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Abstract—Numerous fast-search block motion estimation al-
gorithms have been developed to circumvent the high com-
putational cost required by the full-search algorithm. These
techniques however often converge to a local minimum, which
makes them subject to noise and matching errors. Hence, many
spatial domain block matching algorithms have been developed
in literature. These algorithms exploit the high correlation that
exists between pixels inside each frame block. However, with
the block transformed frequencies, block matching can be used
to test the similarities between a subset of selected frequencies
that correctly identify each block uniquely; therefore fewer
comparisons are performed resulting in a considerable reduction
in complexity. In this work, a two-level hierarchical fast search
motion estimation algorithm is proposed in the frequency domain.
This algorithm incorporates a novel search pattern at the top level
of the hierarchy. The proposed hierarchical method for motion
estimation not only produces consistent motion vectors within
each large object, but also accurately estimates the motion of
small objects with a substantial reduction in complexity when
compared to other benchmark algorithms.

Keywords—Video coding; Frequency domain; Motion estima-
tion; Hierarchical search; Block matching; Communication.

I. INTRODUCTION

A moving video frame (image) is captured by taking a rect-
angular snapshot of the natural signal at periodic time intervals.
Playing back the series of frames produces the appearance of
motion. A higher temporal sampling rate (frame rate) gives a
smoother playback, but requires more samples to be captured
and stored. Most video coding methods utilize both temporal
and spatial redundancy to compress video data [1]. In the
temporal domain, there is usually a high correlation between
frames captured at around the same time. Temporally adjacent
frames are often highly correlated, especially if the temporal
sampling rate is high. In the spatial domain, there is usually
a high correlation between pixels (samples) that are close to
each other. Thus, the values of neighbouring samples are often
very similar [3]. In video compression, intra frame and inter
frame coding are applied in order to reduce the number of bits
needed to represent a video. In intra-frame coding, each frame
is coded without any reference to other frames. This process
involves transforming the block into the frequency domain,

where the resulting coefficients are quantized and encoded. A
better compression may be achieved with inter-frame coding
which exploits the temporal redundancy. In inter-frame cod-
ing, motion estimation and compensation (two vital processes
within video coding) have become powerful techniques to
eliminate the temporal redundancy due to high correlation
between consecutive frames. Successive video frames may
contain the same objects. Motion estimation is the process
that describes the transformation from one image to another
through examining the movement of objects in an image
sequence to try to obtain vectors representing the estimated
motion. Motion compensation uses the knowledge of object
motion obtained to achieve data compression [4]. In a video
scene, motion can be a complex combination of translation and
rotation. Such motion is complicated to estimate and requires
huge amount of processing. However, translational motion is
simply estimated and has been used successfully for motion
compensated coding. Most of the motion estimation algorithms
make the following assumptions: objects move in translation
in a plane that is parallel to the camera plane, i.e., the effects
of camera zoom, and object rotations are not considered. Illu-
mination is spatially and temporally uniform, and occlusion of
one object by another, and uncovered background are neglected
[5]. Several motion estimation approaches have been proposed,
two of which are the pel-recursive algorithms (PRAs) and
the block-matching algorithms (BMAs). In general, BMAs are
more suitable for a simple hardware realization because of
their regularity and simplicity. They estimate motion on the
basis of rectangular blocks and produce one motion vector
for each block. These algorithms assume that all the pels
within a block have the same motion activity. PRAs involve
more computational complexity and less regularity, so they are
difficult to realize in hardware [3].

In a typical BMA, each frame is divided into blocks,
each of which consists of luminance and chrominance blocks.
Usually, for coding efficiency, motion estimation is performed
only on the luminance block. Each luminance block in the
present frame is matched against candidate blocks in a search
area on the reference frame. These candidate blocks are just
the displaced versions of original block. The best matched i.e.,
lowest distortion, candidate block is found and its displacement
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Fig. 1: Motion Estimation and Compensation in Block Dia-
gram.

(motion vector) is recorded. In a typical inter-frame coder, the
input frame is subtracted from the prediction of the reference
frame. Consequently the motion vector and the resulting error
can be transmitted instead of the original luminance block;
thus inter-frame redundancy is removed and data compression
is achieved. At receiver end, the decoder builds the frame
difference signal from the received data and adds it to the
reconstructed reference frames. The summation gives an exact
replica of the current frame. The better the prediction the
smaller the error signal and hence the required transmission bit
rate is reduced [4]. Although the full-search motion estimation
algorithm yields the best results, its intensive computation
process limits its practical application. However, there is a
trade-off between the complexity of the algorithm and the
quality of the predicted frame. With this trade-off in consid-
eration, many fast search motion estimation algorithms have
been developed in literature. The fast search motion estimation
algorithms can be classified mainly into two broad categories:
spatial domain and frequency domain. The term spatial domain
refers to the video frame plane itself, and approaches in this
category are based on direct matching of pixels in successive
video frames [2]. In the spatial domain, high correlation exists
between pixels inside each frame block; therefore, the general
block matching usually require measuring the similarities
between every pair of pixels inside each block. Frequency
domain motion estimation algorithms can be used to test
the similarities between groups of frequencies which form a
subset of the total frequencies in each block; therefore fewer
comparisons can be considered for this task with a massive
reduction in block matching calculations. Transforming a video
frame into the frequency domain is a vital step that has to
be performed in intra-frame coding. In this research, a new
low complexity fast search motion estimation algorithm is
proposed, as shown in Figure 1. The algorithm uses the intra-
coded frequency domain transformed frame in order to perform
the proposed block matching technique. Section 2 provides
an up to date literature review of both spatial and frequency
domain motion estimation algorithms. Section 3 introduces
the spatial-frequency transformation process. In section 4, the
proposed matching technique is described. Section 5 provides
the experimental results. Finally, section 6 concludes this
research.

II. LITERATURE REVIEW

Many sub-optimal spatial domain motion estimation al-
gorithms have been proposed in literature such as the
well-known: Cross-Search, Spiral-Search, Three-Steps-Search,

Two-Dimensional-Logarithmic-Search, Binary-Search, Four-
Step-Search, Orthogonal-Search, and Diamond-Search algo-
rithms. These algorithms are called sub-optimal because al-
though they are computationally more efficient than the Full
Search, they do not result in a quality that is as good as
that of the Full Search algorithm [3]. A more recent variant
of fast search motion estimation approaches may be found
in [7][8][9][10][11][12][13][14]. The extensive variety of al-
gorithms available for block-based motion estimation makes
it difficult to choose between them. The choice depends on
different criteria, such as: complexity, implementation, match-
ing performance, rate-distortion performance, and scalability
[15]. Motion estimation algorithms quality and performance
has been a popular research area and different results have
been obtained by different researchers. According to Kuhn
et al. [16], the Three Step Search gives the best results. The
five step diamond search performs well, but suffers in some
cases from a too small search range of pixels. The hierarchical
search algorithm depicted results which were not as good
when compared with other algorithms. On the other hand,
alternate pixel sub-sampling depicts very similar results as the
original full search algorithm, where no extreme case of per-
formance degradation occurs. According to Ghanbari [3] with
regards to speed, the Two-Dimensional-Logarithmic algorithm
outperforms the rest of the algorithms at the cost of quality.
The Three-Steps-Search achieves a marginal improvement in
terms of quality but has a high computational complexity in
comparison with the Two-Dimensional-Logarithmic algorithm.
The Four-Steps-Search algorithm outperforms the Three-Steps-
Search algorithm in terms of complexity; however, its quality
does not approach that of Full-Search as the hierarchical
algorithms do. Although the complexity of the hierarchical
algorithms is worst than some of other fast search algorithms,
they outperform any other algorithm in terms of quality
and they almost have the same quality as the Full-Search
algorithms, with a significant reduction in complexity. Motion
estimation in the frequency domain has been investigated
by fewer researchers. Argyriou and Vlachos [17] proposed a
motion estimation scheme for broadcast-quality digital video
applications. The proposed scheme is based on the principle
of gradient correlation in the frequency domain. The scheme
involves the quad-tree decomposition of a frame. Quad-tree
decompositions are obtained by using the motion compensated
prediction error to control the partition of a parent block to four
children quadrants. The partition criterion is applied iteratively
until a target number of motion vectors or a target level of
motion compensated prediction error is achieved or, until no
more than a single motion component can be identified. Erdem
et. al, [18] in their work model the discontinuous motion
estimation problem in the frequency domain where the motion
parameters are estimated using a harmonic retrieval approach.
In the proposed work, the vertical and horizontal components
of the motion are independently estimated from the locations
of the peaks and they are paired to obtain the motion vectors
using a specific procedure. L.Lucchese et al., [19] in their work
introduced an alternative for 3-D motion estimation based on
the Fourier transform of the 3-D intensity function described
by the registered time-sequences of range and intensity data.
The proposed system can lead to an unsupervised method
for 3-D rigid motion estimation. This method has several
advantages since it uses the total available information and
not sets of features. Briassouli and Ahuja [20] in their work
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analysed a video containing multiple objects in rotational and
translational motion through a combination of spatial and fre-
quency domain representations. It is argued that the combined
analysis can take advantage of the strengths of both represen-
tations. Initial estimates of constant, as well as time-varying,
translation and rotation velocities are obtained from frequency
analysis. Improved motion estimates and motion segmentation
for the case of translation are achieved by integrating spatial
and Fourier domain information. For combined rotational and
translational motions, the frequency representation is used for
motion estimation, but only spatial information can be used
to separate and extract the independently moving objects.
The proposed algorithms are tested on synthetic and real
videos. Tzimiropoulos et al., [21] proposed a frequency domain
approach for the detection of symmetries in real images is
presented. The framework is based on recent state-of-the-art
research where motion estimation techniques are employed to
sequentially determine all the associated parameters. In partic-
ular, the researchers introduce several modifications regarding
the order of symmetry estimation and the detection of the axes
of possible bilateral symmetry. Preliminary results demonstrate
the efficiency of their approach. Pingault and Pellerin [22]
describe a method to test motion transparency phenomena in
image sequences based on an image sequence analysis in the
frequency domain. It is mainly composed of a Stochastic-
Expectation-Maximisation algorithm which provides a new
statistical model for this problem. Young and Kingsbur [23]
proposed a frequency-domain algorithm for motion estimation
based on overlapped transforms of the image data. This method
is developed as an alternative to block matching methods. The
complex lapped transform is first defined by extending the
lapped orthogonal transform to have complex basis functions.
The complex lapped transform basis functions decay smoothly
to zero at their end points, and overlap by 2:1 when a
data sequence is transformed. A method for estimating cross-
correlation functions in the complex lapped transform domain
is developed. Block matching is subject to noise, therefore,
researchers have attempted to use a predictor-corrector type
estimator such as the Kalman Filter in order to enhance the
motion vectors predictions and measurements and to obtain a
better performance. The Kalman filter addresses the general
problem of estimating the state of a discrete-time controlled
process that is governed by the linear stochastic difference
[24]. Various researches has been conducted in this field to
incorporate Kalman filtering with block matching algorithms
for the purpose of obtaining better motion vectors estimates
such as the work in [25][26][27][28][29][30]. Although Hi-
erarchical motion estimation algorithms (usually combines
several block matching algorithms at different levels) are
widely used in the spatial domain for their accuracy at extra
complexity, those algorithms have not yet been investigated
in the frequency domain. In this work, the authors propose
a frequency based two-level hierarchical motion estimation
algorithm that incorporates a novel searching method at the
top-level of the hierarchy, with a matching criterion that
reduces the complexity of the proposed method. The next
section discuses the spatial-frequency transformation method
used in this research.

III. TRANSFORMATION FROM SPATIAL TO
FREQUENCY DOMAIN

Video frames enclose high spatial and temporal correlation
between adjacent pixels and consecutive frames respectively.
Video compression involves reducing the spatio-temporal re-
dundancy using intra-frame and inter-frame coding methods,
in order to reduce the required number of bits that represent a
video. The former process involves, transforming the block
into the frequency domain, and quantizing the transformed
coefficients in order to achieve compression. In the latter,
further compression may be achieved by exploiting the tem-
poral redundancy using motion estimation and compensation
algorithms. In intra-frame coding the transformation process is
used in order to represent the image data in another form, by
switching from the spatial to the frequency domain or vice
versa. The choice of transformation technique is governed
by a number of criteria. However, regardless of the chosen
transformation method, data in the transform domain should
be separated into components with minimal inter-dependence.
Moreover, any transformation method should be reversible and
computationally tractable with low memory requirement and
a low number of arithmetic operations [5]. Many transforms
have been proposed for video coding, and the most popular
transforms can be classified into two categories: block-based
and frame-based transformations [31]. Although frame-based
transformations are more suitable for images and give better
decorrelation results, block-based methods are widely used
in video coding and are more appropriate for this research,
for the reason that motion estimation algorithms are based on
block matching criteria which are based on matching portion
of the frequency block in this research. The Discrete Cosine
Transform (DCT) is chosen as the transformation method
due to its accuracy and low complexity; DCT operates on
B, a block of N N samples (pixels) and creates Z, an N
N block of coefficients. A discrete cosine transform (DCT)
expresses a sequence of data points in terms of a sum of
cosine functions oscillating at different frequencies. The DCT
is valuable for various applications in science and engineering.
The use of cosine rather than sine functions is important
in image and video applications as the sine functions lead
to complex numbers and unnecessary complex computation.
Specifically, a DCT is a Fourier-related transform that only
uses real numbers. The most common variant of discrete cosine
transform is the type-II DCT, which is often called ”the DCT”;
its inverse, the type-III DCT, is correspondingly often called
”the inverse DCT” or ”the IDCT”. The action of the DCT (and
its inverse, the IDCT) can be described in terms of a transform
matrix W (see eq 1). The DCT of an N N sample block is
given by: . And the inverse DCT (IDCT) is given by: , where
B is a matrix of samples, Z is a matrix of coefficients, and are
represented as in eq.1, and eq.2 respectively,

Bij =
N−1∑
x=0

N−1∑
y=0

CxCyZxy cos
(2j + 1)yπ

2N
cos

(2i+ 1)xπ

2N

(1)

Zxy = CxCy

N−1∑
i=0

N−1∑
j=0

Bij cos
(2j + 1)yπ

2N
cos

(2i+ 1)xπ

2N

(2)
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W is an N×N transform coefficients matrix, the elements
of W are defined based on eq.3:

Wij = Ci cos

[
(2j + 1)iπ

2N

]
(3)

where ci =
√

1
N for ci = 0 and ci =

√
2
N for ci ≥ 0;

The DCT Transformation matrix coefficients are image
independent; they are always fixed for the same block size,
and hence can be pre-computed and stored separately. The
output of a two-dimensional DCT is a set of N N coefficients
representing the image block data in the DCT domain and
these coefficients can be considered as weights of a set of
standard basis patterns [5]. The basis patterns for an 88 DCTs
are composed of combinations of horizontal and vertical cosine
functions. Any image block may be reconstructed by combin-
ing all N N basis patterns, with each basis multiplied by
the appropriate weight. The result of the DCT transformation
for a block in the spatial domain is a set of frequencies
that are arranged in a zigzag ascending order. The frequency
located at is the lowest frequency (highest wavelength) and is
called the DC value. This value represents the general style
of the block and is considered the most important frequency
amongst all the other frequencies in the block. The rest of the
frequencies range from low to high in a zigzag pattern and
are called the AC values. The AC values contain the details
of the block which ranges from general to fine details, as we
progress forward in the zigzag order. For the purpose of this
research, video frames are intra-coded using 4x4 and 8x8 DCT
transformation block sizes at different levels of the proposed
hierarchy. Further, selected frequencies are used in the block
matching algorithm in order to obtain the best match as will
be illustrated in the next sections.

IV. MATCHING CRITERION

The matching criterion has a huge impact on the perfor-
mance of the algorithm. When comparing algorithms, different
criteria should be investigated such as the well-known Mean
Square Error (MSE), the Mean Absolute Difference (MAD),
and the Sum of Absolute Difference (SAD). In addition to
those standard criteria, other specific criteria were introduced
by researchers such as: the Reduced Bit Mean Average Differ-
ence, the Min/Max-Error, and the Different Pixel Count [5].
The nonnegative matching error function (Sum of absolute
differences as shown in eq.4) is normally defined over all the
positions to be searched.

Dm,n =
N−1∑
x=0

N−1∑
y=0

|µ− γ| (4)

where µ = ft(r+x, s+y) is the current frame reference block
of its upper left pixel at the coordinate (r, s) and its lower right
pixel at coordinate (r+x, s+y), γ = ft−1(r+m+x, s+n+y)
is a candidate block in the previous frame, and −W ≤ m,n ≤
W (W is the window size). The matching criterion has an
enormous impact on the performance of the algorithm, there-
fore, reducing the number of required computations negatively
affects the matching results when applied in the spatial domain
since the pixels are highly correlated and it is impossible to

Fig. 2: Basis functions of an 8x8 DCT block, the top left
quarter of the block is used in the matching criterion in the
work, as frequencies in this quarter consists of a combination
of low and reasonably high frequencies that represents the most
important characteristics of the block.

differentiate between the significance of pixels inside a given
block. However, reducing the number of required computations
is possible in the frequency domain because the frequencies are
highly de-correlated, making it possible to categorize frequen-
cies based on their significance inside each transformed block.
A simple method of block matching algorithm is the Full-
Search Algorithm, where Dm,n is computed for all (2W +1)2

positions of candidate blocks in the search window. This results
in (2W + 1)2 × N2 subtractions, (2W + 1)2 × (2N2 − 1)
additions and (2W+1)2 comparisons for each reference block.
However, with fast search motion estimation algorithms, the
SAD criterion shown in Eq. (1) requires N2 computations
of subtractions with absolute values and N2 additions for
each candidate block at each search position. The absence
of multiplications makes this criterion computationally more
attractive for real-time implementation. In this work the SAD
criterion is used but with fewer numbers of computations.
This approach requires N2/4 computations of subtractions
with absolute values, and N2/4 additions for each candidate
block at each search position. As stated earlier, the frequency
coefficients produced by the DCT represent the basis functions
to the source image, where the basis function increases as we
move in a Zig-Zag pattern from the top-left to the bottom-right
corners of the block. As shown in Fig. 2, the highest left, and
the lower right corners’ coefficients contain the lowest and
the highest vertical and horizontal frequencies respectively. In
this research, the first quarter of the transformed block is used
in the matching criterion. Frequencies in this quarter consist
of a combination of low and reasonably high frequencies,
representing the most important characteristics of the block. As
will be shown later, information in this portion of the block is
sufficient to distinguish the desired block from amongst the rest
of the neighbouring blocks that can be assumed as candidate
locations for the search operation.
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A. THE PROPOSED HIERARCHICAL SEARCH MOTION
ESTIMATION ALGORITHM

Hierarchical block matching techniques attempt to merge
the advantages of large blocks with those of small blocks. The
reliability of motion vectors is influenced by the selected block
sizes. Larger blocks are more likely to track actual motion
than smaller ones and thus are less likely to converge on
local minima. Although such motion vectors are reliable, the
quality of matches of large blocks is not as good as that of
small blocks. Hierarchical block matching algorithms exploit
the motion tracking capabilities of small blocks and use their
motion vectors as starting points for searches for larger blocks.
Normally, three level hierarchical searches are widely used in
the spatial domain, where initially large blocks are matched
and the resulting motion vector provides a starting point for
a search for a smaller matching block. In this research a
two-level hierarchy is used in the frequency domain, where
a new search pattern is applied at the top of the hierarchy. The
following summarises the steps of the proposed algorithm. This
hierarchy is applied on both the previous and the current video
frames:

• Step 1: the lowest level (level-1) consists of the video
frame at its full resolution. This step involves sub-
sampling level-1 by a factor of 2 in vertical and
horizontal directions to produce level-2.

• Step 2: In this step, the frames at different levels
(level-1) an (level-2) are transformed into the fre-
quency domain using the two dimensional discrete
cosine transform with different block sizes (4 × 4
block size at level-2 and 8× 8 at level-1). The search
starts from the highest level (level-2) using block sizes,
where the new proposed cross-diamond search pattern
(described in the next section) is used to get a coarse
motion vector that will be passed to level-1 (lowest
level).

• Step 3: In this step, the Enhanced Three-Step-Search
algorithm (described in section 3.3) is used on level-
1 utilizing 8 × 8 block sizes, to get the final motion
vector that will be added to the previous image to get
the next predicted image frame.

B. THE PROPOSED CROSS-DIAMOND SEARCH PATTERN

The steps of the proposed algorithm are applied on the two
hierarchies (current frame and previous frames hierarchies) and
the search pattern is applied between corresponding levels of
the hierarchies. The steps of the algorithm can be summarized
as follows (Figure-2 illustrates the proposed method):

• Step 1: This step involves setting the window size
to 2N + 1 where N is the number of levels in the
hierarchical search (i.e., N = 2 in the proposed
algorithm), and setting the step size to the standard
2N (i.e., step size= 4).

• Step 2: Starting at the center point location around
the obtained coarse motion vector, this step involves
searching the four points forming a diamond shape
pattern. The best match will be passed to step-3 as
the new center of search.

Fig. 3: The first step of the proposed algorithm involves
four locations to be searched around the canter forming a
diamond shape pattern, the second step involves additional four
locations to be searched around the best match point obtained
from the first step with step size reduced to the half.

Fig. 4: Visual representation of PSNR values presented in
Table-1

• Step 3: This step involves setting the step size to N/2,
searching the four neighboring points around the new
center obtained from step-2, and forming the diamond
shape (see Fig. 3). If the step size >1, then the step
size is set to N/2 and step-2 is repeated; otherwise, the
best match point that is found is passed to level-1 of
the hierarchy. The best matched block will be used to
obtain the resulting motion vector and will be passed
to the lower level (level-1), where it will be used as
the centre point of search for the ETSS algorithm.

C. THE ENHANCED THREE-STEP-SEARCH ALGORITHM
(ETSS)

The obtained motion vector in the previous hierarchy is
used as the centre point of the TSS algorithm (using 8 × 8
block sizes). The TSS starts with 9 points to be checked (that
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Fig. 5: Visual representation of the complexity of the proposed
work compared to the rest of the standard and benchmark
algorithms.

form a rectangular shape). The TSS is described as follows
and is based on the following conditions:

• Condition 1: If the best match is the centre of the
search window, the algorithm stops, and the same
motion vector (obtained from the previous hierarchy)
is considered as a final motion vector for the current
block.

• Condition 2: If the best match is one of the eight
rectangular neighbouring points, then the benchmark
Three-Step-Search algorithm is performed based on
the following criteria:
◦ Search the location around the best match, and

set the step size to S = 2N−1.
◦ Search the eight locations +/−S surrounding

the location centre.
◦ Reduce the step size to S = S/2 and then go

back to step 2.
◦ Terminate when S = 1

The number of comparisons required to find the best match
is 8N + 1 for a search area of +/− 2N − 1 pixels in N-Step
Search algorithms. Since N = 3, the required computations
are 25.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this research, 13 standard Quarter Common Intermediate
File (QCIF) and Common Intermediate File (CIF) video se-
quences of different motion contents are used to compare the
performance of different algorithms. These video sequences
are categorized into three classes; Class A, Class B, and
Class C, with increasing motion complexity. This means that
the video sequences in Class A have slow motion activities,
those in Class B have medium motion activities and those in
Class C have high or complex motion activities. The video
sequences of Silent, Claire, Mother and Daughter belong to
the Class A category. The video sequences of News, Suzie,
Miss America, and Hall monitor are of moderate motion
thus categorised as class B. Finally, the video sequences of
Foreman, Carphone, Salesman, Flower, Coastgard, and Akiyo
sequence which have fast object translation with high motion
activity belong to Class C. More than 650 video frames of
standard test video sequences with different formats were used

in the experiments. These comprise of the first 50 frames from
each of the 13 test video sequences listed in Table-2. The
results are evaluated subjectively and objectively. The PSNR
(Peak signal to Noise Ratio) is used to objectively evaluate the
system performance, where PSNR = 10 log10 (L

2/MSE) is
measured in decibel units (db units), where L is the range
of pixel values (when the luminance component is only used
L = 255), and MSE = 1/N

∑N
i=1(xi − yi)

2 is the Mean
Square Error, where N is the number of the pixels per frame,
and xi, yi are the pixels within the original and predicted
frames, respectively. A standard measurement states that, if
the PSNR result is larger than 30db, then the difference
between the original image and the resulted processed image
will not be recognized through the human visual system.
The higher the PSNR, the better quality it represents. Using
the original and reconstructed frames, Table-2, illustrates the
PSNR values for the proposed algorithm and compares the
results with those of other benchmark and standard algorithms.
The results in Table-2 show that, using the standard set of
test videos, the proposed algorithm outperforms the standard
Three-Step-Search [32] with 17% average enhancement, Two-
Dimensional-Logarithmic-Search [33] with 28.6% average en-
hancement, and the Diamond Search algorithm [34] with
20.2% average enhancement. The average PSNR shows an
enhancement of 16db units in some particular cases, signifying
an enormous enhancement of quality.

In addition to the above standard algorithms, the enhanced
Three-Step-Search algorithm [35], the Kalman simplified hier-
archical search algorithm [36], and the Cross-Diamond Mod-
ified Hierarchical Search Algorithm [37] are chosen as the
state-of-the-art benchmarks in the field of hierarchical search
algorithms. When compared with the proposed work, using the
same set of test videos, the average PSNR results show that the
current proposed algorithm outperforms the work in [35][36],
and [37] with 13.49%, 4% and 3% average enhancement
respectively. The results of the PSNR values of the proposed
work can be improved if the Kalman filter is applied as a
stochastic predictor/ corrector estimator. Unfortunately, this
will add to the complexity of the proposed work. Even without
the use of an additional set of filters, the proposed algorithm
has results comparable to those of the full search algorithm.
Fig.5, visually illustrates the significant quality enhancement of
the proposed work when compared with the rest of the bench-
mark and standard algorithms. In addition to the objective
evaluation, a subjective evaluation of the proposed work can be
seen in Fig.6-9, which illustrate visual representations of the
reconstructed frames resulted from the proposed HS algorithm
when applied to the set of standard videos with different class
categories. The reconstructed frames in Fig.6 belong to class A
with low motion complexity. The reconstructed frames in Fig.7
belong to class B with moderate motion complexity. Finally,
the reconstructed frames in Fig. 8 and Fig. 9 belong to class
C with high motion complexity.

The complexity of the proposed algorithm is evaluated and
compared against some of the benchmark searching methods.
Table-2 shows that the proposed algorithm outperforms the
Full Search with a lower number of operations per block.
Compared the FSA, the proposed algorithm requires 0.67%
of the total number of additions, 0.7% of the total absolute
differences, and 13.7% of the total number of comparisons.
This can be summarized with a total Number of Operations
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TABLE I: PSNR values of the proposed work, compared to standard and benchmark algorithms.

Video Sequence TSS [32] 2DLS[33] DS [34] KSHS [36] ETSS [35] CDMHS [37] Proposed Algorithm

Akiyo 32.74 30.74 31.23 34.92 33.31 34.89 35.61

Carphone 29.43 26.73 28.32 33.32 30.12 33.61 35.23

Claire 33.87 25.23 32.78 36.14 33.94 36.47 38.49

Coastguard 30.61 28.45 31.82 44.83 33.81 45.56 46.98

Flower 31.72 28.12 30.14 34.22 32.34 34.24 34.47

Foreman 29.26 25.80 27.96 33.79 30.04 33.91 35.71

Hall Monitor 34.81 30.11 32.19 41.81 36.81 41.73 42.34

Miss America 32.19 27.72 31.90 36.60 32.38 36.85 37.29

Mother and Daughter 31.20 28.98 28.02 38.36 34.62 38.78 39.84

News 29.50 26.29 30.74 36.31 31.71 37.64 39.21

Salesman 31.7 24.22 32.58 34.32 34.23 35.47 36.43

Silent 28.60 25.27 28.35 34.78 31.44 35.29 36.64

Suzie 33.54 29.17 30.49 37.79 35.32 37.95 38.83

Average PSNR 31.47 27.45 30.50 36.71 33.08 37.11 38.24

Fig. 6: Samples of reconstructed frames from Class A with
Slow motion activities video sequences.:
a Reconstructed Silent video, frame number 43.
b Reconstructed Claire video, frame number 31.
c Reconstructed Mother and Daughter video, frame number
16.

Per Block (NOPB), where the proposed algorithm requires
only 0.69% of the total NOPB required by the FSA (i.e.,
99.31% reduction in complexity). When compared to the rest
of the algorithms, the algorithm require 4.1% of the total com-
plexity required by the Cross-Diamond Modified Hierarchical
Search algorithm [37], 12% compared to Kalman Simplified
HSA [36], 6.8% compared to the TSS algorithm [32], and
10.4% compared to the 2DLS algorithms [33]. This enormous
reduction in complexity is due the substantial reduction in the
total number of operations required in the proposed matching
criterion. Fig. 4 visually illustrates the significant complexity
reduction of the proposed work compared to the rest of the
benchmark and standard algorithms.

Fig. 7: Samples of reconstructed frames from Class B with
moderate motion activities video sequences:
a Reconstructed Suzie video, frame number 49.
b Reconstructed News video, frame number 25.
c Reconstructed Hall video, frame number 49.

VI. CONCLUSION

Digital videos require a large amount of bandwidth for
transmission or storage. Therefore, researchers have attempted
to develop algorithms that compress video data whilst main-
taining the highest quality possible. Motion estimation with
block matching algorithms has proven to be effective in
the reduction of video bit-rates while preserving the good
quality. Block matching algorithms involve searching for block
movements between consecutive video frames in the spatial
domain. Hence, various fast searching algorithms have been
investigated, each aiming at reducing the number of compar-
isons. However in the spatial domain, the high correlation that
exists between pixels inside each frame block forces testing the
similarities between every pair of pixels inside each block. In
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TABLE II: The Total Number of Operations per Block (NOPB) required by the proposed algorithm, compared to the benchmark
algorithms.

Algorithm Addition Multiplication Absolute Difference Comparisons NOPB

Full Search
Algorithm

(2w + 1)2 × (2N2 − 1)
w = 7, N = 16

=114975 Null 0 (2w + 1)2 × (N2)
w = 7, N = 16

=57600 (2w + 1)2

w = 7
=255 =172800

Cross-Diamond
MHS [37]

level(3)
(2w + 1)2 × (2N2 − 1)
w = 3, N = 4
level(2)
8 × (2N2 − 1), N = 8
level(1)
23 × (2N2 − 1), N = 16

=21421 Null 0

level(3)
(2w + 1)2 × (N2)
w = 3, N = 4
level(2)
8 × (N2), N = 8
level(1)
23 × (N2), N = 8

=7184

level(3)
(2w + 1)2

w = 3
level(2)
= 8
level(1)
= 23

=80 =28685

Kalman Simplified
HS [36]

level(3)
(2w + 1)2 × (2N2 − 1)
w = 3, N = 4
level(2)
8 × (2N2 − 1), N = 8
level(1)
8 × (2N2 − 1), N = 16
Kalman Filter
10

=6633 10 10

level(3)
(2w + 1)2 × (N2)
w = 3, N = 4
level(2)
8 × (N2), N = 8
level(1)
8 × (N2), N = 16
Kalman Filter
15

=3323

level(3)
(2w + 1)2

w = 3
level(2)
= 8
level(1)
= 8

=65 =10016

TSS
[32]

P × (2N2 − 1)
P = 23, N = 16

=11753 Null 0 P × (N2)
P = 23, N = 16

=5888 P = 23 =23 =17664

2DLS
[33]

P × (2N2 − 1)
P = 15, N = 16

=7665 Null 0 P × (N2)
P = 15, N = 16

=3840 P = 15 =15 =11520

Proposed
Work

level(2)
8 × ((N2/2) − 1), N = 4
level(1)
23 × ((N2/2) − 1), N = 8

=769 Null 0
level(2)
8 × (N2/4), N = 4
level(1)
23 × (N2/4), N = 8

=400
level(2)
= 8
level(1)
= 23

=31 =1200

Fig. 8: Samples of reconstructed frames from Class C with
fast motion activities video sequences with complex activities:
a Reconstructed Carphone video, frame number 46.
b Reconstructed Coastguard video, frame number 10.
c Reconstructed Salesman video, frame number 26.

this work, video frames are intra-coded and transformed into
the frequency domain, where block matching can be applied
to test the similarities between a subset of selected frequencies
that correctly identifies each block distinctively, this yield to
a fewer number of required comparisons that reduces the
algorithms complexity. In this work a two-level hierarchical
fast search motion estimation algorithm is proposed in the
frequency domain that incorporates a novel search pattern
at the top level of the hierarchy. In terms of quality and
matching performance, the proposed algorithm outperforms the

Fig. 9: Samples of reconstructed frames from Class C with
fast motion activities video sequences with complex activities:
a Reconstructed Flower guarden video, frame number 37.
b Reconstructed Foreman video, frame number 46.
c Reconstructed Akiyo video, frame number 37.

other benchmark algorithms with an enormous reduction in
complexity.
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