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Abstract—Recognizing human action is attractive research 

topic in computer vision since it plays an important role on the 

applications such as human-computer interaction, intelligent 

surveillance, human actions retrieval system, health care, smart 

home, robotics and so on. The availability the low-cost Microsoft 

Kinect sensor, which can capture real-time high-resolution RGB 

and visual depth information, has opened an opportunity to 

significantly increase the capabilities of many automated vision 

based recognition tasks. In this paper, we propose new 

framework for action recognition in RGB-D video. We extract 

spatiotemporal features from RGB-D data that capture both 

visual, shape and motion information. Moreover, the 

segmentation technique is applied to present the temporal 

structure of action. Firstly, we use STIP to detect interest points 

both of RGB and depth channels. Secondly, we apply HOG3D 

descriptor for RGB channel and 3DS-HONV descriptor for 

depth channel. In addition, we also extract HOF2.5D from fusing 

RGB and Depth to capture human’s motion. Thirdly, we divide 

the video into segments and apply GMM to create feature vectors 

for each segment. So, we have three feature vectors (HOG3D, 

3DS-HONV, and HOF2.5D) that represent for each segment. 

Next, the max pooling technique is applied to create a final vector 

for each descriptor. Then, we concatenate the feature vectors 

from the previous step into the final vector for action 

representation. Lastly, we use SVM method for classification 

step. We evaluated our proposed method on three benchmark 

datasets to demonstrate generalizability. And, the experimental 

results shown to be more accurate for action recognition 

compared to the previous works. We obtain overall accuracies of 

93.5%, 99.16% and 89.38% with our proposed method on the 

UTKinect-Action, 3D Action Pairs and MSR-Daily Activity 3D 

dataset, respectively. These results show that our method is 

feasible and superior performance over the-state-of-the-art 

methods on these datasets. 

Keywords—Action Recognition; Depth Sequences; GMM; 

SVM; Multiple Features; Spatio-Temporal Features 

I. INTRODUCTION 

Automatic human action recognition is attractive research 
topic in the fields of computer vision and machine learning 
since it plays an important role in the applications such as 
human-computer interaction, intelligent surveillance, human 
action retrieval system, health care, smart home, and robotics. 
Due to its wide range of applications, automatic human action 
recognition has attracted much attention in recent years [11, 19, 
20, 31, 37]. The goal of human action recognition is to 
automatically analyze ongoing action from an unknown video 
(i.e. a sequence of image frames).  

 
Fig. 1. Illustration of 3D camera and RGB-D data: a) Microsoft Kinect 

Device; b) Some examples of RGB-D data is captured by Kinect 

 

Fig. 2. Our proposal framework for action recognition in RGB-D video 
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Generally speaking, action recognition framework contains 
three main steps namely feature extraction, action 
representation, and pattern classification. Though much 
progress has been made [1, 6, 9, 11, 13, 19, 20, 31, 37],  the 
problem of classifying action is currently of the most difficult 
challenges, especially in the presence of within-class variation, 
occlusion, background clutter, pose and lighting condition. 
These challenges address that the combination of different 
kinds of features action because action representation based on 
single feature is not enough to capture the imaging variations 
(view-point, illumination, etc…) and attributes of individuals 
(appearance, shape, motion, etc…). 

Following the previous researches [1, 3, 6, 13, 15, 16, 18, 
20], human action could be defined by structured patterns of 
the human’s movements and poses. With the perspective, a 
robust feature extraction and description must capture shape 
and motion properties in action representation. As such, human 
action can be modeled by spatiotemporal features, where 
encode shapes and  movements of the whole body or body 
parts, for instance temporal progression, e.g., one human action 
as the whole can decompose into local shapes and movements 
of parts. In the past two decades, a significant amount of 
research has been done in the area of human action recognition 
using a sequence of 2D images [1, 6, 13, 14, 15, 16, 18, 46]. A 
single spatiotemporal structure, however, is unlikely to be 
sufficient to represent a class of action in all but the simplest 
scenarios. Firstly, the execution of the action may differ from 
subject to subject, involving different body parts or different 
space-time progressions of body part movements. Secondly, 
the video capture process introduces intra-class variations due 
to occlusions or variations in camera viewpoint. Thus, the 
resulting space-time and appearance variations necessitate 
using a collection of spatiotemporal structures that can best 
represent the action at large. In addition, another property be 
also considered in action representation is evolution of action 
by time. It indicates that action also contains temporal structure 
for each action class. In this work, we apply video 
segmentation and max-poling technique which help to model 
temporal structure of action. 

With the recent advent of the cost-effective Kinect, depth 
cameras have received a great deal of attention from 
researchers. It is excited to promote interest within the vision 
and robotics community for its broad applications [27]. The 
depth sensor has several advantages over the visible light 
camera. Firstly, the range sensor provides 3D structural 
information of the scene, which offers more discerning 
information to recover postures and recognize actions. The 
common low-level difficulties in RGB imagery are 
significantly alleviated. Secondly, the depth camera can work 
in total darkness. There is a benefit for applications such as 
patient/animal monitoring systems which run 24/7. With these 
benefits, the Kinect has been opened a new opportunity to 
improve the performance of human action recognition 

significantly. Recently, researchers have paid more attention 
to using 3D spatiotemporal features for describing and 
recognizing human actions [3, 4, 29, 35, 36, 44, 46] based on 
depth information from Kinect. Compared with conventional 
color data, depth maps provide several advantages, such as the 

ability to reflect pure geometry and shape cues, or insensitive 
to changes in lighting conditions. Moreover, the range sensor 
provides 3D structural information of the scene, which offers 
more discerning information to recover postures and recognize 
actions. These properties help depth data provide more natural 
and discriminative vision cues than color or texture.  
Furthermore, the depth images provide natural surfaces which 
can be extracted to capture the geometrical structure of the 
observed scene in a rich descriptor. However, depth sensors 
cannot differentiate between objects of the same depth but 
different color, which is trivial for color cameras. Clearly the 
color and depth information are correlated but also 
complementary to a large extent, so it would be expected to 
have considerable benefits by fusing them appropriately 
together aiming at more robust pervasive action recognition 
systems. 

In all case, furthermore, it is commonly believed that in 
order to obtain high recognition rate, it is important to select an 
appropriate set of visual features that usually have to capture 
the particular properties of a specific domain and the 
distinctive characteristics of each action class. The most 
important aspect of any action recognition system is to seek an 
efficient action representation. The target of the feature 
extraction is to find an efficient and effective representation of 
the action which would provide robustness during recognition 
process. Besides, in case action representation from multiple 
feature vectors will need a robust method to combine feature 
vectors in the right way so that the system achieves good 
performance. In this work, we use the average-pooling 
technique to aggregating visual words in BOW model and the 
max pooling technique to aggregating the segment feature 
vectors into the final feature vector for action representation. 

In this manuscript, we build a new framework for action 
recognition upon our previous works in [35] and [36]. The 
proposed action recognition system consisted of a flowchart is 
shown in Fig. 2. The main contributions of this paper are 
summarized as follows: Firstly,  we propose a new framework 
for action recognition, which takes profits of multi-modal 
RGB-D data by fusing information from both RGB images and 
depth maps. The spatiotemporal features are applied to capture 
shape and motion. A new action presentation method is 
proposed by using segmentation and max pooling technique in 
order to capture temporal structure of human action. In 
addition, we use GMM instead of k-means in BOW model in 
order to be more distinctive for action representation. 
Secondly, we systematically evaluate our frameworks on three 
challenging datasets. Moreover, we also evaluate the impact of 
video segmentation technique and spatiotemporal descriptors 
on the performance of the system in overall accuracy. 

The rest of this paper is organized as follows: Section II 
gives a concise review of existing works on feature extraction 
from a sequence of images and depth. Section III presents 
feature extraction and description. Section IV introduces a 
scheme of action representation. Section V presents action 
classification. Section VI shows the experiment results on 
relevant benchmarks. Finally, section VII draws conclusions of 
our work and indicates future studies. 
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II. RELATED WORKS 

Comprehensive reviews of the previous studies can be 
found in [19, 20, 31, 37]. Our discussion in this section is 
restricted to a few influential and relevant parts of literature, 
with a focus on RGB, depth and RGB-D for feature extraction 
and representation. 

There has been a lot of works on human action recognition 
from images in recent decades, that could be divided into two 
types of approaches: global-based and part-based method. 
Global features is temporal templates is introduced by Bobick 
and Davis [6]. They use the two components of motion 
template (MEI and MHI) and Hu Moments for representation 
and recognition of human movement. Xinghua Sun [42] use 
Zernike moments instead of Hu moments for action 
representation. Beside global feature approaches, the local 
features methods such as: histogram of 3D oriented gradients 
(HOG3D) [1], histogram of optical flow (HOF) [17], 3D 
speeded up robust features (SURF3D) [13] extends from SURF 
[5], 3D scale invariant feature transforms (3D-SIFT) [34] 
extends from SIFT [10], local trinary patterns [26] and dense 
trajectories with HOG/HOG/MHB[15, 16] are used to extract 
the most salient features (edges, corners, orientation, and 
motion), the choice of which would greatly influence the 
performance of high-level vision tasks such as recognition. 
Viet Vo and Ngoc Ly .al [40] also proposed hybrid features 
that combine local and global features for action 
representation. In addition, soft-weighting scheme was used to 
achieve more descriptive in BOW representation. 

Recently, with the availability of low-cost RGB-D sensors, 
The similarly to recognizing human action from 2D video, the 
depth map-based methods rely mainly on features, either local 
or global, extracted from the space time volume. Lu Xia at [29] 
proposed DSTIP based on STIP’s idea in RGB images  Liet al 
[28] sample representative 3D points extracting the points on 
the contours of the projections of the 3D depth map onto the 
three orthogonal Cartesian planes. To reduce the size of the 
feature vector, the method selects a specified number of points 
at equal distance along the contours of the projections. Wang 
al. [22] fuses the skeleton information and a local occupancy 
pattern based on the 3D point cloud around each joint. In a 
different approach, J.Wang al.[23] treat an action sequence as a 
4D shape and propose random occupancy pattern features, 
which are extracted from randomly sampled 4D sub-volumes 
with different sizes and at different locations. These features 
are robust to noise and less sensitive to occlusions. 
Furthermore, holistic approaches for action recognition from 
depth sequences are recently becoming popular. Vieira al. [3] 
proposed Space-Time Occupancy Patterns. The depth sequence 
is represented in a 4d space-time grid. Then, a scheme is used 
to enhance the roles of the sparse cells which typically consist 
of points on the silhouettes or moving parts of the body. 
Oreifej and Liu [33] describe the depth sequence using a 
histogram that captures the distribution of the surface normal 
orientation in the 4D space of time, depth, and spatial 
coordinates. The similar Oreifej’s idea, Quang D. Tran and 
Ngoc Q. Ly [35] proposed 3DS-HONV descriptor that uses 
Euler angles-based quantization to create 3D histogram for 
action representation. This approach is simpler than the 
Oreifej’s approach in angle quantization step. In addition, 

optical flows are extracted from depth channel to obtain more 
descriptive. Xiaodong Yang .al [41] also proposed SNV based 
on the surface normal orientation with adaptive spatiotemporal 
pyramid. Yang al. [43] project the depth maps onto three 
orthogonal planes and accumulate the whole sequence 
generating a depth motion map (DMM), the similar idea to the 
motion history images [6]. Histograms of oriented gradients 
[32] are obtained for each DMM. The concatenation of the 
three HOG  represents an action. These features encode more 
information about shape, motion and context. 

Nearly, some researches focus on combining both color and 
depth data for action recognition. Zhao Yang [47] used STIP to 
detect interest point and descriptor is described by combining 
HOG/HOF from RGB and LDP from depth data. These 
descriptors are used to build codebook for action 
representation. Quang D. Tran and Ngoc Q. Ly [35, 36] also 
used STIP to detect interest points but the descriptor is 
combined by 3DS-HONV and HOG-HOF2.5D. And, sparse 
coding is applied on these descriptors for representation. In 
[24], L. Liu proposed graph-based genetic programming by 
applying filters into RGB and depth data to automatically 
extract discriminative spatiotemporal features for action 
representation and SVM was used to classify actions. 
However, feature learning approaches have complexity in 
computing. 

In this work, we propose a new framework for human 
action recognition that combines both RGB images and depth 
maps. This approach falls in the part-based method category. 
More details, we use spatiotemporal features based on the 
interest points that are detected by STIP in both RGB and 
depth channels. These interest points are represented by 
HOG3D, 3DS-HONV and HOF2.5D that capture shape, 
appearance and motion of action. Moreover, we also apply 
video segmentation and max pooling techniques to capture the 
temporal structure for action representation. 

III. FEATURE EXTRACTION AND DESCRIPTION 

The key to the success of part-based methods is that the 
interest points are distinctive and descriptive. Following the 
approach commonly used for local interest points in images 
and video, the detection and description of spatiotemporal 
interest points are separated in two different steps. This section 
describes local feature detector and descriptor used in our 
approach. For spatiotemporal interest points detector, we apply 
STIP detector [18] as a space-time extension of the Harris 
detector [8]. For spatiotemporal interest points descriptors, we 
use three descriptors such as HOG3D [1], 3DS-HONV [35], 
and HOF2.5D [36]. 

A. Prepocessing Stage 

The 3D sensors such as Kinect based on structured light to 
estimate depth information, it is prone to be affected by noises 
due to reflection issues. These effects of noise could 
significantly decrease the overall performance of RGBD-based 
action recognition framework. Therefore, we firstly relieve the 
missing data and oultliers from the depth channel. As a result at 
[16], we adopted the bilateral filter for smoothing the depth 
channel. The bilateral filter [30] is a combination of a domain 
kernel, which gives priority to pixels that are close to the target 
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pixel in the image plane, with a range kernel, which gives 
priority to the pixels which have similar labels as the target 
pixel. This filter is often useful to preserve edge information 
based on the range kernel advantages. The edge is important 
information to represent shape of action. The bilateral filter is 
defined as follows: 

       
 

  

∑         ‖          ‖    ‖          ‖ 

    

 

    ∑    ‖          ‖    ‖          ‖ 

    

 

Where   is the filtered image,   is the original input image , 
  are the coordinates of the current pixel to be filtered,   is the 
window centered in  ,  is the range kernel for smoothing 
differences in intensities and    is the spatial kernel for 
smoothing differences in coordinates. In this research,     
and    are supposed as Gaussian functions. 

B. Interest Point Detection 

The STIP or Harris3D detector was proposed by Laptev 
and Lindeberg in [18], which is an extension of the well-known 
Harris detector in the temporal dimension. The STIP detector 
first computes the second-moment 3 × 3 matrix µ of first order 
spatial and temporal derivatives. Then, the detector searches 
regions in the video with significant eigenvalues λ1, λ2, λ3 of µ, 
combining the determinant and the trace of µ:\ 

   | |           
  

where |·| corresponds to the determinant, Tr(·) computes 
the trace, and   stands for a relative importance constant factor. 
A commonly used value of k in the literature is         
As we have RGB-D data, we apply the STIP detector 
separately on the RGB and depth channels, so we get two sets 
of interest points for description step. 

C. HOG3D Descriptor 

The HOG3D descriptor was proposed by Kläser et al. [1]. It 
is based on histograms of 3D gradient orientations and can be 
seen as an extension of the well-known SIFT descriptor [10] to 
video sequences. Gradients are computed using an integral 
video representation. Regular polyhedrons are used to 
uniformly quantize the orientation of spatiotemporal gradients. 
The descriptor, therefore, combines shape and motion 
information at the same time. A given 3D patch is divided into 
nx×ny×nt cells. The corresponding descriptor concatenates 
gradient histograms of all cells and is then normalized. The 
process of computing the HOG3D descriptor for a patch in an 
action depth sequence is described in Fig. 3. 

 
Fig. 3. Process of extracting HOG3D descriptor [1] 

D. 3D Spherical Histogram of Oriented Normal Vectors  

(3DS-HONV) Descriptor 

The 3DS-HONV descriptor was proposed by Quang D. 
Tran, Ngoc Q. Ly in [35], which based on HONV in [38]. The 
process of computing the 3DS-HONV descriptor for a patch in 
an action depth sequence is described in Fig. 4. For each patch, 
the orientation of the normal vector at each depth point is first 
computed, quantized in spherical coordinate by using 3 angles 

θ, φ ψ, and voted into a 3D histogram              , where 
bi is the relevant bin size. Those 3D histograms at all interest 
points are then accumulated to create a histogram of normal 
occurrences distribution. Implementation of this computing 
process is described as follows: 

1) Spatio-Temporal Surface Oriented Normal Vectors 
The depth sequence can be considered as a function R

3
 → 

R
1
 :           (     (is a function of depth sequence) 

which constitutes a surface in the 4D space represented as the 
set of points {           }  satisfying               
   . The normal to the surface S is computed as: 

      (           )  (
  

  
 
  

  
 
  

  
   ) 

where   ,   ,    are first derivatives of the depth map   

over  ,  ,  , which can be computed by using the finite 
difference approximation respectively. Since only the 
orientation of the normal could describe the shape of the 4D 
surface, the computed normal vectors are then normalized to a 
unit length as follows: 

 ̂  ( ̂   ̂   ̂    ‖(          )‖ 
⁄ ) 

2) Spherical Quantization and 3D Histogram 

Representation: 
In our work, the orientation of spatiotemporal surface 

normal is characterized by three Euler angles {  ,  , and   } 
  [0; π] computed in spherical coordinate. The Euler angles are 
a classical way to specify the orientation of an object in space 
with respect to a fixed set of coordinate axes [21]. According to 
Euler’s rotation theorem[21], any rotations may be described 
using three angles; therefore, we clarify that by just using 3 
Euler angles  ,  ,   for quantization, the resulting histogram 
can encode any kinds of surface normal orientation in a rich 
representation. Euler angles-based quantization is simple, 
intuitive, but also more efficient than quaternions-based 
quantization. The approximate computation of Euler angles  , 
 , and   [21] are summarized as follows: 
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In order to create 3D histogram representation for each 
depth point, the [0; π] interval is subdivided in bθ, bϕ ,bψ bins, 
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so that the histogram has a total of bθ × bϕ × bψ bins, and is 
then normalized to compute the proportion of normals falling 
into each bin. In this work, we use the tuple of bins’ size which 
are { bθ = 5, bϕ = 5, bψ = 6}, this means a 150-dimensions 
3DS-HONV for each interest point. 

 

Fig. 4. Process of extracting 3DS-HONV descriptor from an interest point 

[36]: (a) Surface normal is computed at each point, (b) 3D histogram of normal 

distribution in spherical coordinate is constructed, (c) 3D histograms at all 

points are accumulated 

E. HOF2.5D Descriptor 

According to many previous researches [20, 31], the 
motion plays important role in human action analysis. In order 
to have a good representation for human action is feature 
descriptor must capture this property. The 3DS-HONV 
descriptor was proposed by Quang D. Tran and Ngoc Q. Ly in 
[36] which contains the human motion. This descriptor is not 
generated from a unified image sequence function           , 
but instead of capturing separately the   -motion from pairs of 
RGB images and the   movements from pairs of depth channel. 
With assuming that is the position of each pixel in RGB images 
can be mapped to the related cloud point in depth maps. In 

specific, each pixel (  
    {  

      
   }) in RGB-D frame    

can be easily projected to its corresponding position (  
  

{  
    

 } ) in the depth map. The process of computing 
HOF2.5D descriptor is described as follows: each RGB frame 

  
   , the {  ,   } components of the optical flow fields (OF) 

at every pixels are computed using algorithm that was 
proposed by G. Farnebäck algorithm [12]. In order to create 

OF2.5D at each calibrated pixel (   {  
      

 }), we utilize 
the information of available depth maps to compute the    
component of the OF vector as this formulation: 

        
      

     
    

   

As results, each RGB-D frame   , we obtain a feature 
descriptor   {  ,   ,…,  }, where each element    {  , 
  ,   } is a 3D vector that captures satisfactorily 3D motion 

information of a particular pixel. As a final representation for 
each interest point, we perform a histogram quantization using 
three orthogonal planes   ,   ,    as shown in Fig. 6. The 
orientations of each OF2.5D are computed on three projected 
planes as follows: 

        (
  

  
) 

        (
  
  

) 

        (
  
  

) 

 
Fig. 5. Quantization scheme for computing HOF2.5D [36] 

 

Fig. 6. Illustration of BOW for action representation in RGB-D data 
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We then evenly deploy bα1, bα2, bα3 orientations binning 
on three orthogonal planes to finally generate a histogram 
representation of each semi-scene flow vector, namely as 
HOF2.5D. In all experiments, we set bα1 = bα2 = bα3 = 
8. As a consequence, for each interest point descriptor, by 
accumulating all HOF2.5D descriptors at all pixels, we achieve 
a 24-bins histogram that captures the distribution of motion 
flows. 

IV. ACTION REPRESENTATION 

A. Bag of Word 

In part-based methods, a video is modeled by the bag of 
words (BOW) model which is the way of constructing a feature 
vector based on the number of occurrences of word. Each 
visual word is just a feature vector of patch. The major issue of 
BOW is vector quantization algorithms to create effective 
clusters. The original BOW used k-means algorithm to 
quantize feature vectors. Although k-means is used widely in 
clustering, its accuracy is not good in some cases. In addition, 
binary weighting for histogram of word occurrences which 
indicates the presence and absence of a visual word with values 
1 and 0 respectively, was used. Generally speaking, all the 
weighting schemes perform the nearest neighbor search in the 
vocabulary in the sense that each interest point is mapped to 
the most similar visual word. Many researches argue that, for 
visual words, directly assigning an interest point to its nearest 
neighbor is not an optimal choice, given the fact that two 
similar points may be clustered into different clusters when 
increasing the size of visual vocabulary. On the other hand, 
simply counting the votes is not optimal as well. For instance, 
two interest points assigned to the same visual word are not 
necessarily equally similar to that visual word, meaning that 
their distances to the cluster centroid are different. Ignoring 
their similarity with the visual word during weight assignment 
causes the contribution of two interest points equal, and thus 
more difficult to assess the importance of a visual word in 
video. 

In this work, we propose GMM instead of k-means in 

BOW model. We denote the parameters of the K-component 
GMM by   {                } , where    ,   and 
  are respectively the mixture weight, mean vector and 
covariance matrix of Gaussian k and subject to ∑       . In 
this work, we set K = 512 that are used in many researches. We 
estimate the GMM parameters on a large   training set of local 
spatiotemporal descriptors using the Expectation-Maximization 
(EM) [2] algorithm to optimize a Maximum Likelihood (ML) 
criterion. For GMM, soft quantization corresponds to assigning 
features partially to each of the GMM clusters, according to 
their posterior probabilities: 

   [  |          |            |       ] 

  |       
 

    
 
 |  |

 
 

    { 
 

 
       

   
         }  

where    is the vector of soft-counts associated with feature 
  . The soft-weights of each visual word, contributed by all 
features in the video, are then pooled into a histogram: 

                    

which is the final video representation (  is the number of 
descriptors). The standard average pooling operator aggregates 
word counts into bins of       and normalizes as follows: 

                 
 

 
∑  

 

 

     represents a histogram for the video  . 

B. Video Segmentation 

Video segmentation is the method that divides video into 
fixed length segments. These approaches can be divided into 
two types: non-overlapping and overlapping segments. For 
non-overlapping segments, a video is divided into continuous 
and equal length segments. The method does not take account 
information about the semantic boundary of a segment. 
However, this information is important because it keeps 
semantic meaning of each segment.  

 

Fig. 7. Illustration of video segmentation method for action representation 
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This method also has the advantage that the subsequent ranking 
algorithm does not have to deal with problems arising from 
length differences. A variant of this fixed length method uses 
overlapping segments. In this method, a video is divided into 
overlapping and equal length segments. This approaches can be 
used that try to identify lexically and semantically coherent 
segments. 

For all used methods we have to determine the length of the 
segments or the number of segments for a video. For the action 
recognition task as described above long segments clearly have 
two disadvantages: longer segments have a higher risk of 
covering several subtopics and thus give a lower score on each 
of the included subtopics. In the second place, long segments 
run the risk that they include the relevant fragment but that the 
beginning of the segment is nevertheless too far away from the 
jump-in point that should be found. Short segments, on the 
other hand, might get high rankings based on just a view 
words. Furthermore, short segments make the recognizing 
process more costly. In our approach, we choose different 
length segments to select the optimal one. 

C. Action Represention with Feature Pooling 

In video segmentation stage, we divide the video into the 
set of segments. Each segment is represented by three feature 
vectors (HOG3D, 3DS-HONV, and HOF2.5D) that are 
computed by BOW. We use the following temporal 
aggregation pools feature values for each feature dimension 
over time as Fig. 7. Pooling features over time means that the 
temporal structure of action will be modeled. With three 
descriptors, we have three feature vectors for action 
representation. Finally, we concatenate them into a final feature 
vector that presents for action. The vector feature will be 
provided to classifier to identify the label of action class which 
performed in video. In this research, the max pooling technique 
are proposed for aggregating feature vectors. 

V. ACTION CLASSIFICATION 

SVM is the most popular discriminative classifier and was 
proposed by Vladimir Vapnik [39]. It provide the state-of-art 
performance in many real applications such as text 
categorization, image classification etc… It is known as the 
maximum margin classifier. Consider the given training data 
set {(  ,   )} where i = 1, 2,…n and   ,  is N-dimensional 
feature vector with label    = +1 or −1 denoting the class it 
belongs to. The feature vectors are assumed to be normalized 
between [−1, 1] or [0, 1] to obviate the undesirable domination 
of any particular dimension(s) in deciding the decision 
boundary. SVM strives to find the hyper-plane       
 that best separates the training data with regards to the 
distance from this hyper-plane. The optimal values for w and b 
can be found by solving a constrained minimization problem, 
using Lagrange multipliers    (i =1,…, n). 

      ∑  

 

   

               

Where     and b are found by using an SVC learning 
algorithm. And         is a kernel function for the training 
sample    and the test sample  . 

The multi-class classification problem is commonly solved 
by a decomposition to several binary problems for which the 
standard binary SVM can be used. The one-against-rest 
decomposition is often applied. In this case, the classification 
problem to k classes is countered by training k different 
classifiers, each one trained to distinguish the examples in a 
single class from the examples in all remaining classes. When 
it is desired to classify a new example, the k classifiers are run, 
and the classifier which outputs the largest (most positive) 
value is chosen. We use non-linear SVM with a RBF 
kernel which have shown good performance in many 
researches. In this work, we use LibSVM [7] for SVM 
classifier implementation. The penalty parameter is set as C = 
100. 

VI. EXPRIMENTAL RESULTS 

We firstly evaluate the performance of the proposed 
approach on the three challenging 3D action datasets such as 
UTKinect-Action, 3D Action Pairs, and MSR-Daily Activity 
dataset. Then we compare our results to the state-of-the-art 
methods to demonstrate the superiority of the proposed 
approach. 

Secondly, we evaluate the performance of separation of 
descriptors and combination of descriptors that are used BOW 
with k-means and GMM to yield the histogram represents for 
actions. Furthermore, in order study the effect of the size of the 
video segmentation on the final classification performance, we 
choose segment lengths of 10, 15, 20, and 25 frames on non-
overlapping and overlapping segmentation. And we use 
uniform segment sampling with 50% of overlapping. 
Therefore, the number of segments will be doubled for each 
overlapping experiment. 

A. UTKinect-Action dataset 

UTKinect-Action dataset [25] contains 10 different action 
classes performed by 10 subjects, collected by a stationary 
Kinect sensor. The 10 action classes are: walk, 
sit down, stand up, pick up, carry, throw, push, pull, wave 
hands, clap hands. Each action was collected from 10 different 
persons for 2 times: 9 males and 1 female. Depth sequences are 
provided with resolution 320 × 240, and skeleton joint 
locations are also provided in this dataset. In our experiment, 
we used the same setting is the leave-one-out scheme in [25]. 

In this dataset, Table I shows the experimental results of 
our different methods. From the results one can see that 3D-
HONV is the best descriptor in case only one descriptor is used 
and the fusion of HOG3D, 3DS-HONV and HOF2.5D 
outperforms the single descriptor in using BOW with k-means 
and GMM.   Fig. 8 presents a comparison of the accuracy of 
overlapping and non-overlapping segmentation with the 
difference on the length of segment. The overlapping method is 
better than the non-overlapping method in all cases. And, the 
length of 15 frames for each segment achieve the best 
performance. Table II compares our approach results with 
state-of-the-art results on UTKinect-Action dataset. We can see 
that our result of 93.5% in accuracy is better than all previous 
results using the same settings. Our recognition rate is more 
than the current best rate  by 1.6%. 
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Fig. 8. Experimental results from non-overlapping and overlapping 

segmentation on UTKinect-Action 

TABLE I.  EXPERIMENTAL RESULTS OF OUR METHOD ON UTKINECT 

ACTION DATASET 

Methods 
Accuracy (%) 

KM-BOW GMM-BOW 

HOG3D 83.5 85 

3DS-HONV 88 91.5 

HOF2.5D 86 87.5 

Combined 91 93.5 

TABLE II.  COMPARISION OF THE PROPOSED METHOD WITH THE STATE OF 

THE ART METHODS ON UTKINECT ACTION DATASET 

Methods Accuracy (%) 

HOJ3D [25] 90.92 

STIPS + Joint [46] 91.9 

Our approach 93.5 

 
Fig. 9. Comparison of our proposed methods on UTKinect Action dataset 

B. 3D Action-Pairs dataset 

The 3D Action-Pairs dataset contains activities which are 
selected in pairs such that the two activities of each pair are 
similar in motion and shape. For example, “Pick up” and “Put 
down” actions have similar motion and shape. This dataset has 
six pairs of activities: “Pick up a box/Put down a box”, “Lift a 
box/Place a box”, “Push a chair/Pull a chair”, “Wear a 
hat/Take off a hat”, “Put on a backpack/Take off a backpack”, 
and “Stick a poster/Remove a poster”. The dataset includes 12 
activities performed by 10 different subjects. Each action was 
performed three times by each subject. We used this dataset in 
order to emphasize two points: 1) to evaluate the performance 
of our proposed method in the case of actions that have similar 
trajectories and objects; 2) to show the advantage of using the 
feature fusion to enhance the recognition rate. 

TABLE III.  EXPERIMENTAL RESULTS OF OUR METHOD ON 3D ACTION  

PAIRS  DATASET 

Methods 
Accuracy (%) 

KM-BOW GMM-BOW 

HOG3D 92.22 94 

3DS-HONV 92.27 91.38 

HOF2.5D 93.61 95.28 

Combined 94.44 99.16 

TABLE IV.  COMPARISION OF THE PROPOSED METHOD WITH THE STATE OF 

THE ART METHODS 3D ACTION  PAIRS DATASET 

Methods Accuracy (%) 

Skeleton+LOP [23]  63.33 

Depth Motion Maps [43] 66.11  

Skeleton + LOP + Pyramid [23] 82.22 

HON4D [33] 96.67 

SNV [41] 98.89 

BHIM [45] 100 

Our Approach 99.16 

  
Fig. 10. Experimental results from non-overlapping and overlapping 

segmentation on 3D Action Pairs 

 
Fig. 11. Comparison of our proposed methods on 3D Action Pairs dataset 

In this dataset, Table III shows the experimental results of 
our different methods. From the results one can see that 
HOF2.5D is the best descriptor in case only one descriptor is 
used and the fusion of HOG3D, 3DS-HONV and HOF2.5D 
outperforms the single descriptor in using BOW with k-means 
and GMM. Fig. 10 presents a comparison of the accuracy of 
overlapping and non-overlapping segmentation with the 
difference on the length of segment. The overlapping method is 
better than the non-overlapping method in most cases. And, the 
length of 15 frames for each segment obtain the best 
performance. Table IV compares our approach results with 
state-of-the-art results on 3D Action Pairs dataset. We can see 
that our result of 99.16% in accuracy is better than most 
previous results using the same settings. Our recognition rate is 
less than the current best rate is 100% by 0.84%. 
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C. MSR-Daily Activity 3D dataset 

The MSR-Daily Activity 3D dataset contains 16 different 
human activities: drink, eat, read book, call cell phone, write on 
a paper, use laptop, vacuum cleaner use, cheer up, sit still, toss 
paper, play game, lay down on sofa, walk, play guitar, stand-
up, sit-down, and each subject performs an activity in two 
different poses: a standing pose and a sitting on sofa pose. Each 
pose has 160 total samples, with each subject is one sample per 
activity in each pose. This dataset is created to cover daily 
activities and human–object interactions in the living room. 
These tests are more challenging than the other datasets 
because of frequent human–object interactions. 

 
Fig. 12. Experimental results from non-overlapping and overlapping 

segmentation MSR-Daily Activity 

TABLE V.  EXPERIMENTAL RESULTS OF OUR METHOD ON MSR-DAILY 

ACTIVITY DATASET 

Methods 
Accuracy (%) 

KM-BOW GMM-BOW 

HOG3D 78.75 80.63 

3DS-HONV 84.36 87.5 

HOF2.5D 81.25 82.5 

Combined 86.25 89.38 

TABLE VI.  COMPARISION OF THE PROPOSED METHOD WITH THE STATE OF 

THE ART METHODS ON MSR-DAILY ACTIVITY DATASET 

Methods Accuracy (%) 

LOP [23] 42.50 

Depth Motion Maps [43] 43.13 

Local HON4D [33] 80.00 

Actionlet Ensemble [23] 85.75 

SNV [41] 86.25 

BHIM [45] 86.88 

Our approach 89.38 

In this dataset, Table V shows the experimental results of 
our different methods. From the results one can see that 3DS-
HONV is the best descriptor in case only one descriptor is used 

and the fusion of HOG3D, 3DS-HONV and HOF2.5D 
outperforms the single descriptor in using BOW with k-means 
and GMM. Fig. 12 presents a comparison of the accuracy of 
overlapping and non-overlapping segmentation with the 
difference on the length of segment. The overlapping method is 
better than the non-overlapping method in all cases. And, the 
length of 20 frames for each segment achieve the best 
performance. Table VI compares our approach results with 
state-of-the-art results on MSR-Daily Activity dataset. We can 
see that our result of 89.38% in accuracy is better than all 
previous results using the same settings. Our recognition rate is 
higher than the current best rate is 86.88% by 2.5%. 

VII. CONCLUSION 

In this work, we present a new framework for action 
recognition in RGB-D video based on spatiotemporal features 
and segmentation technique. We use STIP detector to select 
interest points for both RGB and depth channels. 
Spatiotemporal descriptors consist of HOG3D, 3DS-HONV 
and HOF2.5D are extracted. These descriptors capture shape, 
appearance and motion information which are vital properties 
for action representation. We use GMM instead of k-means in 
BOW model to create more distinctive for action 
representation. Also, we apply segmentation and max pooling 
technique to capture the temporal structure of action. Our 
approach systematically is evaluated on several benchmark 
datasets such as UTKinect-Action, 3D Action Pairs, and MSR-
Daily Activity 3D dataset with final recognition accuracies of 
93.5%, 99.16% and 89.38% for fusion of descriptors, 
respectively. The experimental results have shown outcome 
performance compare to the-state-of-art methods in overall in 
most cases. For the spatiotemporal descriptors, 3DS-HONV 
has shown robust descriptor in most cases. However, HOG3D 
is better than 3DS-HONV in case that needs to distinguish 
these objects that have the similar shape as 3D Action Pairs 
dataset. And, HOF2.5D is better than HOG3D and 3DS-
HONV in case that needs to differentiate these actions that 
have the similar motion. Thus, to improve the action 
recognition system, fusion of the descriptors is the best way. 
For the part-based model, from experimental results also show 
that GMM is more powerful than k-means when using to create 
visual words in BOW model. For segmentation method, in 
addition, we indicate that overlapping method performs the 
best in most cases. And, the length of segment also impacts to 
the performance of the system. However, the length is not 
fixed for all the dataset that it depends on the descriptors are 
used and the nature of dataset. In this work, the experimental 
results indicate that the length of segment is 15 and 20 frames 
are the best performances. 
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Fig. 13. Comparison of our proposed methods on MRS-Daily Activity dataset 

In summary, the key problems of this research are summed 
up as follows: firstly, we have explored the utility of 
spatiotemporal features derived from RGB and depth 
information. These features are extracted to capture both shape 
and motion in action. Secondly, GMM used to instead of k-
means in BOW model to have more distinctive and descriptive 
for action representation. Finally, we have modeled temporal 
structure of action based on video segmentation and max 
pooling technique. 

In the future, we will investigate new method to improve 
appearance, motion properties as well as consider the impact of 
context and evolution of human when performing the action. 
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                                                                                                                                       (b) 

Fig. 14. Some sample frames from UTKinect-Action (a) and MSR-Daily Activity 3D (b) dataset 


