
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

239 | P a g e

www.ijacsa.thesai.org

Holistic Evaluation Framework for Automated

Bug Triage Systems: Integration of Developer

Performance

Dr.V.Akila

Dept. of Computer Science and Engineering

Pondicherry Engineering College

Pondicherry, India

Dr.V.Govindasamy

Dept. of Information Technology

Pondicherry Engineering College

Pondicherry, India

Abstract—Bug Triage is an important aspect of Open Source

Software Development. Automated Bug Triage system is essential

to reduce the cost and effort incurred by manual Bug Triage. At

present, the metrics that are available in the literature to evaluate

the Automated Bug Triage System are only recommendation

centric. These metrics address only the correctness and coverage

of the Automated Bug Triage System. Thus, there is a need for

user-centric evaluation of the Bug Triage System. The two types

of metrics to evaluate the Automated Bug Triage System include

Recommendation Metrics and User Metrics. There is a need to

corroborate the results produced by the Recommendation

Metrics with User Metrics. To this end, this paper furnishes a

Holistic Evaluation Framework for Bug Triage System by

integrating the developer performance into the evaluation

framework. The Automated Bug Triage System is also to retrieve

a set of developers for resolving a bug. Hence, this paper

proposes Key Performance Indicators (KPI) for appraising a

developer’s effectiveness in contribution towards the resolution

of the bug. By applying the KPIs on the retrieved set of

developers, the Bug Triage System can be evaluated

quantitatively.

Keywords—Bug Management; Bug Triage; Recommendation

Metrics; Key Performance Indicators; Developer Performance;

Bug Resolution Time

I. INTRODUCTION

Open Source Software (OSS) is a commercial software
where full access to the code for viewing, modification, and
redistribution is granted to all the users by agreeing to a free-
of-cost license. Bug management is a central component of the
software maintenance of the OSS. Bug Management in OSS is
usually performed using Bug Management Systems like
Bugzilla. The new bugs that arise after the deployment of a
new version of software are first reported to the Bug
Management system. The new bugs are manually verified and
important attributes like Component and Severity are fixed.
Following this, the bugs are assigned to a developer for
resolution by a human triager. In summary, Bug management
comprises the following three activities: (i) Bug Triaging, (ii)
bug assignment to the software developer for solution and (iii)
solving of the bug. Software maintenance expenditure is about
50% of the overall expenditure of the software project. In OSS
development, the expenditure translates to time. Bug Triaging
comprises checking for validity of the bug, assigning priority,

severity and assigning the bug to a correct software developer.
Manual Bug Triaging is time- consuming and fault prone
[1],[2],[3].

The bugs are reported to the Bug Management System.
The reported bug is verified for validity and is assigned a new
tag and is assigned to a developer. If the developer is unable to
resolve the bug he may reassign the bug to a new developer.
This activity is captured in a bug tossing graph. The summary
that is in the bug report and the Bug Tossing graph serves as
the basis for any Automated Bug Triage system. The metrics
that are used to evaluate the Automated Bug Triage system
are: (i) Accuracy (ii) Precision(iii) Recall and (iv) Mean Steps
To Resolve. Precision is a better parameter for software
developer recommendation because the cost of false
recommendation is much higher than in search engine.
Further, the Mean Steps to Resolve parameter encodes only
the number of steps in the predicted path. While the reduction
in the number of steps to resolve is required, it is also vital to
compare how far the predicted path is similar to the original
path. The structure and the ordering of nodes in the predicted
path needs to be compared with that of the original path.
Metrics based on graph edit distance were used for this
purpose[4][5].

The evaluation of the Automated Bug Triage System is
based only on the Recommendation metrics[6]. This paper
integrates the developer performance in the evaluation
framework of the Automated Bug Triage System. The quality
of the developer extracted by the Automated Bug Triage
System is evaluated by the Key Performance Indicators.

II. RELATED WORK

The related work has been studied with a perspective of
metrics used for evaluation of the Automated Bug Triage
System. The summary of the survey is depicted in the Table
1. It is observed from the survey that the Automated Bug
Triage System is evaluated only with Recommendation
Metrics. It is essential to integrate the User metrics into the
evaluation process in order to build confidence in the
Automated Bug Triage System. The user metrics are built
over the Developer Performance. The following section shows
the developer performance assessment incorporated in Open
Source Systems.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

240 | P a g e

www.ijacsa.thesai.org

TABLE I. SUMMARY OF THE SURVEY

Paper

Machine
Learning

Information Retrieval
Bug Tossing
Graph

A
cc

u
ra

cy

P
re

ci
si

o
n

R
e

ca
ll

F-
M

e
as

u
re

M
e

an

R
e

ci
p

ro
ca

l

R
an

k

M
e

an
 S

te
p

s
to

 R
e

so
lv

e

[2] - - - -

[1] - - - -

[3] - - - -

[7] - - - -

[8] - - - - -

[9] - - - - -

[10] - - - -

[11] - - -

[12] - - - -

[13] - - - - - -

[14] - - - - -

A. Developer Performance Assessment

Developer Performance Assessment is a necessity in
identifying the strength and weakness of a developer, for
career advancement, and fine tuning a business
organization[15]. The contribution of a developer towards the
software maintenance is quite different from a developer’s
contribution in developing a software product. Measuring a
developer’s contribution towards the maintenance of an OSS
System is even more complicated. This complication is due to
the fact that there are no explicitly assigned roles for the
developers. However, there are different roles a developer
may assume in the course of bug resolution.

The different roles that the developer may play in the bug
resolution process are reporter of a bug, triager, commenter,
and assignee [16]. In OSS, usually, there are metrics for
evaluating the bug characteristics. These metrics focus on the
program slicing characteristics of the bug like a number of
lines of code affected by the bug and Cyclomatic Complexity
of the bug. [17]. However, these metrics are underutilized in
evaluating the Bug Triage System. Further, the developer’s
performance may be assessed based on Buggy commits, code
contributions, and priority bugs. Buggy commits are used to
identify developers who performed less buggy commits. Code
contribution is measured regarding code addition, code
removal, method addition, and method modification. The
developer may also be assessed in terms of the number of high
priority bugs that he has resolved [18]. In most of the existing
works, developer’s performance assessment is treated as an
independent module. In the following section, the developer’s
performance assessment is integrated into the evaluation of the

Bug Triage System. There are several KPIs proposed to assess
the developer. These indicators are further utilized in
quantifying the performance of the Bug Triage System.

B. Key Observations from the Dataset

This section gives a brief preview of the various factors
that affect the bug resolution which is observed in the dataset.
The bug reports of Eclipse project from www.bugzilla.org
from 2009 to 2013 were analysed. The developers
contribution for the various fields in the bug report like CC,
status, Keywords, Summary priority, Assignee, and resolution
are given in Figure 1. It is evident that 62% of the developers
change the status of the bug to ‘resolved’.

STATUS
12%

RESOLUTION
62%

CC
2%

KEYWORDS
5%

SUMMARY
1%

PRIORITY
16%

ASSIGNEE
2%

Developer Contribution Distribution

Fig. 1. Developer Contribution Distribution

The average time spent by a developer on a particular field
of the bug report is given in Figure 2. As observed, the time
spent to set the assignee field, status field and resolution field
contributes mostly in the bug resolution time.

STATUS
21%

RESOLUTION
18%

CC
7%

KEYWORDS
11%

SUMMARY
9%

PRIORITY
9%

ASSIGNEE
20%

SEVERITY
5%

Developer Time Distribution w.r.t Bug field

Fig. 2. Developer Time Distribution w.r.t Bug Field

The developer distribution with respect to the time spent
by a developer on a particular bug is given in the Figure 3. It
can be observed that 39% of the developers spend 121 to 700
days on a particular bug. Only 17% of the developers spend
less than 6 months on a bug. Any Bug Triage System that
extracts its set of developers mostly from this pool of 17% is a
successful triage system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

241 | P a g e

www.ijacsa.thesai.org

0-20
3%

21-40
4% 41-80

5% 81-120
5%

121-700
39%

701-1000
17%

1001-2000
17%

2001-2500
10%

Developer Distribution w.r.t Time

Fig. 3. Developer Distribution w.r.t Time

Figure 4 shows the Developer Distribution against the
range of Bug Resolution Time. It can be observed that the
most ineffective bug resolution is when the bug resolution
time is more than 2 years. There are 44% of developers who
spend time on bug whose resolution time is > 2 years. It can
be observed from the chart that only 25% of developer has
spent time in bugs that were resolved before six months. The
motivation behind any Bug Triage System is to retrieve the
developers from this pool of 25% of developers.

7to20
3% 21to50

9% 51to100
8%

101to150
5%

151to300
6%

301to400
4%

401to700
6%

701to1000
15%

1001to3500
44%

Developer Distribution w.r.t Bug Resolution

Time

Fig. 4. Developer Distribution w.r.t Bug Resolution Time

Based on these observations, the Key Performance
Indicators for assessing the Developer are introduced in the
next section.

III. KEY PERFORMANCE INDICATORS FOR ASSESSING

DEVELOPER PERFORMANCE

The KPIs devised to evaluate the developer are Developer
Time Index, Developer Effective index, and Developer
Productivity. The Developer Time Index, Developer Effective
index, and Developer Productivity are derived from Developer
Contribution Count and Developer Contribution Time. The
dependencies among the KPIs are depicted in Figure 5.

Fig. 5. Dependency in the Key Performance Indicators

The developer may have made the following types of
contribution: CC, reassign the bug, change the Status field, or
finally resolve the bug. For convenience sake, all the
contributions are equally treated.

A. Developer Contribution Count

Developer Contribution Count (DCC) is defined as the
number of contributions made by each developer in the
process of resolving them.

 ∑

where,

Ci - Contribution by a developer to a single bug.

n - Total number of bugs assigned to a developer

B. Developer Contribution Time

Developer Contribution Time (DCT) is defined as the time
taken by each developer to make a contribution on a single
bug.

 () ()

where, DBR- Date of Bug Reassignment

DBA – Date a Bug Assignment

C. Developer Time Index

Developer Time Index (DTI) is defined as the ratio of
DCT to DCC. This indicator captures the amount of time
taken by a developer to make a single contribution.

Developer

Contribution

Count

Developer

Contribution

Time

Developer

Time Index

Developer

effectiveness

index

Developer

Productivity

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

242 | P a g e

www.ijacsa.thesai.org

D. Developer Effectiveness Index

The bug resolution time is considered to calculate the
Developer Effectiveness Index (DEI). The intuition behind
DEI is that, if a developer has contributed towards a bug that
has been resolved with less time, then the developer’s
effectiveness is increased. Contrarily, if a developer has
contributed towards a bug that has taken a long time to
resolve, then the weight assigned to the developer is reduced.

TABLE II. WEIGHT ASSIGNMENT TABLE

Bug Resolution Time (in days) Weights

7– 20 7

21-50 6

51-100 5

101-150 4

151-300 3

301-400 2

401-700 1

701-1000 -0.25

1001-3500 -0.50

The bugs for 10 years of Eclipse project were studied and
the Resolution Time (RT) was extracted. RT varies from
lower to higher values. RT was divided into nine ranges and
their weights were assigned as given in Table 2. The highest
weight is assigned to the range of Resolution Time that falls
between 7 and 20 days. Negative weights are assigned to a
range which took more than 700 days to resolve a bug.

The weights given here are inversely proportional to RT.

Weight (Wi)α

DEI is defined as the ratio of the summation of Weights
 of the bugs to the DCC.

Developer Effectiveness Index DEI =

E. Developer Productivity

Developer Productivity (DP) is defined as the product of
Developer Effectiveness Index, Developer Contribution
Count, and the Developer Time Index.

F. A Holistic Evaluation Framework with Developer

Performance

The framework for evaluating the Bug Triage System is
given in the Figure 6. The Bug Triage System extracts the
optimal set of developers. KPIs of the retrieved developers are
calculated and thereby, the Bug Triage System is assessed.

Fig. 6. A Holistic Evaluation Framework with Developer Performance

IV. PERFORMANCE EVALUATION OF BUG TRIAGE SYSTEM

WITH KPIS

The performance of the existing system GP-WBFS [2],
BT-ANT [19] and the Multiple Ant Colony System (MACS)
[20] were analysed using Developer Productivity, Developer
Effectiveness and Developer Time Index. The Goal-oriented
Path model with Weighted Breadth First Search (GP-WBFS)
algorithm was compared only with Bug Triaging based on
Ant System (BT-ANT) and the MACS because only in these
systems adaptive learning was adopted. The graph for
Developer Time Index is given in the Figure .7. It is evident
from the Figure .7 that the Developer Time Index for the
MACS as well as the BT-ANT is skewed towards Developer
Time Index of<300. Almost 85% of the retrieved developers
by MACS have a Developer Time Index of <300 and 65% of
the developers retrieved by BT-ANT has a Developer Time
Index of <300. Whereas in the existing GP-WBFS, 77% of the
developers have a Developer Time Index >300.

0

10

20

30

40

50

60

%
 o

f D
ev

el
op

er
s

Range of Developer Time Index

Developer Time Index

GP-WBFS

BT-ANT

Co-Ant

Fig. 7. Developer Time Index

BUG TRIAGE SYSTEM

DEVELOPER PERFORMANCE

 ASSESMENT

Developer

Contributio

n Count

Developer

Contribution

Time

Developer

Effective

Index

Developer

Time

Index

Developer

Productivit

y

SET OF DEVELOPERS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

243 | P a g e

www.ijacsa.thesai.org

The performance of the systems for Developer
Effectiveness Index is given in Figure.8. Developer
Effectiveness Index encodes the contribution of the developers
for bugs that were resolved in a shorter period of time. From
the graph, it is evident that 88% of the developers retrieved by
MACS possess a Developer Effectiveness Index of >60 and
78% of the developers retrieved by the BT-ANT possess a
Developer Effectiveness Index of >60. Whereas, in the
developers retrieved by GP-WBFS, 78% of the developers
have a Developer Effectiveness Index of <60.

0

5

10

15

20

25

30

%
 o

f D
ev

el
op

er
s

Developer Effectiveness Index

Developer Effectiveness Index

GP-WBFS

BT-ANT

Co-Ant

Fig. 8. Developer Effectiveness Index

The performance of the systems for Developer
Productivity is given in Figure 9. Developer Productivity is a
cumulative index that encodes the Developer Effectiveness,
Developer Time Index and Developer Contribution Count.
From Figure 9, it is evident that 91% of the developers
retrieved by MACS possess a Developer Productivity of >50
and 75% of the developers retrieved by the BT-ANT possess a
Developer Productivity of>50. Whereas in the developers
retrieved by GP-WBFS, 73% of the developers have a
Developer Productivity of <50.

0

5

10

15

20

25

30

%
 o

f D
ev

el
op

er
s

Developer Productivity

Developer Productivity

GP-WBFS

BT-ANT

Co-Ant

Fig. 9. Developer Productivity

V. CONCLUSION

This paper presents an Holistic Evaluation Framework for
Bug Triage using developer performance. The metrics
available in the literature that were used to evaluate the Bug
Triage System were recommendation centric. The
recommendation centric metrics evaluated the correctness and
completeness of the recommendation mostly based on
Precision and Recall measures. This paper adds a new
dimension to the evaluation of the Bug Triage System. The
evaluation framework factors in the quality of the developers
extracted by the Bug Triage System in assessing the

performance of the Bug Triage System. The evaluation metric
based on the usefulness of the Bug Triage System is proposed.
This is done by computing Key Performance Indicator values
for the performance of the developers involved in the bug
resolution. These calculated indices are then utilized to
evaluate the developers extracted by the system. The proposed
Key Performance Indicators are coarse grained in nature. A
more fine grained analysis comprising the role analysis of the
developers can be performed. The role analysis may be based
on Social Network Analysis. Further , on the extracted roles of
the developers more fine grained Key Performance Indicators
are to be proposed.

REFERENCE

[1] Pamela Bhattacharya and Iulian Neamtiu, "Fine-grained Incremental
Learning and Multi-feature Tossing Graphs to Improve Bug Triaging,"
in IEEE International Conference on Software Maintenance, 2010, pp.
1-10.

[2] Pamela Bhattacharya, Iulian Neamtiu, and Christian R. Shelton,
"Automated, Highly-accurate, Bug assignment using Machine Learning
and Tossing Graphs," Journal of Systems and Software, vol. 85, no. 10,
pp. 2275-2292, 2012.

[3] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann, "Improving Bug
Triage with Bug Tossing Graphs," in 7th Joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering (ESEC/FSE '09), New
York, NY, USA, 2009, pp. 111-120.

[4] V.Akila, G.Zayaraz “Bug Triage in Open Source System- A Review”,
International Journal of Collaborative Enterprise, Inderscience
Publishers, vol.4, no.4, pp.299–319,2014

[5] V.Akila, G.Zayaraz, “Novel Metrics for Bug Triage”, Journal of
Software, vol. 9, no.12, pp.3035-3040, Dec 2014

[6] Iman Avazpour, Teerat Pitakrat, Lars Grunske, and John Grundy,
"Dimensions and Metrics for Evaluating Recommendation Systems," in
Recommendation Systems in Software Engineering.: Springer Berlin
Heidelberg, 2014, pp. 245-273.

[7] Jifeng Xuan, He Jiang, Zhilei Ren, and Weiqin Zou, "Developer
Prioritization in Bug Repositories," in 34th International Conference on
Software Engineering (ICSE), Zurich, 2012, pp. 25 - 35.

[8] Wen Zhang, Song Wang, Ye Yang, and Qing Wang, "Heterogeneous
Network Analysis of Developer Contribution in Bug Repositories," in
International Conference on Cloud and Service Computing (CSC),
Beijing, 2013 , pp. 98 - 105.

[9] Song Wang, Wen Zhang, Ye Yang, and Qing Wang, "DevNet:
Exploring Developer Collaboration in Heterogeneous Networks of Bug
Repositories," in ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, 2013, pp. 193
- 202.

[10] Tao Zhang and Byungjeong Lee, "A Hybrid Bug Triage Algorithm for
Developer Recommendation," in 28th Annual ACM Symposium on
Applied Computing, Coimbra, Portugal, 2013, pp. 1088-1094.

[11] Geunseok Yang, Tao Zhang, and Byungjeong Lee, "Utilizing a Multi-
Developer Network-based Developer Recommendation Algorithm to
Fix Bugs Effectively," in 29th Annual ACM Symposium on Applied
Computing (SAC '14)., Gyeongju, Republic of Korea, 2014, pp. 1134-
1139.

[12] Tao Zhang and Byungjeong Lee, "An Automated Bug Triage Approach:
A Concept Profile and Social Network Based Developer
Recommendation," Intelligent Computing Technology,Lecture Notes in
Computer Science, vol. 7389 , pp. 505-512, 2012.

[13] Shadi Banitaan and Mamdouh Alenezi, "DECOBA: Utilizing
Developers Communities in Bug Assignment," in 12th International
Conference on Machine Learning and Applications (ICMLA), Miami,
2013, pp. 66 - 71.

[14] Liguo Chen, Xiaobo Wang, and Chao Liu, "Improving Bug Assignment
with Bug Tossing Graphs and Bug Similarities," in International

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

244 | P a g e

www.ijacsa.thesai.org

Conference on Biomedical Engineering and Computer Science
(ICBECS), 2010 , Wuhan, 2010, pp. 1 - 5.

[15] Ayushi Rastogi, Arpit Gupta, and Ashish Sureka, "Samiksha: Mining
Issue Tracking System for Contribution and Performance Assessment,"
in 6th India Software Engineering Conference, New Delhi,India, 2013,
pp. 13-22.

[16] Tao Zhang, Geunseok Yang, Byungjeong Lee, and Ilhoon Shin, "Role
Analysis-based Automatic Bug Triage Algorithm," Technical Report
2012.

[17] Raula Gaikovina Kula, Kyohei Fushida, Shinji Kawaguchi, and ajimu
Iida, "Analysis of Bug Fixing Processes Using Program Slicing
Metrics," in Product-Focused Software Process Improvement, Lecture

Notes in Computer Science.: Springer Berlin Heidelberg, 2010, vol.
6156, pp. 32-46.

[18] Daniel Alencar da Costa, Uirá Kulesza, Eduardo Aranha, and Roberta
Coelho, "Unveiling Developers Contributions Behind Code Commits:
An Exploratory Study," in 29th Annual ACM Symposium on Applied
Computing, Gyeongju, Republic of Korea, 2014, pp. 1152-1157.

[19] V.Akila, G.Zayaraz, V.Govindasamy, “Bug Triage based on Ant
Systems”, International Journal of Bi- Inspired Computation , vol. 7 no.
4, pp. 263-268 , August 2015

[20] Govindasamy V, Akila V, Banu Priya, “Bug Triaging Using Multi-
Attribute Bug Tossing Graph” Discovery Journal, 46(213), pp.101-106,
2015,

