of the proposed approach, we

compare the results using the re-test to all approaches. The

results have shown that our approach reduces the size of test

suite without negative impact on the effectiveness of the fault

detection.

Keywords—Regression Test; Regression Test selection

technique; Meta-Model; Models Traceability

I. INTRODUCTION

The importance of software testing is increasingly driven
by an extensive dependability on software systems. Software
testing is one of the main techniques to enhance and increase
the quality of software. Regression testing is a type of software
testing that has a clear impact on the quality of software
systems that evolve extremely over time in order to meet the
needs for new requirements.

Regression testing is one of the methods used in increasing
the quality of software. Regression testing is mostly used
when new changes are made on the software and it aims to
ensure that the introduced changes do not incur errors and
change the intended behavior of the software. However, the
cost of regression testing is very high since the tester needs to
rerun all test cases of the previous test suites. Regression Test
Selection (RTS) is an approach used in reducing the number of
test cases to run on the modified software.

The main objective of regression testing is to uncover
errors in the software after a new modification has been made.
Moreover, it is to ensure that the new changes have not
introduced more errors in the software. A quite good amount of

research has been conducted in the area of regression testing
including traceability of regression [1], test automation, test
environment [2], reduction of the code size [3] [4] [5] [6]
where several regression testing techniques and tools are used
and compared. Regression testing uses the previous test suites
to find if the new modification caused errors or not, as such, it
would be very expensive to run all the test cases. Regression
test selection is used to minimize the cost of regression testing
by selecting sub-set of test cases in each test suite in the testing
process. Many regression test selection techniques have been
proposed [7] [8] [9] [10] [11] [12] [13].

Regression test selection techniques are directed to address
the problem of reducing the regression test after software
system modification [17, 18, 19, 20]. To the best of our
knowledge, no work investigates the test suite reduction based
on the specific reduction in software structure. Except for the
research on change propagation [8], they provided a model-
driven approach that maps structural adaptations in autonomic
software, to update for its runtime test model.

The main contributions of our work are summarized as
follows: we introduce an approach that employs Meta models
in test case reduction; it is based on creating several models
that are associated with different targets. We created two
models that represent the test and component structure models
of the software systems under study. We design and build the
meta-models using Eclipse Modeling Framework [14]. Our
approach synchronizes test models with their corresponding
structure model. When any changes takes place in the
component structure model of the system under test (reductive
modification), component meta model will specify and
transmit changes that should be taken to update the test model.
In this work, we address the modification of software system
when an existed component is removed. After removing test
cases that belong to particular component, they were updated/
deleted according to the role of the targeted components. We
performed several reductive modifications of three Java
software systems that are placed in different domains. To
measure the effectiveness of our proposed approach, automatic

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

89 | P a g e

www.ijacsa.thesai.org

inter-class mutants were inserted into the source code by
MuJava tool [15]. MuJava tool is widely used to perform
mutation analysis [16].

II. BACKGROUND

This section discusses the related work on regression
testing, regression testing techniques, model synchronizations
and naming convention techniques:

A. Regression Testing

Let S be a system or software, Let S’ be a modified version
of S and TC be a test case for S. The standard regression testing
process is described as following:

Select TC’ subset if TC, a set of test cases to execute on
S’

Test S’ with TC’, ascertaining the correctness of S’ through
TC’

Construct TC’’, a set of additional test cases for S’

Test S’ with TC’’, ascertaining the correctness of S’’
through TC’’

Construct TC’’’, a new test case for S’ from TC, TC’, and
TC’’.

B. Regression Test Selection Techniques

Regression test selection is the process of choosing a subset
of suitable test cases from an original set of test cases to test
and ensure that the changes introduced do not reveal errors.
Regression test selection process involves two main steps: (1)
discovering and highlighting the modified segments of the
system , (2) test case selection which means selecting a subset
of test case from the original set of test cases that can
successfully test the unchanged segments of the software [17].

Many researchers have proposed approaches on techniques
of regression test selection [18] [19] [20]: Following are some
of the approaches in the literature:

 Minimization technique: this technique reduces the
number of test cases through selecting a minimum set
of test cases with the intention of getting coverage of
changed or altered segments of the software. This
technique depends on the finding and expressing the
relations between basic blocks, test cases, and selecting
set of test cases that ensure that each modified basic
block is covered by at least one test case [21].

 Dataflow techniques: this technique uses the
definition-use pair in reducing the number of test cases
through selecting test cases that cover each changed
definition-use pair.

 Safe technique: this technique differs from the above
techniques in that the selected test cases have the ability
to reveal errors in the modified and updated system.
One technique in safe regression test selection is using
control flow graph to represent the system under test;

 Ad hoc (random technique): this technique is used
when the development team does not have enough time
to execute all test cases and when the too is not
available for test selection. Testers select number of test
cases arbitrarily.

 Retest all: this technique uses all test cases and runs
them against the modified software without excluding
any of them which is very expensive computationally
especially when there is a huge amount of test cases.

C. Model Synchronization and Naming Convention Strategy

Model Synchronization is the process of confirming the
correspondence between two models as soon as one model is
changed. Originally, the model synchronization is offered in
the Model Driven Architecture (MDA) in order to obtain
instrument for obtaining uniformity and modification
traceability [22] [23]. Two approaches are used in model
synchronization: explicit and implicit. In the implicit approach
the relative among models are enclosed in higher order
expressions. In the explicit approach the dependence relatives
among models are enclosed and encoded directly.

Name convention is the process of concluding beneficial
information from a set of harmony data. The strategy of
naming convention is used to control the traceability
correlation in the functional requirements that structure of the
system which helps the engine of modification propagation to
search for certain test according to the requirements [24] [25].

We utilize naming convention strategy towards managing
the relationship of several components in structure model and
their associated tests in the test model. Naming convention
strategy allows automatic search for certain related-test items
in the test model. In order to deal with the consistency between
included models (i.e., models of test and component) our
synchronization approach is founded on traceability relations
among the interconnected models. Conventions involved use
unique and distinctive identifiers for entire test cases and
components, and using again component IDs inside test IDs for
traceability.

III. METHODOLOGY

In this section, we describe our approach to regression test
selection (i.e. reduction) using change traceability of software
structure to its test model that occurs during software
maintenance.

Figure 1 summarizes the main steps of our approach. The
shaded boxes represent the major steps, and ovals represent
inputs and outputs associated with each step. The approach
consists of five main steps: dependency extraction, creation of
test and software structure dynamic models, simulates
reductive changes experiments, mutants' generation, and fault
detection effectiveness measurement. The following
subsections describe each step in detail.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

90 | P a g e

www.ijacsa.thesai.org

Dependency

Extracting

Project

.Class Files

Dependency

.xml Files

Creation of Test

and structure model

Dynamic .xmi

models

Structure Reductive

Modification

simulation

Reduced

regression test

Kermeta

Environment

Parsing

Mutants Generating

MuJava

Fault Detection

 Effectiveness

Measurements

Fig. 1. Input, output and major steps of the proposed approach

A. Dependency Extraction

Dependency happens when one class in the system makes
use of another in order to accomplish a specific task. For
instance, this can occur when an object of one class is used in
another class. These dependencies are helpful and valuable for
both programmers and testers when making modifications on
the system. The process of finding and discovering
dependencies among classes within the system is called
extraction. Dependency finder is an open source software tool
which is available on [30], and it has been used in many
research areas [26, 27, 28]. This tool discovers and reveals
three different and specific dependencies: (1) feature to feature
(2) feature to class and class to class. The feature means any
part of class such as attribute name, method name and
constructors. This tool extracts all the dependencies from any
type of compiled Java such as Class files, ZIP files, and JAR
files.

B. Dynamic test and structure models

We studied test cases dependencies in Java software
system. In particular, we created a met model that can be
utilized to help in reducing the regression tests after software
system modification. In this paper, the meta-model plays a
major role in propagating the changes from software structure
to test model.

Figure 2 presents a meta model revealing the dependencies
in a test model for a given Java software system.

In order to design and build a meta-model, we have chosen
Eclipse Modeling Framework [14].EMF is a modeling
framework and code generation facility for building tools and
other applications based on a structured data model.

The EMF code generation facility is capable of generating
everything needed to build a complete editor for an EMF
model.

As shown in Figure 2, each test case in the model is
composed mainly of two dependencies. (1) Test Hierarchical:
for the current test to be run, other tests must be executed and
pass (2) Internal: consisting of the Component Under Test
(CUT), test drivers, and test stubs. Keeping information on the
component under test allows maintaining the traceability links
with associated elements in the test model such as scaffolding
test.

In order to automatically create the dynamic test and
structure models (.xmi), we created a Java based parser to catch
the required information from the .xml files that were
populated by Dependency finder tool. Dependency tool
provides method to address the entire test suite and component
structure dependency. We picked naming convention a strategy
to manage the traceability.

Fig. 2. A meta-model to support regression test reduction technique

C. Simulating Reductive Modification

Reductive modification occurs when the software
maintenance or evolution is about to remove existing
component interfaces and their implementations from the
system. Removing component from the body of the software
system is required to remove the unit tests that belong to that
element from the test suite. As the unit test checks a single
assumption about the behavior of the component.

In this paper, we address the cases when the targeted
component for reductive simulation has a dependent and/or
dependee. Where the dependees are components and/or tests
that are called by the targeted component. In the case of the
targeted component has dependees, the integration test that
validated the interaction between the targeted components and
dependees might be removed from the test suites.

Our assumption is that there is no cyclic dependency in the
software projects (i.e. component A depends on component B
means, removing A will not affect B as the dependency is
unidirectional). The last case occurs when the targeted
component has dependents where removing the component

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

91 | P a g e

www.ijacsa.thesai.org

will affect the work of its dependents. Necessary updates to the
integration tests that validate the interaction between the
targeted component and its dependents will be made.

Software structure and test models instantiation and
propagation were achieved using Kermeta, which facilitates the
programmatic manipulation of EMF models (.ecore files).

Kermeta [29] is a meta-modeling language which allows
describing both the structure and the behavior of models.
Kermeta is intended to be used as the core language of a model

oriented platform. It has been designed to be a common
basis to implement Metadata languages, action languages,
constraint languages or transformation languages.

Kermeta therefore provided us with a programming
environment with which we could set up our simulation.

Mutants generating, and fault detection effectiveness
measurement will be described in details in E.1 and E.2
subsections.

D. Experimental Data

The projects that were used in this study are four open-
source applications implemented in Java. Table I shows a
summary of the selected applications. The selected applications
are different in the development processes, features, goals, and
the domain.

TABLE I. APPLICATIONS UNDER STUDY

The two game applications (RealState and BlackJack)
represent applications where systems have to interact to satisfy
the logic rules of the underlying strategy of the game logic.
Since Java web-applications are widely used nowadays, we
chose PureMVC which implements the famous web design
pattern Model-View-Controller (MVC).

E. Result and Discussion

Eclipse Modeling Framework (EMF) provides a method to
help us in loading, changing and saving software structure and
test models by using Kermeta [29]. We used Kermeta language
and environment to simulate a reductive change in the
abovementioned Java systems. This was achieved by creating
and applying a transformation mechanism to the projects under
study. Our approach created and applied a set of transformative
actions to update and reduce the test models. We arbitrarily
simulated 14 reductive changes in RealState project, 10

reductive changes in PureMVC project, and 6 reductive
changes in BlackJack project.

1) Test Suite Size Reduction
Table II shows the total number of reductive experiments in

each system under test, along with the percentage that reveals
the ability of our proposed approach is to reduce test suite size
of the three systems. We measure the percentage of test cases
reduction for each component that was targeted in the reductive
simulation, and then we calculate the mean reduction
percentage for the unit and integration test in each system.

TABLE II. TEST SUITE SIZE AFTER SELECTION

We performed 5, 10, and 13 reductive experiments in
BlackJack, PureMVC, and RealState, respectively. Our
approach was able to reduce 43% of total unit cases and 18%
of the integrated test cases in BlackJack system. Interestingly,
in PureMVC the proposed approach performed the best
reduction in the integration test cases which is about 77%.
Finally, the approach reduced 29% and 43% of the total unit
and integration test suite respectively in RealState system.

1) Fault Detection
Test selection techniques and after system modification are

targeted to reduce the cost of regression test by choosing a
portion of an existing test suite, these techniques might lead to
lower fault detection effectiveness by neglecting crucial test
cases that detect an existing faults. The trade-off between
selecting a subset of test cases in order to reduce test suite and
fault detection effectiveness should be addressed when we run
a specific regression test selection technique.

To measure the effectiveness of fault detection using the
proposed approach, we compared it with retest-all approach.
Retest-all technique simply reuses all existing test cases after
system modification.

In order to measure the effectiveness of the proposed
approach, inter-class mutants were seeded into the source code
of the above mentioned systems automatically by MuJava tool
[15]. We ran retest all technique to examine how many mutants
could be killed by executing all the test cases associated with
each project (both unit and integrated test cases). We then
execute the same mutants against the reduced test suite that is
produced by our approach. Finally, we compare the number of
killed mutants using the two approaches, that is, retest all test
cases approach and the suggested reductive test case approach.
Table III shows the fault detection effectiveness of selected test
suites using our approach in comparison with rerun-all test
cases regression technique.

TABLE III. FAULT DETECTION EFFECTIVENESS AFTER SELECTION

Project Name # of Mutants

Killed Mutants

Retest All
After Reductive

Changes

BlackJack 25 13 13

PureMVC 86 35 35

RealState 121 68 68

Table III shows the total number of mutants generated by
MuJava and the number of killed mutants using our and retest
all approache. MuJava generates 25 mutants from the

Project # Classes # Methods Source

RealState 57 336
http://realsearchgroup.com

/rose/

PureM
VC

22 129 http://puremvc.org/

BlackJ
ack

18 102
https://code.google.com/p/

blackjack

Project Name
of Reductive

Experiments

Percentage of

Unit Test Case

Reduction

Percentage of

Integrated Test

Case Reduction

BlackJack 5 43% 18%

PureMVC 10 23% 77%

RealState 13 29% 43%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

92 | P a g e

www.ijacsa.thesai.org

BlackJack project where 13 of them have been killed after
executing all test cases (without reduction). The results show
that our approach and after selection a subset of existing test
cases is able to achieve the same degree of effectiveness in
uncovering mutants in comparison with retest all technique.
After executing the subset test cases which were selected by
our approach on the systems under study, retest all and our
approach killed equal number of mutants 13 out of 25, 35 out
of 86, and 68 out of 121. Although the selected test cases were
not detecting all seeded mutants, yet they reduced the test suite
and achieved the effectiveness of retest all technique.

IV. CONCLUSION AND FUTURE WORK

RTS is an approach used in reducing the number of test
cases to run on the modified software. We employ meta-
models to support regression test reduction. Our approach
facilitates tracing crucial items in test models and its
corresponding item in structure model of a Java system, when
any changes take place in the component structure model of the
system under test (reductive modification), component meta
model will specifies and transmits changes should be taken to
update the test model(removing, updating, and adding test
cases). The result of our experiments reveals how our approach
reduced test suite effectively without influence the fault
detection effectiveness in comparison with retest-all regression
test selection technique.

In future, we intend to perform controlled experiments to
compare our approach with other regression test selection
techniques are existed in the literature. We intend to use big
Java applications to measure the effectiveness of our approach
in detecting errors.

REFERENCES

[1] Leung, H. K. N., and White, L. 1989. Insignts into regression testing.
Proceedings of the Conference on Software Maintenance—1989
October, 60–69.

[2] Brown, P. A., and Hoffman, D. 1990. The application of module
regression testing at TRIUMF. Nuclear Instruments and Methods in
Physics Research Section A, .A293(1–2): 377–381.

[3] Binkley, D. 1992. Using semantic differencing to reduce the cost of
regression testing. Proceedings of the Conference on Software
Maintenance—1992 November, 41–50.

[4] Leung, H. K. N., and White, L. 1990. A study of integration testing and
software regression at the integration level. Proceedings of the
Conference on Software Maintenance—1990 November, 290–300.

[5] Leung, H. K. N., and White, L. J. 1991. A cost model to compare
regression test strategies. Proceedings of the Conference on Software
Maintenance—1991 October, 201–208.

[6] Lewis, R., Beck, D. W., and Hartmann, J. 1989. Assay—a tool to
support regression testing. ESEC ’89. 2nd European Software
Engineering Conference Proceedings September, 487–496.

[7] H. Agrawal, J. Horgan, E. Krauser, and S. London, “Incremental
Regression Testing,” Proc. Conf. Software Maintenance, pp. 348–357,
Sept. 1993.

[8] R. Gupta, M.J. Harrold, and M.L. Soffa, “An Approach to Regression
Testing Using Slicing,” Proc. Conf. Software Maintenance, pp. 299–
308, Nov. 1992.

[9] T. Ball, “On the Limit of Control Flow Analysis for Regression Test
Selection,” Proc. Int’l Symp. Software Testing and Analysis,ISSTA,
Mar. 1998.

[10] S. Bates and S. Horwitz, “Incremental Program Testing Using Program
Dependence Graphs,” Proc. 20th ACM Symp. Principles of
Programming Languages, Jan. 1993.

[11] P. Benedusi, A. Cimitile, and U. De Carlini, “Post-Maintenance Testing
Based on Path Change Analysis,” Proc. Conf. Software Maintenance,
pp. 352–361, Oct. 1988.

[12] D. Binkely, “Semantics Guided Regression Test Cost Reduction,” IEEE
Trans. Software Eng., vol. 23, no. 8, Aug. 1997.

[13] D. Binkley, “Reducing the Cost of Regression Testing by Semantics
Guided Test Case Selection,” Proc. Conf. Software Maintenance, Oct.
1995.

[14] Eclipse Foundation, Eclipse Modeling Framework, August 2003,
http://www.eclipse.org/modeling/emf/ (July 2013).

[15] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon, Mujava: an automated
class mutation system: Research articles, Softw. Test. Verif. Reliab. 15
(2005), 97–133.

[16] Ammar Masood, Rafae Bhatti, ArifGhafoor, and Aditya P. Mathur,
Scalable and effective test generation for role-based access control
systems, IEEE Trans. Softw.Eng. 35 (2009), 654–668.

[17] Swarnendu Biswas and RajibMall . Regression Test Selection
Techniques: A Survey. Informatica 35 (2011) 289–321

[18] E. Engström, P. Runeson, and M. Skoglund. A systematic review on
regression test selection techniques. Information and Software
Technology, 52(1):14–30, January 2010.

[19] E. Engström, M. Skoglund, and P. Runeson. Empirical evaluations of
regression test selection techniques: a systematic review. In Proceedings
of the Second ACM-IEEE international symposium on Empirical
software engineering and measurement, pages 22–31, 2008.

[20] J. Bible, G. Rothermel, and D. Rosenblum. A comparative study of
coarse- and fine-grained safe regression test-selection techniques. ACM
Transactions on Software Engineering and Methodology, 10(2):149–
183, April 2001.

[21] FISCHER, K., RAJI, F., AND CHRUSCKICKI, A. 1981. A
methodology for retesting modified software. In Proceedings of the
National Tele. Conference B-6-3 (Nov.). 1–6.

[22] H. Larsson and K. Burbeck. Codex - an automatic model view controller
engineering system. In Proceedings of the Workshop on Model Driven
Architecture: Foundations and Applications, Enschede, The
Netherlands, June 2003.

[23] Igor Ivkovic and Kostas Kontogiannis. Tracing Evolution Changes of
Software Artifacts through Model Synchronization. Proceedings of the
20th IEEE International Conference on Software Maintenance
(ICSM’04).

[24] Abdallah Qusef, Rocco Oliveto, and Andrea De Lucia, Recovering
traceability links between unit tests and classes under test: An improved
method, Proceedings of the 2010 IEEE International Conference on
Software Maintenance (Washington, DC, USA), ICSM ’10, IEEE
Computer Society, 2010, pp. 1–10.

[25] Bart Van Rompaey and Serge Demeyer, Establishing traceability links
between unit test cases and units under test., CSMR (Andreas Winter,
Rudolf Ferenc, and JensKnodel, eds.), IEEE, 2009, pp. 209–218.

[26] McCartin J. Tempero E. Dietrich, J. and S. M. A. Shah, On the existence
ofhigh-impact refactoring opportunities in programs, Australasian
Computer ScienceConference (ACSC 2012) (Melbourne, Australia) (M.
Reynolds and B Thomas, eds.),CRPIT, vol. 122, ACS, 2012, pp. 37–48.

[27] RdigerLincke, Jonas Lundberg, and WelfLwe, Comparing software
metrics tools., ISSTA (Barbara G. Ryder and Andreas Zeller, eds.),
ACM, 2008, pp. 131–142.

[28] Alexander Serebrenik, Serguei A. Roubtsov, and Mark van den Brand,
Dn-basedarchitecture assessment of java open source software systems.,
ICPC, IEEE ComputerSociety, 2009, pp. 198–207.

[29] Triskell Team, Kermeta - Breathe life into your metamodels, October
2005,http://www.kermeta.org/ (July 2013).

[30] Tessier J., Dependency finder, 2008, http://depfind.sourceforge.net

