
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 4, 2016 

311 | P a g e  

www.ijacsa.thesai.org 

A Novel Approach to Detect Duplicate Code Blocks 

to Reduce Maintenance Effort

Sonam Gupta 

Research Scholar, Suresh Gyan Vihar University, 

 JAIPUR (RAJASTHAN), INDIA 

Dr. P. C Gupta 

Associate Professor, Department of Computer Science & 

Informatics, University of Kota  

KOTA (RAJASTHAN), INDIA

 

 
Abstract—It was found in many cases that a code might be a 

clone for one programmer but not the same for another one. This 

problem occurs because of inaccurate documentation. According 

to research, the maintainers are not aware of the original design 

and thus, face the difficulty of agreeing on the system’s 

components and their relations or understanding the work of the 

application. The problem also occurs because of the different 

team of development and maintenance resulting in more effort 

and time during maintenance. This paper proposes a novel 

approach to detect the clones at the programmer side such that if 

a particular code is a clone then it can be well documented. This 

approach will provide both the individual duplicate statements as 

well as the block in which they appear. The approach has been 

examined on seven open source systems. 

Keywords—Clones; Program Dependence Graph (PDG); 

Control Flow Graph (CFG); Abstract Syntax Tree (AST) 

I. INTRODUCTION 

Detecting duplicate code occurrence requires a powerful 
understanding of the clones. Studies[1,2] connected with clone 
investigation conveys with its assessments of partner degree 
question inside one of the supply code, as in an exceedingly 
net application [3], inside the identification of clone-related 
bugs [4], partner degreed in a product bundle piece [5]. 
Distinctive studies measure different previews upheld the 
modification history of the code to see the genealogic nature 
of clones [6], to watch the consistency of clones being looked 
after [7], and to spot real refactoring of clones [8]. 

Alongside this, there are difficulties connected with the 
understanding of clones at the clone group level and potential 
monstrous measures of data that may be recovered from clone 
identification instruments. Also, difficulties were found inside 
the upkeep of clones in light of the fact that it identifies with 
the evacuation of their related duplication through the strategy 
for refactoring.Redundant code is additionally typically 
deceptively referred to as cloned code within the literature—
although that means that one piece of code springs from the 
other one within the original sense of this word. In step with 
the Merriam-Webster lexicon, a clone is one that seems to be a 
replica of a resourceful kind. It's an equivalent word to 
duplicate. Despite the fact that exploration winds up in 
repetitive code, not every excess code could be a clone. There 
are additional cases inside which two code fragments that 
aren't any duplicate of each option just happen to be 
comparative or perhaps indistinguishable all of a sudden. 
Likewise, there is additionally repetitive code that is 

semantically proportional. However, it consolidates an 
absolutely different usage. There is no understanding of the 
investigation group on the exact thought of repetition and 
cloned code. The meaning of clones communicates this 
dubiousness as clones square measure portions of code that 
square measure comparative in venture with some meaning of 
likeness. There are various exact studies on the advancement 
of clones that depict some consideration getting perceptions. 
Antoniol, et al. propose measurement got from clones over 
numerous arrivals of a framework to watch and foresee the 
development of clones [9]. Their study for the data base 
framework mSQL demonstrated that the forecast of the 
normal assortment of clones every work is genuinely solid. In 
an alternate detailed analysis for the UNIX working 
framework piece, they found that the extent of cloned codes is 
confined. Exclusively few clones are regularly found 
crosswise over frameworks; most clones are completely 
contained inside a subsystem. Inside the framework building 
design, constituting the equipment plan reflection layer, more 
up-to-date equipment architectures have a tendency to display 
marginally higher clone rates. The explanation behind this 
improvement is that more current modules are normally gotten 
from existing comparative ones. 

Reusing code pieces by reiteration and sticking with or 
while not minor adjustment may be a typical movement in 
programming bundle advancement. Therefore, programming 
bundle frameworks ordinarily contain areas of code that are 
awfully comparable, alluded to as programming bundle 
clones. Prior exploration demonstrates that a real part of the 
code in an extremely commonplace programming framework 
has been cloned , and in one great case it had been even five 
hundredth [10]. While such duplicate is generally purposeful 
and may be useful from multiple points of view [11], it might 
be unsafe in programming bundle support and development. 
Case in point, if a bug is located in a code piece, all similar 
parts should be checked for a comparative bug [12]. Copied 
pieces might impressively expand the work to be carried out 
once upgrading or adjusting code [13]. A late study that 
worked inside the setting of business frameworks 
demonstrates that conflicting changes to codes are successive 
and bring about extreme astounding conduct [14]. Numerous 
other options moreover demonstrate that product bundle 
frameworks with code clones will be harder to keep up [15,16] 
and may present refined blunders [12,17]. In this way code 
clones are thought about one amongst the undesirable 
"odours" of a PC code [18] and it is wide accepted that cloned 
code will make programming bundle upkeep and advancement 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 4, 2016 

312 | P a g e  

www.ijacsa.thesai.org 

impressively a great deal of troublesome. Accordingly, the 
location, viewing and evacuation of code clones is a crucial 
subject in programming bundle support and development [19]. 
Thus, the algorithm proposed in this paper will help the 
programmer to locate the exact position of the cloned code. 
Along with the position it will also inform about the 
percentage of clone within the system. If the percentage is 
more than that of threshold value then the programmer either 
documents it correctly or else removes the clone. This reduces 
the maintenance effort. 

II. ALGORITHM TO DETECT THE DUPLICATE CODES 

The algorithm proposed is based on the hybrid technique 
which combines program dependence graphs (PDG), control 
flow graphs (CFG), and abstract syntax tree (AST) based 
approach. This approach is better than other approaches [21] 
since by combining three techniques it will work well at the 
complier level and AST will help to construct the nodes of 
duplicate codes. The algorithm will work as follows. 

First, the statements will be inserted in a function named 
InsertStatements() 

Step 1: Generate a key for entering statement into 
navigable collection (which is the value of the statement) 

Step 2: increment the no of statements present in navigable 
collection 

Step 3: if identity is already present, add this value into 
that key value pair 

Step 4: else add a new item into the navigable collection 
and terminate 

After making the pool of all statements, the matrix will be 
used for setting the values as true in a square matrix of size 
equal to no. of statements in an item of the navigable 
collection and the matrix is updated only in the upper half 
portion, that is, above the upper right principal diagonal only 
with no operation on lower half of matrix. The working of 
matrix will be done in putAMarkOnMatrix()  function : 

Step 1: initialize index1 with starting index of statement1 

Step 2: initialize index2 with starting index of statement2 

Step 3: if index1 < index2 

Set all the cells true or 1 from index1 to index2 

Step 4: else 

Set all the cells true or 1 from index2 to index1 

Now the duplicity of the statements will be checked in 
StatementGroup.java function. For checking the duplicity, it 
uses a matrix to store all the different statements in the class 

Step1: if (index1 < index2) then 
collector.setTrueToCell(index1, index2); 

Step2: else collector.setTrueToCell(index2, index1); 

Whenever a duplicate statement is found, the cell in the 
matrix for showing the result is highlighted, and a mark is put 
on the code which is duplicated again using the above given 
code as given in following code: 

Step 1: for (inti = 0; i< N - 1; i++) {  //N Array size 

                Statement s1 = statArray.get(i); 

 Step2: for (int j = i + 1; j < N; j++) { 

               Statement s2 = statArray.get(j); 

                //Match or not 

                  if (s1.equals(s2)) {       //insert the result to matrix 

                          putAMarkOnMatrix(collector, s1, s2); 

Step 3: Repeat above steps till N 
Above code is checking the code for the duplicity. If it is 

duplicate code, then it puts the mark on the duplicate code 
using above pseudocode. Now the AST structure will be 
constructed so that the clones can be identified. 

The working of construction of AST will be as follows: 

Step 1: Initialize token = new CodeReviewToken(i, s); 

Step 2: Make type= astType; //token.getType(); 

Step 3: if (Configuration.anonymizeType(type)) then  

 return  JavaRecognizer._tokenNames[type]; 

Step 4: return token.getText(); 

Step 5; if (token != null) then  

            index = (token).getStartIndex(); 

Step 6:Initialize tid = this.token.getID(); 

 Step 7: if (tid > -1) then tl.addToken(tid) 

Step 8: if (getFirstChild() != null) then  

            if (!Configuration.anonymizeType(astType)) then 

                ts += ((CodeReviewAST) 

getFirstChild()).toStringList(tl); 

Step 9: Display ts as the duplicated code block. 
The AST constructed will also be able to identify non-

contiguous clones as now if any extra line is inserted or 
deleted, it will form a block of code. 

By using the above-mentioned pseudocode every token 
will be assigned a unique id so that when converting each text 
into tokens all of them can be grouped on the basis of their 
numbers and then each duplicate code can be categorized 
under single head. 

III. RESULTS AND EXPERIMENTAL STUDY 

The above proposed algorithm has been developed in Java. 
The tool has been analysed on seven open source systems 
namely Apache Ant 1.7.0, Columbia 1.4, EMF 2.4.1, JMeter 
2.3.2, JEdit 4.2, JFreeChart 1.0.10, and JRuby 1.4.0. The 
result will be viewed as given in Figure 1. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 4, 2016 

313 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 1. Screenshot of proposed tool 

As shown in Figure 1, the tool will tell the programmer 
about the number of duplicate blocks and number of 
statements in each block along with its location. Now the 
programmer can make the changes in the documentation or in 
the code as required. This approach will reduce the 
maintenance effort to a much lower level. The number of 
clones found in each system by the help of this tool were 
compared with the JDeodorant tool[20] as well as with manual 
detection[20].  The comparison between the proposed 
approach and JDeodorant is shown in Figure 2.  The results 
clearly show that the proposed tool extracted more number of 
bad smells. Similarly. the cloned blocks detected by the 
proposed tool are compared with the manual approach as 
shown in Figure 3. It clearly shows that the proposed tool is 
able to find almost same number of cloned blocks as that were 
actually present in the systems. 

 
Fig. 2. Comparison of detected clones 

 
Fig. 3. Comparison of detected clones with manual approach 

IV. CONCLUSION 

The proposed tool has been developed to reduce the 
maintenance effort, as it has been proved [5] that a lot of cost 
and effort is wasted in maintenance due to clones. This tool 
consists of hybrid techniques of PDG, CGF and AST thereby 
overcoming the disadvantages of each. The tool has been 
experimented of seven open source systems. Along with it the 
results have also been compared with JDeodorant tool as well 
as with manual extraction. The results clearly show that the 
tool is able to find more number of clones which actually have 

0

50

100

150

200

250

300

350

400

A
p

ah
e 

A
n

t 
1

.7
.0

C
o

lu
m

b
ia

 1
.4

EM
F 

2
.4

.1

JM
et

e
r 

2
.3

.2

JE
d

it
 4

.2

JF
re

e
C

h
ar

t 
1

.0
.1

0

JR
u

b
y 

1
.4

.0

JDeodrant

Proposed
Algorithm

0
50

100
150
200
250
300
350
400
450

A
p

ah
e 

A
n

t 
1

.7
.0

C
o

lu
m

b
ia

 1
.4

EM
F 

2
.4

.1

JM
et

e
r 

2
.3

.2

JE
d

it
 4

.2

JF
re

e
C

h
ar

t 
1

.0
.1

0

JR
u

b
y 

1
.4

.0

Manual
Approach

Proposed
Algorithm



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 4, 2016 

314 | P a g e  

www.ijacsa.thesai.org 

bad smell. Moreover. the tool also provides the location of 
each duplicate block along with its percentage. Now the 
programmer can set the threshold value based on the 
percentage. If he finds that the percentage is higher, then he 
will either remove the duplicity or will document it correctly 
so as to reduce maintenance time and cost. 

V. FUTURE WORK 

The tool has been experimented on just open source 
systems. In future. the work will be extended to study on 
licensed systems. Along with this, the work will be extended 
to convert the duplicated block into functions so that a single 
change can be reflected in all versions. 

REFERENCES 

[1] Basili, V. R. and B. T. Perricone (1984). "Software errors and 
complexity: an empirical investigation." Commun. ACM 27(1): 42-52. 

[2] Parnas, D. L. (1994). Software aging. Proc. Int'l Conf. on Software 
Engineering (ICSE). Sorrento, Italy, IEEE Computer Society Press: 279-
287. 

[3] Damith Rajapakse and Stan Jarzabek, “Using Server Pages to Unify 
Clones in Web Applications: A Trade-Off Analysis,” International 
Conference on Software Engineering, Minneapolis, Minnesota, May 
2007, pages 116 - 126. 

[4] Lingxiao Jiang, Zhendong Su, and Edwin Chiu, “Context-Based 
Detection of Clone-Related Bugs,” Joint Meeting of the European 
Software Engineering Conference and Symposium on the Foundations of 
Software Engineering, Dubrovnik, Croatia, September 2007, pages 55 - 
64. 

[5] Robert Tairas and Jeff Gray, “An Information Retrieval Process to Aid in 
the Analysis of Code Clones,” Empirical Software Engineering, Volume 
14, Number 1, February 2009, pages 33 - 56. 

[6] Miryung Kim, Vibha Sazawal, David Not kin, and Gail Murphy, “An 
Empirical Study of Code Clone Genealogies,” Joint Meeting of the 
European Software Engineering Conference and Foundations of 
Software Engineering, Lisbon, Portugal, September 2005, pages 187 - 
196. 

[7] Lerina Aversano, Luigi Cerulo, and Massimiliano Di Penta, “How 
Clones are Maintained: An Empirical Study,” European Conference on 
Software Maintenance and Reengineering, Amsterdam, The 
Netherlands, March 2007, pages 81 - 90. 

[8] Robert Tairas and Jeff Gray, “Sub-clones: Considering the Part Rather 
than the Whole,” International Conference on Software Engineering, 
Research, and Practice, Las Vegas, Nevada, July 2010. 

[9] Antoniol, G., Casazza, G., Penta, M.D., Merlo, E.: Modeling clones 
evolution through time series. In: International Conference on Software 
Maintenance, IEEE Computer Society Press (2001) 273–280. 

[10] St´ephane Ducasse, Matthias Rieger, Serge Demeyer. A Language 
Independent Approach for Detecting Duplicated Code. In Proceedings of 
the 15th International Conference on Software Maintenance (ICSM’99), 
pp. 109-118, Oxford, England, September 1999. 

[11] Cory Kaiser and Michael W. Godfrey. “Cloning Considered Harmful” 
Considered Harmful: Patterns of Cloning in Software. Empirical 
Software Engineering, Vol. 13(6):645–692 (2008). 

[12] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner: 
Finding Copy-Paste and Related Bugs in Large-Scale Software Code. In 
IEEE Transactions on Software Engineering, Vol. 32(3): 176-192, March 
2006. 

[13] Jean Mayrand, Claude Leblanc, Ettore Merlo. Experiment on the 
Automatic Detection of Function Clones in a Software System Using 
Metrics. In Proceedings of the 12th International Conference on 
Software Maintenance (ICSM’96), pp. 244-253, Monterey, CA, USA, 
November 1996. 

[14] E. Juergens, F. Deissenboeck, B. Hummel and S. Wagner. Do Code 
Clones Matter? In Proceedings of the 31st International Conference on 
Software Engineering (ICSE’09), pp. 485–495, Vancouver, Canada, May 
2009. 

[15] Xian, Y., Angler, D.: Using redundancies to find errors. In: Proceedings 
of the 10th ACM SIGSOFT symposium on Foundations of software 
engineering, ACM Press (2002) 51–60. 

[16] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local 
algorithms for document fingerprinting. In Proceedings of the 2003 
ACM SIGMOD International Conference on Management of Data 
(SIGMOD’03), pp. 7685, San Diego, California, June 2003. 

[17] A. Chou, J. Yang, B. Chelf, S. Hallem and D. R. Angler. An Empirical 
Study of Operating System Errors. In Proceedings of the 18th ACM 
symposium on Operating systems principles (SOSP’01), pp. 73–88, 
Banff, Alberta, Canada, October 2001. 

[18] Martin Fowler. Refactoring: Improving the Design of Existing Code, 
Addison-Wesley, 1999. 

[19] B. Lagu¨e, D. Proulx, J. Mayrand, E. Merlo and J. Hudepohl. Assessing 
the Benefits of Incorporating Function Clone Detection in a 
Development Process. In Proceedings of the 13th International 
Conference on Software Maintenance (ICSM’97), pp. 314– 321, Bari, 
Italy, October 1997. 

[20] Krishnan, Giri Panamoottil, and Nikolaos Tsantalis. "Unification and 
refactoring of clones." Software Maintenance, Reengineering and 
Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-
IEEE Conference on. IEEE, 2014. 

[21] C.K. Roy and J.R Cordy, A Survey on Software Clone Detection 
Research, Queen’s School of Computing Technical Report: 541 pp., 
September 2007. 


