
Estimating the Parameters of Software Reliability
Growth Models Using the Grey Wolf Optimization

Algorithm
Alaa F. Sheta† and Amal Abdel-Raouf†‡

†Computers and Systems Department, Electronics Research Institute, Giza, Egypt 
‡Computer Science Department, Southern Connecticut State University, USA

Abstract—In this age of technology, building quality software
is essential to competing in the business market. One of the major
principles required for any quality and business software product
for value fulfillment is reliability. Estimating software reliability
early during the software development life cycle saves time and
money as it prevents spending larger sums fixing a defective soft-
ware product after deployment. The Software Reliability Growth
Model (SRGM) can be used to predict the number of failures that
may be encountered during the software testing process. In this
paper we explore the advantages of the Grey Wolf Optimization
(GWO) algorithm in estimating the SRGM’s parameters with
the objective of minimizing the difference between the estimated
and the actual number of failures of the software system. We
evaluated three different software reliability growth models: the
Exponential Model (EXPM), the Power Model (POWM) and the
Delayed S-Shaped Model (DSSM). In addition, we used three
different datasets to conduct an experimental study in order to
show the effectiveness of our approach.

Index Terms—Software Reliability, Reliability Growth Models,
Grey Wolf Optimizer, Exponential Model, Power Model, Delayed
S-Shaped Model

I. INTRODUCTION

With the increasing importance of software systems in
almost all aspects of our lives, there is a great need for the
production of high quality software systems. The traditional
model of software quality factors, suggested by McCall [1],
consists of eleven different factors that should be considered
in determining the quality of software. Subsequent models
include Evans and Marciniak [2], which consists of twelve
factors, and Deutsch and Willis [3], which consists of fifteen
factors. All of these models incorporate reliability as one of
the software quality factors. Software reliability is defined
according to [4] as: ”the probability, over a given period of
time, that the system will correctly deliver services as expected
by the user.” A more precise definition of software reliability
is given by [5], [6] as: ”the probability of failure-free operation
over a specified time, in a given environment, for a specific
purpose.” Unfortunately, the task of identifying and repairing
software faults is costly. Moreover, the cost of finding the
remaining faults increases as the number of faults decreases
until the cost exceeds the benefit [7], [8]. Therefore, there
is no software system that is failure-free, which is why the
reliability requirements should be included in any software
development contract. Software reliability is measured based

on the maximum allowable rate of failure and can represent
an entire system or one or more of its parts [9]–[11].

The cost of software development is always higher for more
reliable systems. Consequently, the desired reliability should
be determined depending on the criticalness of failure-free
operation of the system. For example, the failure rate of a
life-threatening system such as heart-monitor should be very
low while a company website may have a higher failure rate.

In the literature, many methods are introduced to esti-
mate and predict software reliability [12]–[20]. The proposed
methods can be classified into two main categories [9]. The
first category is Software Reliability Prediction Models and
the second category is Software Reliability Growth Models
(SRGM). Software reliability prediction models consider pre-
dicting the reliability early in the development life cycle. In
the requirements, design or implementation phases, the model
uses historical data and some quantitative measurements like
Lines of code (LOC) and depth of nesting loops to estimate
the failure rate. Examples of software reliability prediction
models include the orthogonal defect classification model [21]
and the constructive quality model [22], [23]. Some reliability
models may be based on software architecture and others on
modified adaptive testing [24], [25]. The second category,
SRGM, represents how the system reliability changes over
time during the testing phase and based on test data. SRGMs
collect defect data and statistically correlate this data with
known mathematical functions to predict software reliability
[26]–[29].

Many SRGMs are proposed to represent the relationship
between software reliability and time. SRGMs can be classi-
fied as either parametric or non-parametric models. The most
famous parametric models are the Non-Homogeneous Poisson
Process (NHPP) models used in [30]–[32]. Non-parametric
models have less restricted assumptions as they can predict
reliability based only on defect data [33]. Other SRGMs are
introduced using Neural Networks in [14], [34], [35], using
Bayesian learning in [36], [37] and using particle swarm
optimization in [38], [39].

In this paper, we utilize the Grey Wolf Optimization (GWO)
algorithm to predict faults during the software testing process
using software faults historical data. The rest of this paper
is organized as follows: In Section II, we briefly introduce

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 4, 2016 

499 | P a g e
www.ijacsa.thesai.org 



some SRGM models that we use in our study. Section III
provides an overview of the GWO algorithm. Section IV
shows the evaluation criterion adopted in this study. The
experimental results developed for parameter estimation of
software reliability are given in Section V. Finally, we provide
the conclusions and future work in Section VI.

II. RELIABILITY GROWTH MODELS (SRGM)
The inability to meet software requirements and/or deviation

from the goal for which the software was developed is defined
as software failure. Software reliability depends mainly on
the way we handle failure. For example, detecting failure
during execution and repairing it increases the reliability of the
software as a function of time. This is what happens during
the software testing process and before release of software to
the market. Software reliability growth models (SRGMs) are
the models concerned with the explanation and the description
of software failures.

In the literature, many SRGMs were presented to estimate
the reliability of software systems [40], [41]. Each SRGM
assumes a function called M(t) that measures the number of
failures experienced at a given time t. The SRGM parameters
are estimated based on either the failure times t1, t2, . . . or
the times between failures �t1,�t2, . . . . For a given software
project, µ(t) represents the mean value function of a SRGM
reflecting the expected number of failures experienced at time
t. The derivative of the mean value function with respect to
time, dµ(t)

dt , is defined as the failure intensity �(t). In the
following subsections, we briefly describe three well-known
SRGM models that we use in our study.

A. Exponential Model (EXPM)
The exponential model was first provided in [5], [42]. This

model is also known as the Goel-Okumoto exponential model
[43] shown in Equations 1.

µ(t; b) = b0(1� e

�b1t)

�(t; b) = b0b1e
�b1t (1)

The parameter b0 is the expected total number of failures
recovered at the end of the testing process (i.e. v0). b1

represents the rate at which the defect rate decreases (see
Equation 2).

b1 =
�0

v0
(2)

where the parameter �0 is the initial failure intensity and
v0 is the total failure at the end of the testing process.

B. Power Model (POWM)
The power model is also known as the Non-Homogeneous

Poisson Process (NHPP) [44]. The equations that govern µ

and � are given in Equations 3.

µ(t; b) = b0t
b1

�(t; b) = b0b1te
b1�1 (3)

Many systems have adopted the NHPP model for analysis.
For example in [45], author uses the NHPP to estimate

software reliability for nuclear safety software. The Bayesian
statistical inference (BSI) method was used to estimate the
model parameters.

C. Delayed S-Shaped Model (DSSM)

This model is known as Yamada delayed S-shaped model
[46], [47]. The model is a finite failure model. Yamada et
al. [27] provided this model for error detection, in which the
observed growth curve of the cumulative errors has an S-
shape. The system equations for µ(t; b) and �(t; b) are given
in Equation 4.

µ(t; b) = b0(1� (1 + b1t)e
�b1t)

�(t; b) = b0b
2
1t

�b1t (4)

where b0 is the expected total number of failures and b1

represents the failure detection rate.

III. GREY WOLF SEARCH ALGORITHM

The Grey Wolf Optimizer (GWO) is a meta-heuristics
algorithm introduced by Mirjalili et al. [48]. The GWO is
utilized to solve many optimization problems in different fields
and successfully provides highly competitive results [49]–[52].

The GWO algorithm is based on the wild behavior of
the grey wolves during hunting. According to the dominant
hierarchy leadership order, the GWO divides the animals’
population into four categories: alpha (↵), beta (�), delta (�),
and omega (!). Consequently, the optimization process, the
same as the hunting, is guided by the highest rank leaders: ↵,�
and � respectively which represent the best three solutions in
the search space. The ! wolves, the lowest in the hierarchical
rank, represent the rest of the solutions that must adjust their
positions to follow the other dominant wolves.

It is assumed that each candidate solution with dimension n

is represented by the vector ~

X such that the Grey wolf position
vector is given as:

~

X = {x1, x2, . . . , xn} (5)

During the hunting process, the grey wolves surround the
prey (i.e. solution of the problem). This surrounding behavior
in GWO can be represented mathematically as follows:

~

D = |~C.

~

X(t)p � ~

X(t)| (6)
~

X(t+ 1) = ~

Xp(t) + ~

A.

~

D (7)

where ~

X(t)p is the position vector of the prey, ~

X(t)
is the position vector of the Grey wolf, t is the current
iteration, ~

A and ~

C are coefficient vectors that vary to allow the
wolves to adjust their positions in the space around the prey.
The coefficient vectors ~

A and ~

C are computed according to
Equations 8.

~

A = 2~a~r1 � ~a

~

C = 2~r2 (8)

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 4, 2016 

500 | P a g e
www.ijacsa.thesai.org 



It is given that the elements ~a are linearly decreasing from
the value of 2 to the value of 0 over the search process and
~r1,~r2 are random vectors selected in the domain of [0,1].

Then the GWO saves the best three solutions (alpha, beta
and delta wolves) and allows the other solutions (omega
wolves) to adjust their positions according to the positions
of the best solutions. The following equations are used to
calculate the distance between the current position and ↵,�,
and �, respectively (see Equations 9):

~

D↵ = |~C1.
~

X↵ � ~

X|
~

D� = |~C2.
~

X� � ~

X|
~

D� = |~C3.
~

X� � ~

X| (9)

where ~

X↵,
~

X� and ~

X� are the positions of the ↵,� and
�, respectively, ~

X is the position of the current solution and
~

C1,
~

C2 and ~

C3 are random vectors. Then, the final position of
the current solution can be calculated as in Equation 10.

~

X1 = ~

X↵ + ~

A1.
~

D↵

~

X2 = ~

X� + ~

A2.
~

D�

~

X3 = ~

X� + ~

A3.
~

D� (10)

Thus, ~

X(t+ 1) can be computed as follows:

~

X(t+ 1) =
~

X1 + ~

X2 + ~

X3

3
(11)

where t represents the number of iterations and ~

A1,
~

A2 and
~

A3 are random vectors that vary to allow the wolves to attack
towards the prey. Finally, the hunting process ends when the
grey wolves attack the prey after it stops moving. In the next
sections we show how to utilize the GWO to estimate the
parameters for number of SRGMs.

IV. MEASURE FOR MODEL PREDICTABILITY

To make a comparison between different SRGMs it is
important to measure the model accuracy in terms of some
meaningful measurements. In our case we adopt the Goodness-
of-fit criteria. These criteria are applied to measure the quality
of the solution provided and determine the proximity of the
estimated failures to the measured failures.

Assume we have N measurements which represent the
cumulative number of failures found at time ti where ti is
the accumulated execution time. Then µ(ti, b) can be defined
as the projected number of failure at time ti by a model.

According to the Goodness-of-fit criterion, a curve cor-
responding to a selected model is fitted to all data points
ti, µi, i = 1, . . . , n; then the difference between the actual
measured failures y and the estimated failures ŷ based on the
proposed model is compared and evaluated using the Variance-
Accounted-For (VAF) and the Mean Magnitude of Relative
Error (MMRE) [53].

V AF = [1� var(y � ŷ)

var(y)
]⇥ 100% (12)

MMRE =
1

N

NX

i=1

|yi � ŷi|
yi

(13)

Another evaluation criterion that we use in our study is
the correlation coefficient R that can be calculated using the
following equation.

R =

PN
i=1(yi � y)(ŷi � ŷ)qPN

i=1(yi � y)2
PN

i=1(ŷi � ŷ)2
(14)

Finally we use the mean square error as the evaluation
criterion in our convergence behavior analysis as shown in
the following section.

MSE =
1

N

NX

i=1

|yi � ŷi| (15)

V. EXPERIMENT RESULTS

To develop our new technique for solving the problem of
estimating the parameters of SRGM we used GWO MATLAB
toolbox. We started by setting the number of search agents
(grey wolves) and the maximum number of iterations for the
experiment. From our experience we found that 30 agents
and 50 iterations led to highly accepted results. The objective
function gets the variables as a vector ([x1x2...xn]) and returns
the objective value.

Our experiments explore the use of the GWO method to
estimate the parameters of three software projects using three
SRGMs. In each case, we estimate the model parameters for
EXPM, POWM and DSSM models, generate the convergence
curves using the GWO method and show the scattered plot.

A. Test/Debug Data 1
A real-time control application presented in [54], [55] is

adopted as the first case study with a daily collected data.
The real-time control application program has a size of 870
Kilo line of code (KLOC) of FORTRAN and a middle level
language code. To estimate the model parameters b0 and b1

based on the GWO method, we needed to set up the search
space. In our case, b0 2 [0, 500] and b1 2 [0, 1].

In Figure 1 (a), we show the actual and estimated accu-
mulated failures curves for the EXPM, POWM and DSSM
and the convergence behavior curves of the GWO process
for the three developed models. A scattered plot of the three
developed models is shown in Figure 1 (b).

Table I shows the estimated parameters for the SRGMs
together with the model equations. In Table IV, we summarize
the results of two evaluation criterion MMRE and VAF values
for the three developed models EXPM, POWN and DSSM.
In this case study, the DSSM model provided the best results
in terms of VAF while the EXPM model’s MMRE was the
minimum in comparison to other POWM and DSSM.

B. Test/Debug Data 2
In the second case study, a real-time application [56] of

a software system containing 200 modules of FORTRAN
language was used to test our proposed methodology. The data
consists of 111 measurements [55]. We ran the GWO to tune
the parameters of EXPM, POWM and DSSM.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 4, 2016 

501 | P a g e
www.ijacsa.thesai.org 



(a)
0 50 100 150

0

100

200

300

400

500

600

700

Software Failures

 Days

 

 Actual Failure µ(t,β)

 Est. Failure (EXPM)

 Est. Failure (POWM)

 Est. Failure (DSSM)

0 10 20 30 40 50
10

2

10
3

10
4

10
5

 Generations

 Conv. of (EXPM)
 Conv. of (POWM)
 Conv. of (DSSM)

(b)
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

550

 M
e
a
s
u

re
d

 Estimated

 R for EXPM: 0.98837

200 400 600

100

200

300

400

500

600

 M
e
a
s
u

re
d

 Estimated

 R for POWM: 0.97294

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

 M
e
a
s
u

re
d

 Estimated

 R for DSSM: 0.99642

Fig. 1. (a) Actual and estimated failures and convergence curves for GWO (b) Scattered plot for the EXPM, POWM and DSSM using 109 Measurements

TABLE I
SRGMS WITH PARAMETER ESTIMATED USING GWO - 109 MEASUREMENTS

Exponential Model (EXPM) µ(t; b) = 717.098 (1 - e�0.01495539t)
Power Model (POWM) µ(t; b) = 24.541 t0.684974

Delayed S-Shaped Model (DSSM) µ(t; b) = 562.3995 (1 - (1 + 0.04947323 t)e�0.04947323t)

TABLE II
SRGMS WITH PARAMETER ESTIMATED USING GWO - 111 MEASUREMENTS

Exponential Model (EXPM) µ(t; b) = 538.6468 (1 - e�0.02568317t)
Power Model (POWM) µ(t; b) = 30 t0.625803

Delayed S-Shaped Model (DSSM) µ(t; b) = 486.3256 (1 -(1 + 0.06691487 t)e�0.06691487t)

In our case, b0 2 [0, 30] and b1 2 [0, 2]. In Figure 2 (a), we
show the actual and estimated accumulated failures curves for
the EXPM, POWM and DSSM models and the convergence
curves of the GWO process for the three developed models.
A scattered plot of the three developed models is shown in
Figure 2 (b).

Table II shows the estimated parameters for the SRGM
models together with the model equations. The computed
evaluation criterion are included in Table IV. Based on the
developed experiments for this case, the results show that
the DSSM model provided the best performance using the
GWO tuned parameters as it has the minimum MMRE and
the maximum VAF compared to other proposed models.

C. Test/Debug Data 3

In our third case study, we used a Test/Debug data set
including 46 measurements as presented in [56]. We ran the
GWO to find the best parameters to tune the EXPM, POWM
and DSSM. In our case, b0 2 [0, 1000] and b1 2 [0, 1]. In
Figure 2 (a), we show the actual and estimated accumulated
failures curves for the EXPM, POWM and DSSM models and
the convergence curves of the GWO process for the three
developed models. A scattered plot of the three developed

models is shown in Figure 2 (b).
The estimated parameters for SRGMs are shown in Table

III. In this case, the results show that the DSSM model was
able to provide the best results in terms of MMRE while both
the EXPM and the POWM models have better VAF values as
shown in Table IV.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a GWO-based methodology to
estimate the parameters of software reliability growth models
(SRGMs). The estimated model parameters are used to predict
the accumulated failures in a software system during the
testing process. The problem is formulated for the GWO
algorithm with the objective of minimizing the difference
between the actual failures and the estimated accumulated
failures.

Our methodology was employed to estimate the parameters
of three adopted SRGMs: the exponential model, power model,
and S-shaped model. Then the proposed models were applied
to three real measured test/debug datasets. The results show
that the proposed methodology is able to successfully estimate
the parameters of SRGMs.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 4, 2016 

502 | P a g e
www.ijacsa.thesai.org 



(a)
0 50 100 150

0

100

200

300

400

500

600

Software Failures

 Days

 

 Actual Failure µ(t,β)

 Est. Failure (EXPM)

 Est. Failure (POWM)

 Est. Failure (DSSM)

0 10 20 30 40 50
10

2

10
3

10
4

10
5

 Generations

 Conv. of (EXPM)
 Conv. of (POWM)
 Conv. of (DSSM)

(b)
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

 M
e
a
s
u

re
d

 Estimated

 R for EXPM: 0.98527

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

550

 M
e
a
s
u

re
d

 Estimated

 R for POWM: 0.94053

100 200 300 400

50

100

150

200

250

300

350

400

450

 M
e
a
s
u

re
d

 Estimated

 R for DSSM: 0.99267

Fig. 2. (a) Actual and estimated failures and convergence curves for the GWO (b) Scattered plot for the EXPM, POWM and DSSM using 111 Measurements

0 10 20 30 40 50
0

50

100

150

200

250

300

Software Failures

 Days

 

 Actual Failure µ(t,β)

 Est. Failure (EXPM)

 Est. Failure (POWM)

 Est. Failure (DSSM)

0 10 20 30 40 50
10

2

10
3

10
4

 Generations

 Conv. of (EXPM)
 Conv. of (POWM)
 Conv. of (DSSM)

50 100 150 200 250

50

100

150

200

250

 M
e
a
s
u

re
d

 Estimated

 R for EXPM: 0.98803

50 100 150 200 250

50

100

150

200

250

 M
e
a
s
u

re
d

 Estimated

 R for POWM: 0.98782

50 100 150 200 250

50

100

150

200

250

 M
e
a
s
u

re
d

 Estimated

 R for DSSM: 0.97817

Fig. 3. (a) Actual and Estimated Accumulated failures and the convergence curves for the GWO (b) Scattered plot for the EXPM, POWM and DSSM using
46 Measurements

TABLE III
SRGMS WITH PARAMETER ESTIMATED USING GWO - 46 MEASUREMENTS

Exponential Model (EXPM) µ(t; b) = 422.5453(1 - e�0.02324815t)
Power Model (POWM) µ(t; b) = 16.4506 t0.746282

Delayed S-Shaped Model (DSSM) µ(t; b) = 280.2617(1 - (1 + 0.09711093 t)e�0.09711093t)

TABLE IV
EVALUATION RESULTS OF THE THREE MODELS USING GWO

Test/Debug Data 1 Test/Debug Data 2 Test/Debug Data 3
MMRE VAF% MMRE VAF% MMRE VAF%

EXPM 0.19027 97.347 0.19998 96.536 15.683 97.611
POWM 37.05 94.394 0.32297 88.343 22.736 97.566
DSSM 8.8572 99.268 0.072361 98.536 8.3919 94.701

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 4, 2016 

503 | P a g e
www.ijacsa.thesai.org 



For verification, a convergence behavior analysis was con-
ducted. The results verify the effectiveness of the GWO algo-
rithm to solve the problem with highly accepted performance.
For future work, we plan to explore other techniques for
modeling the software reliability growth based on other search
algorithms in an effort to improve performance.

REFERENCES

[1] J. McCall, Factors in Software Quality: Preliminary Handbook on
Software Quality for an Acquisiton Manager, vol. 1-3. General Electric,
November 1977.

[2] M. W. Evans and J. J. Marciniak, Software Quality Assurance and
Management. New York, USA: John Wiley and Sons, 1987.

[3] M. S. Deutsch and R. R. Willis, eds., Software Quality Engineering, A
Total Technical Management Approach, Ch.3. Englewood Cliffs, NJ,
USA: Prentice Hall, 1988.

[4] I. Sommerville, Software Engineering: (Update) (8th Edition) (Inter-
national Computer Science). Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2006.

[5] J. Musa, “A theory of software reliability and its application,” IEEE
Trans. Software Engineering, vol. 1, pp. 312–327, 1975.

[6] J. Musa, A. Iannino, and K. Okumoto, Software Reliability: Measure-
ment, Prediction, Applications. McGraw Hill, 1987.

[7] H. Pham, Software Reliability. Springer-Verlag, 2000.
[8] P. G. Bishop and R. Bloomfield, “Worst case reliability prediction on

a prior estimate of residual defects,” in Proceedings of the 13th IEEE
International Symposium on Software Reliability Engineering (ISSRE-
2002), pp. 295–303, 2002.

[9] J. Musa, “Data analysis center for software: An information analysis
center,” Western Michigan University Library, Kalamazoo, Michigan,
1980.

[10] J. Musa, Software Reliability Engineering: More Reliable Software,
Faster and Cheaper. Published Author House, 2004.

[11] J. Musa and L. A. Williams, “How should software reliability engineer-
ing be taught?,” in ISSRE, p. 3, 2005.

[12] N. Karunanithi, D. Whitley, and Y. K. Malaiya, “Prediction of software
reliability using connectionist models,” IEEE Trans. on Software Engi-
neering, vol. 18, no. 7, 1992.

[13] E. O. Costa, S. R. Vergilio, A. Pozo, and G. Souza, “Modeling software
reliability growth with genetic programming,” in Proceedings of the 16th
IEEE International Symposium on Software Reliability Engineering,
ISSRE ’05, (Washington, DC, USA), pp. 171–180, IEEE Computer
Society, 2005.

[14] S. H. Aljahdali, D. Rine, and A. Sheta, “Prediction of software re-
liability: A comparison between regression and neural network non-
parametric models,” in Proceedings of the ACS/IEEE International
Conference on Computer Systems and Applications, AICCSA ’01,
(Washington, DC, USA), pp. 470–, IEEE Computer Society, 2001.

[15] R. Kumar, K. Khatter, and A. Kalia, “Measuring software reliability: A
fuzzy model,” SIGSOFT Softw. Eng. Notes, vol. 36, pp. 1–6, Nov. 2011.

[16] A. Amin, L. Grunske, and A. Colman, “An approach to software
reliability prediction based on time series modeling,” J. Syst. Softw.,
vol. 86, pp. 1923–1932, July 2013.

[17] J. Wang, Z. Wu, Y. Shu, Z. Zhang, and L. Xue, “A study on software
reliability prediction based on triple exponential smoothing method
(wip),” in Proceedings of the 2014 Summer Simulation Multiconference,
SummerSim ’14, (San Diego, CA, USA), pp. 61:1–61:9, Society for
Computer Simulation International, 2014.

[18] M. K. Bhuyan, D. P. Mohapatra, and S. Sethi, “A survey of com-
putational intelligence approaches for software reliability prediction,”
SIGSOFT Softw. Eng. Notes, vol. 39, pp. 1–10, Mar. 2014.

[19] J. Pati and K. K. Shukla, “A hybrid technique for software reliability
prediction,” in Proceedings of the 8th India Software Engineering
Conference, ISEC ’15, (New York, NY, USA), pp. 139–146, ACM, 2015.

[20] M. K. Bhuyan, D. P. Mohapatra, and S. Sethi, “Measures for predicting
software reliability using time recurrent neural networks with back-
propagation,” SIGSOFT Softw. Eng. Notes, vol. 40, pp. 1–8, Sept. 2015.

[21] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S.
Moebus, B. K. Ray, and M. Y. Wong, “Orthogonal defect classification-a
concept for in-process measurements,” IEEE Transactions on Software
Engineering, vol. 18, pp. 943–956, Nov 1992.

[22] N. E. Fenton and M. Neil, “A critique of software defect prediction
models,” IEEE Trans. Softw. Eng., vol. 25, pp. 675–689, Sept. 1999.

[23] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner, “Soft-
ware quality models: Purposes, usage scenarios and requirements,” in
Proceedings of the Seventh ICSE Conference on Software Quality,
WOSQ’09, (Washington, DC, USA), pp. 9–14, IEEE Computer Society,
2009.

[24] W.-L. Wang, D. Pan, and M.-H. Chen, “Architecture-based software
reliability modeling,” J. Syst. Softw., vol. 79, pp. 132–146, Jan. 2006.

[25] H. Hu, C.-H. Jiang, K.-Y. Cai, W. E. Wong, and A. P. Mathur, “Enhanc-
ing software reliability estimates using modified adaptive testing,” Inf.
Softw. Technol., vol. 55, pp. 288–300, Feb. 2013.

[26] S. H. Aljahdali and M. E. El-Telbany, “Genetic algorithms for opti-
mizing ensemble of models in software reliability prediction,” Artificial
Intelligence and Machine Learning (AIML), vol. 8, pp. 5–13, 6 2008.

[27] S. Yamada, Software Reliability Modeling: Fundamentals and Applica-
tions. Springer Publishing Company, Incorporated, 2013.

[28] N. R. Barraza, “A parametric empirical bayes model to predict software
reliability growth,” Procedia Computer Science, vol. 62, pp. 360 –
369, 2015. Proceedings of the 2015 International Conference on Soft
Computing and Software Engineering (SCSE’15).

[29] L. K. Singh, G. Vinod, and A. K. Tripathi, “Early prediction of software
reliability: A case study with a nuclear power plant system,” IEEE
Computer, vol. 49, no. 1, pp. 52–58, 2016.

[30] S. Kundu, T. K. Nayak, and S. Bose, Statistical Models and Methods
for Biomedical and Technical Systems, ch. Are Nonhomogeneous Pois-
son Process Models Preferable to General-Order Statistics Models for
Software Reliability Estimation?, pp. 137–152. Boston, MA: Birkhäuser
Boston, 2008.

[31] P. Kapur, D. Goswami, A. Bardhan, and O. Singh, “Flexible software
reliability growth model with testing effort dependent learning process,”
Applied Mathematical Modelling, vol. 32, no. 7, pp. 1298 – 1307, 2008.

[32] K.-Y. Cai, D.-B. Hu, C.-G. Bai, H. Hu, and T. Jing, “Does software
reliability growth behavior follow a non-homogeneous poisson process,”
Inf. Softw. Technol., vol. 50, pp. 1232–1247, Nov. 2008.

[33] Z. Wang, J. Wang, and X. Liang, “Non-parametric estimation for nhpp
software reliability models,” Journal of Applied Statistics, vol. 34, no. 1,
pp. 107–119, 2007.

[34] S. Aljahdali, A. F. Sheta, and D. Rine, “Predicting accumulated faults in
software testing process using radial basis function network models,” in
Proceedings of the ISCA 17th International Conference Computers and
Their Applications, April 4-6, 2002, Canterbury Hotel, San Francisco,
California, USA, pp. 26–29, 2002.

[35] H. Zeng and D. Rine, “Estimation of software defects fix effort us-
ing neural networks,” in 28th International Computer Software and
Applications Conference (COMPSAC 2004), Design and Assessment
of Trustworthy Software-Based Systems, 27-30 September 2004, Hong
Kong, China, Workshop Papers, pp. 20–21, 2004.

[36] S. Wagner, “A bayesian network approach to assess and predict software
quality using activity-based quality models,” in Proceedings of the 5th
International Conference on Predictor Models in Software Engineering,
PROMISE ’09, (New York, NY, USA), pp. 6:1–6:9, ACM, 2009.

[37] K. Jeet, R. Dhir, and H. Verma, “A comparative study of bayesian and
fuzzy approach to assess and predict maintainability of the software
using activity-based quality model,” SIGSOFT Softw. Eng. Notes, vol. 37,
pp. 1–9, May 2012.

[38] A. Sheta, “Reliability growth modeling for software fault detection using
particle swarm optimization,” in Proceedings of the 2006 IEEE Congress
on Evolutionary Computation (CEC2006), pp. 3071–3078, 2006.

[39] A. Sheta, “Parameter estimation of software reliability growth models
by particle swarm optimization,” Artificial Intelligence and Machine
Learning (AIML), vol. 7, pp. 55–61, 9 2007.

[40] M. Xie, “Software reliability models - past, present and future,” In N.
Limnios and M. Nikulin (Eds). Recent Advances in Reliability Theory:
Methodology, Practice and Inference, pp. 323–340, 2002.

[41] S. Yamada, “Software reliability models and their applications: A sur-
vey,” in International Seminar on Software Reliability of Man-Machine
Systems - Theories Methods and Information Systems Applications -
August 17-18, Kyoto University, Kyoto, Japan, 2000.

[42] P. B. Moranda, “Predictions of software reliability during debugging,”
in Proceedings of Annual Reliability and Maintainability Symposium,
pp. 327–332, 1975.

[43] A. Geol and K. Okumoto, “Time-dependent error-detection rate model

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 4, 2016 

504 | P a g e
www.ijacsa.thesai.org 



for software reliability and other performance measures,” IEEE Trans.
Reliability, vol. 28, pp. 206–211, 1979.

[44] L. H. Crow, “Reliability for complex repairable systems,” Reliability and
Biometry, SIAM, pp. 379–410, 1974.

[45] G.-Y. PARK and S. C. JANG, “A software reliability estimation method
to nuclear safety software,” Nuclear Engineering and Technology,
vol. 46, no. 1, pp. 55 – 62, 2014.

[46] S. Yamada, M. Ohba, and O. S., “S-Shaped reliability growth modeling
for software error detection,” IEEE Trans. Reliability, pp. 475–478,
1983.

[47] S. Yamada, M. Ohba, and O. S., “S-Shaped software reliability growth
models and their applications,” IEEE Trans. Reliability, pp. 289–292,
1984.

[48] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[49] M. H. Sulaiman, Z. Mustaffa, M. R. Mohamed, and O. Aliman, “Using
the gray wolf optimizer for solving optimal reactive power dispatch
problem,” Appl. Soft Comput., vol. 32, pp. 286–292, July 2015.

[50] S. Mirjalili, “How effective is the grey wolf optimizer in training multi-
layer perceptrons,” Applied Intelligence, vol. 43, pp. 150–161, July 2015.

[51] N. Jayakumar, S. Subramanian, S. Ganesan, and E. B. Elanchezhian,
“Combined heat and power dispatch by grey wolf optimization,” Inter-
national Journal of Energy Sector Management, vol. 9, no. 4, pp. 523–
546, 2015.

[52] E. Emary, H. M. Zawbaa, C. Grosan, and A. E. Hassenian, Afro-
European Conference for Industrial Advancement: Proceedings of the
First International Afro-European Conference for Industrial Advance-
ment AECIA 2014, ch. Feature Subset Selection Approach by Gray-Wolf
Optimization, pp. 1–13. Cham: Springer International Publishing, 2015.

[53] M. Shin and A. L. Goel, “Empirical data modeling in software engi-
neering using radial basis functions,” IEEE Transactions on Software
Engineering, vol. 26, no. 6, pp. 567–576, 2000.

[54] T. Minohara and Y. Tohma, “Parameter estimation of hyper-geometric
distribution software reliability growth model by genetic algorithms,” in
Proceedings of the 6th International Symposium on Software Reliability
Engineering, pp. 324–329, 1995.

[55] A. Sheta, “Reliability growth modeling for software fault detection using
particle swarm optimization,” in 2006 IEEE Congress on Evolutionary
Computation, Sheraton, Vancouver Wall Centre, Vancouver, BC, Canada,
July 16-21, 2006., pp. 10428–10435, 2006.

[56] Y. Tohman, K. Tokunaga, S. Nagase, and M. Y., “Structural approach
to the estimation of the number of residual software faults based
on the hyper-geometric distribution model,” IEEE Trans. on Software
Engineering, pp. 345–355, 1989.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 4, 2016 

505 | P a g e
www.ijacsa.thesai.org 




