
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

7 | P a g e

www.ijacsa.thesai.org

ADBT Frame Work as a Testing Technique: An

Improvement in Comparison with Traditional Model

Based Testing

1
Mohammed Akour,

2
Bouchaib Falah,

3
Karima Kaddouri

1
Computer Information Systems Department, Yarmouk University
2,3

School of Science and Engineering, Al Akhawayn University

Abstract—Software testing is an embedded activity in all

software development life cycle phases. Due to the difficulties and

high costs of software testing, many testing techniques have been

developed with the common goal of testing software in the most

optimal and cost-effective manner. Model-based testing (MBT) is

used to direct testing activities such as test verification and

selection. MBT is employed to encapsulate and understand the

behavior of the system under test, which supports and helps

software engineers to validate the system with various likely

actions. The widespread usage of models has influenced the usage

of MBT in the testing process, especially with UML. In this

research, we proposed an improved model based testing strategy,

which involves and uses four different diagrams in the testing

process. This paper also discusses and explains the activities in the

proposed model with the finite state model (FSM). The

comparisons have been done with traditional model based testings

in terms of test case generation and result.

Keywords—Activity Diagram; Black Box Testing; Finite State

Machine; Model-Based Testing; Software Testing; Test Suite; Test

Case; Use Case Diagram

I. INTRODUCTION

Software testing is an important, if not the most important,
activity in the software development cycle of any system
without exception. It is an intellectually challenging activity
aimed at evaluating the capability of a program or system to
determine whether or not it meets requirements [1].

Software testing is defined as the validation and verification
of the proposed system or product to ensure that it conforms to
the agreed-upon requirements, that it is functioning as expected
by both the developer team and the stakeholders, and that it
satisfies the latter. As software testing can get very difficult or
costly to perform, software testing engineers are always
developing new or refining existing testing techniques tools,
always having in mind the objective of developing the optimal
approach that would ideally be cost-effective and efficient at
the job simultaneously. In other words, the ideal testing
methodology is one with maximum coverage and minimal cost.
Since testing occurs right after the development phase, it is an
on-going process which might take place earlier in the software
development cycle. Consequently, there are two essential
methods of software testing:

 Black box (also called functional testing) to be specific,
which are used to test and validate the requirements and

design of the system before moving on to the
implementation.

 White-box testing (also called structural testing and
glass box testing) is testing that takes into account the
internal mechanism of a system or component.

Each method encompasses a lot of different testing
techniques. One of the most important techniques of the black
box testing method is called Model-Based Testing (MBT).

Our suggested approach aims to overcome some of the
traditional MBT challenges. The idea behind this approach is to
base the testing process on abstract representations of the
system just as MBT does, but -unlike MBT- manually
generating corresponding test cases. Our approach will test the
software by testing its design. Based on the system
requirements, this new testing technique which was inspired
from the traditional MBT paradigm will use three UML
diagrams instead of the FSM diagram. Detailed description is
covered in the next sections.

The rest of the paper is organized as follows: Section II
describes the traditional MBT. Section III explains our
proposed approach. Section IV presents some related works.
Section V presents a comparison between ADBT and MBT.
Finally, we conclude the paper in section VI.

II. TRADITIONAL MBT

Fig. 1. MBT Context [3]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

8 | P a g e

www.ijacsa.thesai.org

Model-Based testing refers to the black box testing
technique where test cases are automatically generated based
on a model, which represents the behavior of the system under
test (SUT), and on the system’s requirements and specification
[2]. To clearly understand the scope of Model-Based Testing,
Figure 1 illustrates the MBT context.

In the software development cycle, it is often required to
model the system to be implemented and design an abstract
view of its functionalities. There are many models available for
testers to represent and model abstract depictions of systems.
Some of which are UML diagrams, Markov chains, grammars,
state charts, and finite state machines [4].

In traditional model-based testing, the model used to
generate test cases is the finite state machine diagram (FSM)
[4]. Finite state machines or finite state automata are
mathematical models of computation. They are used at both
hardware and software levels [5]. An FSM is the description of
a finite set of states of a particular machine and the transitions
between those states [5]. The events responsible for a transition
from one state to another state are triggers [5]. In other terms,
an FSM is a diagram which represents the set of system’s states
and the triggering events or conditions responsible for
switching between states [5].

Figure 2 shows an example of a simple phone system. The
SUT is a phone with a set of states [6]. Those states are
represented as nodes, while the actions the user performs are
represented as edges (triggering transitions) [6]. For instance, a
possible system input to be tested could be: Pick Up. After
getting the model of the SUT, the next step is to use a test case
generator to generate test cases [6]. An example of a produced
test case from this phone system model could be the following
sequence of actions and states: <Ringing ->Hang Up -> On
Hook ->Pick Up>.

Fig. 2. Example of FSM (Phone System) [5]

The test case generator then proceeds to generate test cases
for the given model, which could be based on some specific
coverage criteria, such as a particular set of requirements [4].
The result of this process is an abstract test suite which needs to
be concretized and converted into an executable set of test cases
[4].

Test scripts or test drivers perform this operation and map
each abstract model test case to an executable one using what is
called an adaptor code, developed in C, Java, C#, or any other

application language [4].The executable test suite is then run,
and the final results are reported and analyzed. In the presence
of faults, the failure is traced back; the model might be
modified if deemed necessary and the testing process is
repeated [4]. Figure 3 presents the process of MBT.

Model-based testing has many benefits [3]. Among its
advantages is the fact that it fills the gap between the abstract
and concrete levels of the system (enhances traceability
between each executable test case and its corresponding part in
the model and vice versa) thanks to the scripting tools [3].It
also provides efficient fault detection and improves test quality,
since it generates a set of non-repetitive test cases for a given
SUT [3].

Some problems with traditional MBT are summarized as
follows.

While having noticeable advantages, MBT also has its set
of drawbacks and limitations [3].

Useless test cases

Not all the test cases generated automatically are useful for
the testing process of the SUT. Traditional MBT produces a
huge set of test cases, not all of them possible or beneficial for
testing. This problem leads to additional cost and time to filter
and get through all the test cases to choose the valid ones [3].

Fig. 3. MBT process [3]

Skills limitations

The test engineer has to demonstrate mastery of different
skills such as high level of knowledge about computational
system models or expertise in automation tools and scripts.
This effort requires additional training costs.

FSM problem

The most issue with using finite state machines is state
space explosion. For complex systems or large programs, the
number of states in the FSM can grow uncontrollably and might
exceed the given computational capabilities. This problem
affects test coverage quality and efficiency and test case
generation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

9 | P a g e

www.ijacsa.thesai.org

Failed tests issue

When a failure occurs, it can either be due to the system
under test, the model, the test case generator, or the adaptor
code used for conversion. Those many possible origins for
failure increase the difficulty to trace back a failed test along
with being extremely time-consuming [3].

III. PROPOSED ACTIVITY DIAGRAM BASED TESTING

TECHNIQUE (ADBT)

The suggested testing approach aims to overcome these
challenges by manually generating test cases instead of using a
program for the task. The idea behind this approach is to base
the testing process on abstract representations of the system just
as MBT does, but – unlike MBT – manually generating
corresponding test cases.

Our approach will test the software through testing its
design. Based on the system requirements, this new inspired
testing technique, from the traditional MBT paradigm, will use
three UML diagrams instead of the FSM diagram: Use Case,
Class and Activity diagrams. From the use case diagram, we
derive the corresponding activity diagrams. The activity
diagrams will present a set of numbered steps. Each
path/scenario in the activity diagram of a single use case
corresponds to a test case.

The test cases are then set up in test case tables divided into
“Steps” and “Input/output”. “Steps” corresponds to the activity
diagram numbered steps while Inputs are test points and
Outputs are expected results from the system. The class
diagram is needed to get the system’s variables (attributes of
classes) used while setting up the test cases table.

The ADBT Steps are presented as follow:

1) Retrieve Use Case diagram from requirements: After

getting the agreed upon set of specifications, the system

designer will model the use case diagram for the system which

represents the functional requirements.

2) Derive Class Diagram

3) Develop Activity Diagrams from Use Case Diagram:

Each use case scenario in the use case diagram corresponds to

an activity diagram.

4) Set test case for each Activity Diagram path: Each path

from start to end in a given activity diagram is a test case.

5) Check test case results: In the case of error, the models

used are checked for consistency problems or faults and use

cases are generated again. In an optimal workflow setting, the

design team will derive the necessary diagrams for the test

engineers who will directly use them and only perform the last

step of ADBT.

IV. CASE STUDY

As a case study, Online Movie Tickets Purchase scenario is
employed and discussed.

Let us consider the following system requirements:

 The customer should be able to search for a movie by
title, with the output being its price, its time and its days

of screening. In case it is unavailable, the user gets an
error message and is asked to re-enter its title.

 The customer should be able to buy tickets for an
available movie. He has to enter his/her credit card
credentials. In case there is an error, the payment
process is canceled, and the user has to re-enter the
payment information.

 The customer should be able to get a ticket receipt.

 The customer should be able to display the list of all
movies.

Step 1: Use Case Diagram

This system results in a properly simple use case diagram
with four use case scenarios. Figure 4 shows the use case
diagram for online movie tickets purchase system.

Fig. 4. Use Case Diagram

Step 2: Class Diagram

Fig. 5. Class Diagram

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

10 | P a g e

www.ijacsa.thesai.org

A tentative class diagram for this system could be as
specified in Figure 5. The class diagram is vital for the I/O flow
as it provides explicit information about the different system
variables or attributes which we might need to test. Figure 5
shows the class diagram for online movie tickets purchase
system.

Step 3: Activity Diagrams

According to the previous use case diagram, there are four
use case scenarios. However, the last two requirements (get
ticket receipt and load movie list) are impossible to test in the
design phase and can be represented with an activity diagram.
Thus, we will consider the two first requirements (search for
the movie and pay movie ticket) for this particular example as
shown in Figures 6 and 7.

Activity Diagram#1: Search for Movie

Fig. 6. Activity Diagram 1

Activity Diagram#2: Pay Movie Ticket

Fig. 7. Activity Diagram 2

Step 4: Test Cases

Since each path in each activity diagram results in test
cases, we have four test cases in total.

Test case#1

TABLE I. TEST CASE 1

Step
I/O

1
Input: “HY7LO.”

2

Output:“Not

Available-Please Enter

Valid Title”

Test case#2

TABLE II. TEST CASE 2

Step
I/O

1
Input:”Hunger Games”

3

Output:”Hunger Games,

price: 30dhs, MWF 2h-4h.”

Test case#3

TABLE III. TEST CASE 3

Step
I/O

1
Input: ”zzz zzz zzz”

2

Output: “Invalid Payment

Information-Try again.”

Test case#4

TABLE IV. TEST CASE 4

Step
I/O

1
Input:”1234569921”

3

Output:”Your Payment has

been confirmed.”

4
(no I/O, only processing)

Step 5: Checking Test Cases Results

There are no errors in the test cases; the I/O flow is correct
and expected, which indicates that our models are consistent.

V. COMPARISON OF ADBT WITH MBT

A. Test case generation:

The state machine diagram for the previous online purchase
ticket was implemented, resulting in some number of 11 states.
For state-based test case coverage, each state has to be visited at
least once, meaning that we will generate at least 11 test cases
in addition to other relevant or irrelevant paths/test cases (since

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

11 | P a g e

www.ijacsa.thesai.org

we have automatic random path selection). ADBT for this
simple example results in 4 test cases.

B. SUT Model:

The ADBT approach uses the Activity Diagram for testing;
however, it needs to first design the Use Case and Class as well.
MBT only uses FSM. However, and as suggested earlier, the
test engineer does not necessarily design all three models as it
could be and usually is part of another team’s work.

C. Test case results:

The test case results for the four test cases are clear and
significant and easily allow checking for possible model errors.
Concerning MBT, generating and running test cases is beyond
this project’s scope due to the complexity of the process (needs
automation tools, coding test scripts, etc…). However, due to
the number of generated test cases, we can assume that it will
be cumbersome to filter through all of them, choose the
relevant ones for execution, and proceed to trace back errors
found since it could have – as previously mentioned – many
origins (code, test script, model, test case generation, etc…).

VI. RELATED WORK

Hemmati, et al. [7] propose an alternative technique to
MBT, which is supposed to overcome one of MBT’s most
important issues, that is, the enormous number of generated test
cases which impact negatively on both time and cost.

Their approach implements a smart test case selection
technique based on genetic algorithms which choose a test suite
from the large pool of generated test cases to be executed based
on resources and maximum fault coverage criteria, thus
extending traditional MBT into a more time/cost saving version
[7].

Arnold, et al. propose a scenario-based approach to
traditional MBT [8]. Tests are executed automatically and exist
within the scope of a large pool of states in MBT, which makes
it harder to trace them back directly to the SUT.

This new approach makes test execution semi-automatic
and introduces scenario-based test cases which are much more
relevant and closer to the SUT because the set of these
applicable states is manually selected.

The approaches presented in [9, 10] utilized a model based
for software security testing and software test selection
perceptively. In [10], authors implemented model-based
approach to tracking vital items in test models and its
corresponding item in structure model. When any modification
occurs in the component model of the software under test, the
component model identifies and conveys changes that should
be performed to update the corresponding test model.

Mohacsi et al. [11] adopted a model-based test (MBT)
approach for systematic test design and generation of their case
study. They believed in that MBT assured modularity and
abstraction, moreover, it leads to decrease the required effort
for test maintenance. Their model based testing is build based
on activity diagrams. One of the main lessons learned from
their case study is the reduction of the test effort, especially the
effort for test maintenance.

Yanjun, et al. [12] proposed new model-based testing
process in order to improve structural coverage in functional
testing. They concentrate on integrating three main parts,
specification-based test generation tool, a model-checker and
an environment for model test execution to enhance structural
coverage rate. Their MBT process facilitates capturing
suspicious code branches that require analysis to determine
whether they are truly unreachable or a bug is occurring in a
condition guarding this branch. Moreover, Model checking
allows extending the functional test set by test cases derived
from uncovered branches.

Amalfitano, et al. [13] proposed and implemented a new
fully automatic technique to test GUI-based Android apps.
Their technique is composed of 3 main steps namely,
observation, extraction, and abstraction of the run-time state of
GUI widgets. The abstraction is employed to develop a scalable
state-machine model that, together with event-based test
coverage criteria provide a way to automatically generate test
cases. They performed their technique on 4 open-source
software applications. The results showed that the test cases
generated were useful at detecting serious and relevant bugs in
the apps.

VII. CONCLUSION

Software Testing is and will remain the most important, but
also the trickiest and most challenging activity in the software
development cycle. There is an abundance of testing techniques
in the literature, and one of them is a black box testing
technique called Model-Based Testing.

This paper presents an improvement on testing technique to
overcome some of the traditional MBT challenges. Our
approach is based on Activity Diagrams.

Following are the advantages of using ADBT.

 No more useless or irrelevant test case generation
problems.

 The FSM diagram state explosion is resolved since we
changed the model.

 Errors can be easily traced back to the model in case of
failure.

 The tester does not need extra training skills to conduct
the testing process, since the three UML diagrams can
be provided by the design team and made available for
the tester to only generate and execute tests.

This new technique has been demonstrated as having some
benefits.

It is more costly and less composite than traditional MBT, it
allows for easily testing the consistency of the software design
and checking if it conforms to what is expected from the
customer, and finally it provides an easy and systematic way of
generating test cases. As future works, we intend to conduct
more rigorous validation to make our result well proven.

REFERENCES
[1] B.Falah, K.Magel, O.ElAriss, “A Complexity Based Regression Test

Selection Strategy,” Computer Science & Engineering: An International
Journal (CSEIJ), Vol.2, No.5, October 2012

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

12 | P a g e

www.ijacsa.thesai.org

[2] M. Utting, A. Pretschner, and B. Legeard.Taxonomy of Model-Based
Testing.In Working Paper Series, vol. 04, April 2006.

[3] Y. Malik. Model Based Testing: An Evaluation. Master Thesis. Reading
University: Blekinge Institute of Technology, May 2010.

[4] K. El-Far and A. James. Model-based Software Testing. In Encyclopedia
on Software Engineering, J.J. Marciniak (ed). Wiley, 2001.

[5] T. Coquand. Finite State Machines. In Automata, pp 471-545, University
of Gothenburg Press, September 2010.

[6] A. Chandran. Model-Based Testing: Executable State Diagrams. In
proceedings of the STEP-AUTO 2011 Conference for International
Testing (ISQT’ 11), pp 10-17, 2011.

[7] H. Hemmati, L. Briand, A. Arcuri, and S. Ali.An Enhanced Test Case
Selection Approach for Model-Based Testing: An Industrial Case Study.
Simula Research Laboratory.Technical Report, 2010.

[8] D. Arnold, J.P. Corriveau, and W. Shi. A Scenario-Driven Approach to
Model-Based Testing.2010.
http://people.scs.carleton.ca/~jeanpier/VF_test_generation.pdf

[9] Bouchaib Falah, Mohammed Akour, Samia Oukemeni, An Alternative
Threat Model-based Approach for Security Testing. International Journal
of Secure Software Engineering (IJSSE), IGI, Vol. 6 issue 3 (2015):
50-64.

[10] Ahmad Saifan, Mohammed Akour, Iyad Alazzam, Feras Hanandeh,
Regression Test-Selection Technique Using Component Model Based
Modification: Code to Test Traceability, IJACSA, 2016

[11] Mohacsi, Stefan, Michael Felderer, and Armin Beer. "A Case Study on
the Efficiency of Model-Based Testing at the European Space
Agency." 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2015.

[12] Sun, Yanjun, Gérard Memmi, and Sylvie Vignes. "A Model-Based
Testing Process for Enhancing Structural Coverage in Functional
Testing." Complex Systems Design & Management Asia. Springer
International Publishing, 2016. 171-180.

[13] Amalfitano, D., Fasolino, A. R., Tramontana, P., Ta, B. D., & Memon, A.
M. (2015). MobiGUITAR: Automated Model-Based Testing of Mobile
Apps.Software, IEEE, 32(5), 53-59

