
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

264 | P a g e

www.ijacsa.thesai.org

Test Case Reduction Techniques - Survey

Marwah Alian

Princess Sumaya University for

Technology

Amman, Jordan

Dima Suleiman

Princess Sumaya University for

Technology

Amman, Jordan

Adnan Shaout

The University of Michigan -

Dearborn

Michigan - Dearborn

Abstract—Regression testing is considered to be the most

expensive phase in software testing. Therefore, regression testing

reduction eliminates the redundant test cases in the regression

testing suite and saves cost of this phase. In order to validate the

correctness of the new version software project that resulted

from maintenance phase, Regression testing reruns the

regression testing suite to ensure that the new version. Several

techniques are used to deal with the problem of regression testing

reduction. This research is going to classify these techniques

regression testing reduction problem.

Keywords—Regression testing; Test case reduction; Test Suite

I. INTRODUCTION

Regression testing is done to ensure the validity of
modified software which is an essential activity related to
making maintenance. The goal of this activity is to ensure that
bug fixes and new functionality do not harm the correct
functionality inherited from original program [1]. The size of
the test-suite grows when new test cases are added to the test
suite which increases the cost of regression testing [2].
Moreover, regression testing requires running a large program
on a large number of test cases which means it can be
expensive in both human and machine time [1].

Reducing cost is the target of researchers on the use of test-
suite reduction techniques. Therefore, a number of different
methods have been studied to deal with test suits such as
minimization, selection and prioritization. Test suite
minimization or reduction aims to reduce the number of tests to
run. [3]

However, the main objective of most of proposed
algorithms is to reduce the test suite size. In [4] they use the
concept of Set theory to minimize the larger test suite. The set
is defined as a collection of objects and entities. One set for
each object type is created, and set operations such as Cartesian
product, union, intersection and difference are used to reduce
the size of test suite. This paper depends on the power of set
functions.

While in [5] they combine the concept of software testing
and Case-Based Reasoning (CBR) by assuming that test cases
are treated as cases in CBR and they discuss how to maintain a
number of test cases in software testing using the Case-Based
Maintenance (CBM) if there is a set of test cases generated by
the Path-Oriented technique. They propose a number of
maintenance techniques that are used for removing
unnecessary test cases and for controlling the growth of test
cases. The process of maintaining CBR is called Case Based
Maintenance (CBM) which is a policy of adding, updating, and

deleting cases. Nicha et al. concentrate on the Deletion Policy
for CBM. Their experiments show that the proposed technique
can be used to reduce the number of test cases required for
software testing in an efficient way.

Regression test suite (RTS) can be reduced using model-
based regression which based on an Extended Finite State
Machine (EFSM), for each elementary modification (EM) data
and control dependences are used to capture interaction
between EFSM transitions and three interaction patterns.
Reduced RTS only includes test cases that one of their 3
interactive patterns is not produced for any other test case [6].
Requirements changes lead to modifications in the EFSM,
Modification in model result in performing three types of
model based regression testing: testing the model affection in
modification, testing the modification affection on the model
and testing the effect of modifications on unmodified part of
the model. An extension of EFSM is the system under test
(SUT) that support variable ranges over several data types and
operations. In each transition level a changes occurs in EFSM.
Changes can add or delete transitions [7].

The selection of most appropriate regression method is not
easy since everyone has its advantages and disadvantages.
Adaptive regression testing (ART) can be used to determine
the most effective one which take into consideration the
organization situation and testing environment [8]. ART uses
certain criteria to determine which regression testing to use
such as cost and benefits in addition to the organization
situation such an evaluation have a problem called multiple
criteria decision making (MCDM) problem, one of MCDM
methods is Analytical Hierarchy Process (AHP), the results of
the experiment show that techniques selected by AHB is cost
effective. Decision maker must define a hierarchy that contains
a description of a problem to be solved in order to be able to
use AHP. Hierarchy contains the goal and the factors that may
be used by decision maker.

The purpose of this survey is to collect and consider papers
that deal with one of regression testing techniques that are test
suite reduction. Our intention is to provide a state-of-the-art
view on this field. Many different approaches have been
proposed in order to reduce the cost and time of regression
testing.

The rest of this research is organized as follows: Section II
gives a review about other surveys in the field. Section III
defines the problem of test suite reduction. In section IV a
detailed outlook on the classification of test suite reduction
techniques and section V presents a summary for the test suite
techniques and discussion.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

265 | P a g e

www.ijacsa.thesai.org

II. RELATED WORK

Detecting faults in the program is the objective of software
testing and it provides more assurance on the quality of the
software. As the software evolves the size of the test suite
grows because of the addition of new test cases to the test suite
[9]. It is important to develop techniques to minimize available
test suites because of the time and resource constraints for re-
executing large test suites. [10] Hundreds of techniques have
been proposed to solve the problem of test suite reduction, and
several surveys have been introduced for such techniques.

In software testing field a survey of Chaurasia et al. [11] is
given which is a literature review of test case reduction
techniques. They discuss and compare three algorithms
presented in [12][13][14]. All papers are about test case
reduction but Control Flow Graph is used in all the methods.
These algorithms worked on the basic Basis Path Testing,
which is the first method worked on the low level of the code,
exceptions, conditions, and loops. They discuss the algorithm
advantages, disadvantages, cost, and time. In the three
algorithms, time, cost and the number of test cases are reduced
significantly.

In [15] they present a survey of using Genetic Algorithm in
different software testing techniques. They describe how GA
works and the applications of GA in different types of software
testing like test planning, minimization of test cases in
regression testing, model based testing and web testing. They
discuss one technique for each type of software testing except
for model based testing they discuss four techniques. In
regression testing they introduce the technique proposed by
[16] and their comparison with vector based technique in test
suite reduction. Also, they compare GA Parameters that are
used in different types of software testing. GA parameters are
Crossover Rate, Mutation Rate, and Number of Generation.

While in [17] an empirical study of five different regression
test optimization techniques is presented. They give a brief
description for the three regression testing optimization
techniques that are selection, prioritization, and minimization.
Then they describe five implemented algorithms that are
slicing algorithm, incremental algorithm, genetic algorithm,
adaptive firewall approach, and simulated annealing. Also,
they introduce a comparison that is based on different
qualitative and quantitative criteria such as execution time of
tests, precision, number of tests selected, user parameters,
global variables handling, and type of testing.

A review is made to compare between Heuristics, Genetic
Algorithms and Linear programming based techniques.
Heuristics produced smaller size reduced set it work very good
on it but it must be optimized in large scale test suite, on the
other hand Heuristic GRE produced optimal representative set.
Genetic Algorithm concerns about the block based test suites
on software and coverage, in Genetic algorithm with time
constraints the test suite becomes smaller results in minimizing
running time. Smallest set is produced in Integer Linear
Programming compared with other algorithms. For significant
test suite reductions two or more techniques can be combined
to form hybrid techniques [18].

In [19] various test case generation methods are presented
such as minimizing, selection, prioritization and evaluation test
cases. Also many methods that help test engineers in
scheduling and ranking test cases are discussed such as test
cases prioritizations and selection techniques. Some of test case
generation depends on application such as those generated for
web, object oriented, UML, evolutionary applications and
structured based systems. System Requirements and use cases
can be used to derive test cases; also test cases can be
generated using UML sequence diagram, these test cases are
generated for object oriented programs. In order to be able to
find the sub optimal test cases we can use genetic algorithms to
let test cases meet certain criteria such as if the test cases are
adequate to statement, branch, and path coverage. Code based
test generation generates test cases from a code, four types of
inputs are taken: program to be tested, -and some information
related to runtime. Dynamic path testing and evolutionary
technique generate test cases by using many test values in
program execution; test cases can be prioritized according to
the shortest path. Test case also can be generated by traversing
the graph from parent root to child node in Graph Traversal
Algorithm, by using breadth or depth first in a graph tree.

There are different representations of graph models
proposed for procedural programs which are discussed in [20]
survey such as Control Flow Graph (CFG), Program
Dependence Graph (PDG) and System Dependence Graph
(SDG). Flow graph is a directed graph a set of nodes represents
program statements, there are two nodes called start and stop
nodes and there exists path from a start to every other node in
flow diagram and from there to stop node. Data Dependence
Graph is used to represents relationships between elements of a
program. The relationship can be either data or control
dependency.

There are different representations of graph models
proposed for procedural programs that are discussed in [20]
survey such as Control Flow Graph (CFG), System
Dependence Graph (SDG) and Program Dependence Graph
(PDG) . Flow graph is a directed graph in which a set of nodes
represents program statements, there are two nodes called start
and stop nodes and there exists path from a start to every other
node in flow diagram and from there to stop node. Data
Dependence Graph is used to represents relationships between
elements of a program. The relationship can be either data or
control dependency.

However, other surveys has a narrow view for the field and
many types of techniques about test suit reduction requires
classification into specific groups or classes represents
similarities and common properties. In this survey we classify
test case reduction techniques into: requirement based,
coverage based, program slicing, genetic algorithm, greedy
algorithm, hybrid algorithm, clustering and fuzzy logic.

III. TEST SUITE REDUCTION PROBLEM

According to the definition given by [21], test suite
reduction problem can be can be defined as:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

266 | P a g e

www.ijacsa.thesai.org

Given a test suite T represents a set of test cases {t1, t2,
t3,…, tn}, a set of test requirements R = {R1, R2, . . . , Rn} to
be covered, and subsets of T, S= {S1, S2, . . . , Sn}, where each
test set is associated with Ri. The objective is to find the
representative subset RS ⊆ S that satisfies all of requirements
and has at least one test case for each requirement R.

IV. TEST SUITE REDUCTION TECHNIQUES

Regression testing is defined as a software maintenance
activity which is done to ensure the proper functionality of the
software. Test suits that are developed during the development
phase have a large size that it is not possible to run the entire
test suite due to the time and cost. Therefore, regression test
reduction process is advisable in order to reduce the test suite
to minimal set of test cases that will cover all the faults in
minimal time [22]. In this survey we consider the proposed test
suite reduction techniques and their classification.

As shown in Fig. 1 test case reduction techniques are
classified into: requirement based, coverage based, slicing,
genetic algorithm, greedy algorithm, hybrid algorithm,
clustering and fuzzy logic.

Fig. 1. Regression testing reduction techniques

A. Genetic Algorithms

There are many issues of software testing like effective
generation of test cases, test case reduction, prioritization of
test cases, etc. These issues demand on effort, time and cost of
testing. The use of evolutionary algorithms for automatic test
case generation and reduction has been an interest for
researchers [15]. One such form of evolutionary algorithms is
Genetic Algorithm (GA) that is computational Intelligence
based approach used as a solution for the problem of test cases
reduction like evolutionary computation.

In [2] they propose a genetic algorithm, for test-suite
reduction which builds the initial population based on test
history, it calculates the fitness value using coverage and cost
information then using genetic operations it selects the
successive generations. These steps will be repeated until a

minimized test-suite set is found. The results show that the
proposed test-suite reduction technique has cost-effectiveness
and generality.

Also, the research of [23] investigates the use of genetic
algorithms, for test-suite reduction. They propose a model that
builds the initial population based on test history, but it
calculates the fitness value depending on coverage and run
time of test cases, the fit tests only allowed to be in the reduced
suite. This generational process is repeated until an optimized
test-suite is found.

In [16] they define the time-aware regression testing
reduction problem and propose a genetic algorithm for this
problem. This work describes parent selection, crossover and
mutation processes of the genetic algorithm. The redundancy
of test cases is removed from regression testing suite by the
proposed algorithm they also minimize the total running time
of the remaining test cases.

While in [24] a new approach for test case reduction is
presented and implemented. This approach depends on genetic
algorithm technique with varying chromosome length in order
to reduce test cases in a test suite by finding a representative set
of test cases that fulfill the testing criteria.

Approaches that based on Genetic algorithms need to
further study the fault detection capability of block based test
suite or coverage based test suite or other criteria [25].

B. Requirement Based

The purpose of test suite reduction is to satisfy all testing
requirements with a minimum number of test cases. Before
generating test cases it is necessary and possible to optimize
testing requirements.

In [26] they solve test suite reduction by testing
requirement optimization. They proposed a requirement
relation graph which is proposed to minimize the requirement
set by graph contraction. The experiment is designed and
implemented using specification-based testing. In this work,
testing requirement relation graph is introduced in order to hide
the details of testing requirements and test cases and to achieve
test suite reduction. Some requirement contraction methods are
proposed to generate a small requirement set. Also, an
empirical study on specification-based testing is performed.
The study compares the relative effectiveness of testing
requirement optimization to test case reduction. In order to
compare with test suite reduction, all test cases of each testing
requirement are generated then the greedy algorithm is applied
on the constructed test suites for reduction.

The ability to detect faults is reduced as a result of reducing
the size of test suite. The redundancy in test suites and size can
be reduced using a model checker based techniques to create
test cases [27]. The main idea of this approach is that not all
test cases in test suite are important to achieve requirements, so
that a subset of test cases can be chosen that fulfill the
requirements. Model-checker take a finite state model and
temporal logic property as input and as a result counter
example will be returned if the property is not fulfilled.
Counter example is a sequence of states from the initial state to
the violating one. Since removing of test cases from test suite

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

267 | P a g e

www.ijacsa.thesai.org

have negative impact on the ability to detect faults, this can be
avoided by transforming the test cases so the redundant parts
can be omitted. Common prefix of the test cases is specified
then the only part after the prefix of test cases is interesting.
And if there is another test case that ends with the same prefix
we talked about previously then we can append the remainder
of the first test case to the second test case and omit the first
one. In this research the quality of test suite after removing the
redundant test cases does not suffer, the experiments show that
the reduction is significant and one drawback is the run time
complexity.

The basic classic needs of test suite reduction is to reduce
the time and cost and maintain the effectiveness of fault
localization, so that a technique that keep the system free from
errors is needed and at the same time keeping the efficiency by
reducing the number of test cases[28].

In [28] they study three techniques and the best out of them
is determined, the first one is test suite reduction and
requirement optimization, if there is a test cases in input
domain that satisfy testing requirements then the testing
requirements is feasible. The second one is dynamic domain
reduction (DDR); these algorithms based on effective testing in
detection of errors, there are many testing methods such as:
path testing, the purpose of this algorithm is not to test every
path. Another algorithm is independent program path where at
least one new processing path is considered. DDR is based on
constraint based testing. The third algorithm is Ping Pong
technique which uses heuristic technique to reorder the test
cases that provides a good solution but not the optimal one.

The requirement optimization is good when dealing with
the finite Boolean expression that classifies the requirements as
true of false test cases. When dealing with arrays, loops and
expression DDR succeeds. Ping Pong assures the domain
coverage but it is time consuming technique, expensive and
more memory is needed. It takes requirements from natural
language.

Some algorithms use the decision table concepts that
depend on the requirement gathered from the user to create test
cases [29]. A framework of this algorithm consists of three
steps: functional requirements analysis and condition
determination, input generation for rule development and
testing, in this step decision table is generated and with
corresponding rules and test cases ,and the last step is rule
development and testing using opened rules, in this step the test
output will be generated. The redundancy reduction of test case
is up to 30% which save cost and time; the proposed algorithm
does not require the tester to have knowledge of coding.

C. Fuzzy logic

Optimization of test suites can be achieved by using fuzzy
logic. It is a safe technique and can reduce the regression
testing size and execution time [30]. Fuzzy logic can be used in
many areas such as communication, bio informatics and
experts systems. Level of testing using fuzzy logic is based on
objective function quite similar to human judgment.

A combination of fuzzy logic with genetic algorithm and
swarm optimization can be used to make optimization in test
suite for multi-objective selection criteria. Therefore, in [31]

they aim to find a test suite that is optimal for multi-objective
regression testing. They propose an expert system that use a
technique and level of testing based on a defined objective
function, similar to human judgment using fuzzy logic based
classification.

While in 2013, [32][33] use some CI based approaches in
order to optimize the test suite and analyze the test suite for
safe reduction which can be estimated using control flow
graphs. Test cases of optimal solutions are traversed on these
graphs and it is found that only fuzzy logic is safe while other
approaches will be inadequate for regression testing.

D. Clustering

When designing test cases, there are many redundant test
cases with no use. Such redundancy increases the testing effort
and increase the cost and time of testing.

In order to reduce the time spent in testing, the number of
test cases is reduced. In [34] they use the data mining approach
of clustering technique in software testing to reduce the test
suite.

With the help of the clustering techniques the number of
test cases is reduced and the efficiency of software testing is
improved. By using clustering the program can be checked
with any one of the clustered test cases rather than with the
entire test case that is produced by the independent paths.

A new approach is discussed by [35] which divide the test
cases into clusters according to the similarity in profiling.
Previous researches made partitions on execution profile by
representing it as a binary vector which contains only number
of times the function executed without taking into
considerations the sequence of execution, so that this paper
provide enhancements by making three types of profiles: file
execution sequence, function call sequence and function call
tree. The results show that the relation between function calls
and sequential information will make enhancements in
detecting the faults.

Clustering techniques based on selecting test cases of using
coverage and distribution based techniques. They produce
smaller representative sets of test cases but less fault detection
ability [25].

E. Coverage Based

An important issue to be considered during test suite
reduction is the coverage aspect. Coverage-based reduction
techniques have to ensure that majority of the execution paths
of the given program are exercised [9].

Regression testing must preserve the fault detection in
addition to minimizing the size and the time of test. In Case
Base Reasoning (CBR) there are three cases classifications:
case, auxiliary and pivotal case. Case based is Artificial
intelligent which search for the most similar problems to solve
problems; in this case a memory is needed. Auxiliary case can
be deleted without affecting competence, but only reduces the
efficiency of the system. On the other hand pivotal cases have
a direct effect on the competence of a system if it is deleted. As
we said CBR uses path coverage criteria to reduce the
redundancy test cases. Path coverage uses a control flow graph

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

268 | P a g e

www.ijacsa.thesai.org

which can derived from a source code, path oriented test case
generation technique used to derive a test cases from a control
flow graph where each state can reveal a fault.

In [36] they use the case based reasoning (CBR) which is
one of artificial intelligent concepts. This study introduces
three methods. CBR and software testing have the same
problems that there are many redundant test cases after
reduction, the ability of reducing the faults decreases, and grow
of test cases is uncontrollable. The key research issues of CBR
are: continuous growing in CBR size is the existence of too
many redundancy cases and the deletion all redundancy in
CBR take a lot of time. In order to control number of cases
there are many algorithms such as add, delete and maintenance
approaches, deletion algorithms are the efficient algorithms to
maintain the size of CBR system. [36] Treat the test cases as
cases in CBR with the assumption that path oriented test cases
method used to generate a set of test cases. There are two
classifications of test cases reduction techniques proposed in
this research, the first one is coverage based technique and the
second one is concept analysis based technique. Their research
propose three methods using CBR: The first method is Test
Case Complexity for Filtering (TCCF), the proposed method
that applies CBR concepts can be described in the following
steps: Determine the coverage set, reachability set, auxiliary set
from which we can compute the complexity for each test case
and the last step is to remove test cases from the auxiliary set
that have a minimum complexity value, the complexity of test
case can be computed as follows: High when number of test
cases are larger than the average number of test cases in test
suites, when they are equals then the complexity is medium
and when number of test case smaller than average it is
considered as low.

The second algorithm is Test Case Impact for Filtering
(TCIF) in this method the impact value is the impact of test
cases according to ability to detect faults when test cases
removed. The impact of test case is high when at least one fault
of many times has been revealed by test cases, medium when
the faults revealed for only one time and low when test case
has never revealed the faults. The first three steps in this
algorithm are the same as the ones in (TCCF) but the last step
is different. The last step in TCIF is to remove test cases with
minimum of impact value from the auxiliary.

The third algorithm is Path Coverage for Filtering (PCF)
method; path testing is a structure testing since you choose test
cases that determine the path to be taken within the program
structure. This algorithm uses a coverage value which
determines how many nodes that test case can cover. The
procedure of this method has the following steps: identify the
coverage set, calculate the coverage value which depends on
number of test cases in each group and the last step is to
remove all test cases with minimum coverage value.

The experiments randomly generate 2000 test data used in
telecommunication industry. There are list of measures used in
this experiment such as: number of test cases, reveals faults
ability, and total reduction time. The results show that in PCF
the number of test cases is minimized more than other
algorithms and it consumes the least reduction time, but it is
the worst in ability to reveal faults. While TCCF and TCIF are

the best in term of faults detections, they are the worst that they
require a lot of time in reduction process.

The main problem related to using these algorithms is that
for huge systems the path coverage is ineffective since it needs
a time and consumes a cost in identifying the coverage from a
source code.

A technique called coverall algorithm is proposed in [37].
The test cases are generated automatically and the tester has no
options to do that. This method uses algebraic conditions to
give a value to variable, this variable value resulting in fewer
numbers of test cases. Also this method can be used in loops
and arrays, the reduction rate of test cases will reach 99%. In
addition to creating test cases automatically, this method also
minimizes the number of test runs.

To generate test cases automatically there are four steps:
finding all constraints from start to finish node, identifying the
variables with minimum and maximum values, test path to find
constant values and creating a table of all possible values from
the above values. As a result of this algorithm the number of
generated test cases is smaller than many other algorithms such
as Ping-pong, it also keeps the test cases generation to a single
run. This technique is the best technique among many other
techniques such as GetSplit algorithm, Ping-pong technique
and Dynamic Domain Reduction (DDR) in term of reduction
of test cases and other factors discussed before, however if
there are more than two variables in program code the method
is not applicable. This algorithm can be improved if the
description of initial domain input is no longer required [37].

It is possible to reduce test suites without affecting the
coverage of the states. In [38] they propose an algorithm that
covers all reachable states in closed loop controller. The
approach focuses on path coverage since it generate test cases
from accessing the source code, a path is a sequence of
statements from the beginning of program execution to its end
while the sub path is a sequence from the beginning of a
specified function execution to its end. In this approach test
cases are generated depends on intuition that is, as long as it
covers all sub-paths it is not necessary to cover all paths.
There are two steps of this approach: Identify the test cases that
cover all sub paths in program based on implementation of
code and remove any test case that covers an already covered
sub paths. For experiments purposes this approach applied to
five controller programs for real world medical protocols, these
programs are: PennNeuroICU, PennCardiac, PennMICU,
PennHyper-Glycemia, and PennIntraoperative Experiments
show that test case reduced by tens of thousands with no
reduction in fault finding capability.

Reference [39] proposed a technique called TestFilter used
for reducing test cases, it uses statement coverage. TestFilter
choose non-redundant test case according to their weight, this
process reduce the test cases storage management and
execution cost.

F. Program Slicing

Program slicing is introduced by [40]. This technique is
used to check a program over a specific property and to build a
slice set, which is a set of statements effect to determine a
statement; in many cases it is the output statement of a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

269 | P a g e

www.ijacsa.thesai.org

program, based on input values. Slicing techniques can help to
show control-flow of a program for each test case and it is
important to specify which statements are invoked with that
test case. [55]

There are three types of slicing techniques: static slicing
[40][41][42], dynamic slicing [43][44], and relevant slicing
[45]

In [1] a survey is made for seven approaches that use
program slicing for reducing the cost of regression testing.
There are three groups of these approaches; the first group
includes those using dynamic slicing, while the second group
includes approaches that use program dependence graph, and
the third one includes those using data flow definition of
slicing.

To reduce the cost of regression testing, the study of [46]
uses two algorithms: the first one generates a program called
differences, this algorithm called like this since it captures the
difference between certified and modified program, where
certified is the previously tested program without changes and
modified is the program with modification. The second
algorithm uses existing test cases to test components new in
modified, also it uses the test cases for which modified and
certified program produced the same outputs. The idea is to
avoid the cost of using new test cases and to avoid rerunning
test cases that produce the same output. The second algorithm
uses a context slice which is one of new type of inter
procedural slice. Inter procedural slice contains a program that
includes components that capture all execution statements. The
slice can be defined as follows: if we have a program
component p and variable x then slice includes all statements in
a program that causes effect on variable x.

Using slicing techniques can decrease the number of
required test cases and consequently the cost and time of
testing will be decreased.

However, in [47] they propose a method that is intended to
reduce the cost and time of testing and they investigate the
effect of slicing techniques on the reduction rate of testing cost
and time. This method focuses on parts of the program code
that have significant impact on its output while those parts of
program that have no effect on the program output are
eliminated from testing process. Hence, as the size of the code
is reduced, testing time and cost will be decreased. Their
experiments show that a large number of program instructions,
branches and paths can be covered by a small number of test
cases in the sliced program.

G. Greedy Algorithm

One of well-known heuristics proposed for code-based
reduction is Greedy algorithm. This algorithm can also be
applied on test suites obtained from Model-based techniques. It
selects the test case which satisfies the maximum number of
unsatisfied requirements and an arbitrary choice is made if
there is a tie situation. This process is applied repeatedly to all
test cases in the test suite and produces a reduced test suite. It is
stopped after all test requirements are satisfied [48][49].

In [10] inspired greedy algorithm for test suite reduction is
proposed. This algorithm is based on formal concept analysis

of the relation between testing requirements and test cases.
This analysis is used for objects that have discrete properties.
They consider test cases as objects and requirements as their
attributes. Using concept analysis framework, maximum
grouping of objects and attributes are identified and called
contexts. Reduction rules are used for reducing objects and
attributes. This greedy algorithm differs than classical greedy
heuristic which uses object implications without considering
attribute implication. In their algorithm, context table is
constructed initially then the size of context table is reduced by
applying the objects reduction rules, attribute reduction and
owner reduction. The reduction of objects and attributes will
reduce the size of the context table by removing redundant
attributes and objects from further consideration. While the
owner reduction not only removes redundant attributes and
objects but also it selects a test case which will be added to the
reduced suite and the requirements covered by these test cases
are not considered in further iterations. In each iteration,
interference among test cases is also removed using greedy
heuristic. The size of the reduced test case suite generated by
their algorithm has the same or smaller size than that generated
by the traditional heuristic algorithms.

Also, Weighted greedy algorithm is proposed by [50] for
test suite reduction also called Weighted Set Covering
Technique. This work starts by determining test cases which
can satisfy all the requirements. If the test case does not satisfy
requirements then the algorithm repeatedly eliminate redundant
test cases then update the test suite and the remaining
requirements that are uncovered. The essential test cases that
are selected are added to the reduced set. In order to handle the
remaining uncovered requirements, prioritization and sorting
take place for test cases. Then, a selection for test cases
depends on decreasing order of priority is repeated until all the
requirements are satisfied. The optimized test suite had a
higher efficiency. Their experiment is made on the test suite of
Student Achievement Retrieval Navigation Model. The
algorithm reduces the size of the test suites and minimizes test
cost.

Real world java programs are used to implement four test
suite reduction techniques for JUnit test suites [51]. The study
of [51] cares about benefits and the cost of test suite reduction.
The results show that JUnit suite is reduced without affecting
the fault detection capability. The first technique involved is
the greedy technique where a test case that satisfies maximum
number of unsatisfied requirements is selected. The second
technique is Harrold et al.’s Heuristic [21]; the main idea of
this technique is to select test cases according to their essential.
The next technique is GRE Heuristic brings together
characteristics of essential test cases and 1 to 1 redundant test
cases into greedy strategy, the heuristic terminates when all
requirements are satisfied. The last algorithms is ILP
Technique, the first ILP is single objective while the second
ILP is multiple objective test suit reduction. The purpose of
first ILP model is to minimize then number of test suite
selected [51].

Coverage Based Test Suite Reduction (CBTSR) is a new
algorithm for Test Suite Reduction that is proposed by [9].
They identify an optimal representative test set for test cases
that are related to the given testing objective. Then they Apply

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

270 | P a g e

www.ijacsa.thesai.org

data flow testing to generate test cases as well as requirements
in order to examine the physical structure of the program and
to locate sub-paths. After that they use the proposed CBTSR
algorithm for test suite reduction. Also, they perform a set of
empirical studies on ten subject programs.

The reduction process in CBTSR algorithm starts with the
construction of test case requirement matrix which maps the
testing requirements with test cases. An association between a
test case and requirement is represented by one or zero
otherwise. Each row in the matrix denotes the requirement
coverage and each column denotes the test case which overlaps
with the requirement. Then the generation of the reduced test
suite is made through simple mathematical operations. The
results show that CBTRS algorithm selects near optimal test
cases which satisfy a maximum number of testing
requirements. Thus, it reduces the size of the test suite by
retaining test cases that offer maximum percentage of
Requirement Coverage.

Test suite reduction approaches that based on Greedy
algorithm provide significant reduction in test suite but need to
be optimized in large scale test suites [25].

H. Hybrid Algorithm

Some algorithms try to reduce the number of test cases
using hybrid techniques such as genetic algorithms and bee
colony [52]. Bee colony consists of three groups of bees:
employed, onlookers and scouts. Using bees as agents the
algorithm can explore the minimum set of test cases. This
paper suggests using ant colony with genetic algorithms.

Moreover, in [53] they formulate three hybrid
combinations, Rank, Merge, and Choice, and describe their
usefulness. They produce a uniform representation for hybrid
criteria and suggest that the hybrid criteria of others can be
described using Merge and Rank formulations, and that the
hybrid criteria outperform the constituent individual criteria.

While in [54] they propose multi-objective test suite
reduction. They introduce a hybrid multi-objective genetic
algorithm.

Their algorithm combine the efficient approximation of the
genetic algorithm with the greedy approach to produce high
quality Pareto fronts in order to achieve multiple objectives.
Objective functions are considered as a mathematical
description of test criterion. A cost cognizant version of the
greedy algorithm is implemented for two objective

optimization that are computational cost and statement
coverage.

Three optimization objectives are also considered for fault
detection history such as code coverage, fault coverage and
execution time. These objectives are combined using the
classical weighted-sum approach by taking the weighted sum
of fault coverage per unit time and code coverage per unit time.
The testing decisions that are taken by their technique have
been more efficient.

V. SUMMARY

Regression testing is made when changes are performed to
existing software in order to provide confidence that the new
changes that are introduced do not affect the behavior of the
existing, unchanged part of the software. As software evolves,
the test suite tends to grow which implies that it may be
expensive to execute the entire test suite [3].

Hundreds of techniques have been proposed in order to
reduce the number of test cases, but there are still many
researches in this field. In this research, a review for what have
been proposed by researchers to solve the problem of test case
reduction is presented and a classification for test case
reduction is introduced. The reviewed test case reduction
techniques are classified into: requirement based, coverage
based, slicing, genetic algorithm, greedy algorithm, hybrid
algorithm, clustering and fuzzy logic. More details about these
techniques and their classification are demonstrated in Table II.

However, Greedy algorithm based techniques provide
significant reduction in the number of test cases, but they need
to be optimized in large scale test suites. While genetic
algorithm based techniques need to be examined on the fault
detection capability and other criteria.

While hybrid techniques are introduced for significant
reduction in test case suites, they provide high complexity.
Clustering techniques select test cases based on coverage and
distribution techniques, they produce smaller representative
sets but less fault detection ability [25].

The main problem related to coverage based techniques is
that for large systems the path coverage is ineffective since it
consumes time and cost in identifying the coverage from a
source code [36]. The advantages and disadvantages of the
proposed classifications are given in Table I. Many techniques
can be incorporated with existing hybrid techniques and with
genetic algorithms more mutation strategies can be introduced.

TABLE I. CLASSIFICATTION OF TEST SUITE REDUCTION- ADVANTAGES AND DISADVANTAGES

Classification Advantages disadvantages

Program

slicing

decrease the number of

required test cases and

consequently the cost and
time of testing will be

decreased.

need to be examined
on the fault detection

capability and larger

generated data

Genetic

algorithm

Reduce the number of test

cases and also decreases

total running time.

need to be examined

on the fault detection
capability and other

criteria

Greedy

algorithm

provide significant reduction

in the number of test cases

involve random
selection of test case

in a tie situation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

271 | P a g e

www.ijacsa.thesai.org

need to be optimized

in large scale test

suites

Fuzzy logic

a safe technique and

reduce the regression testing
size and execution time

Need more

experiments and
studies

Requirement

base

Provide a good percentage
of redundancy reduction of

test cases.

Some of them are

time consuming and

need more memory
depending on how to

represent the

requirements

Coverage

Base

reduction rate of test cases is

very high and it reduce time

for large systems the

path coverage is

ineffective since it
consumes time and

cost in identifying the

coverage from a
source code

Hybrid

algorithm

provide significant reduction

in the number of test cases
and multi-objective

optimization

high complexity

Clustering

produce smaller

representative sets of test
cases

less fault detection

ability

TABLE II. TEST SUITE REDUCTION TECHNIQUES

Year List of Authors Classification Paper Title Technique Enhancement

1995 David Binkley Program Slicing
Semantics Guided
Regression Test Cost

Reduction,

Two algorithms are used: the first one

generates a program called differences,
this algorithm called like this since it

captures the difference between certified

and modified program, were certified is
the previously tested program without

changes and modified is the program with

modification.
The second algorithm uses a context slice

which is one of new type of inter

procedural slice.

decrease the
number of

required test cases

2005

Xue-

ying Ma, Bin-

kui Sheng, and
Cheng-qing Ye,

Genetic Algorithm
Test-Suite Reduction

Using Genetic Algorithm

Builds the initial population based on test
history, it calculates the fitness value using

coverage and cost information.

it has cost-
effectiveness and

generality

2005
Sriraman Tallam,

Neelam Gupta
Greedy Algorithm

A Concept Analysis

Inspired Greedy Algorithm

for Test Suite
minimization

Inspired greedy algorithm for test suite

reduction. Test cases are considered as

objects and requirements as their
attributes. Using concept analysis

framework, maximum grouping of objects

and attributes are identified and called
contexts. Reduction rules are used for

reducing the size of context table by

applying the objects reduction rules,
attribute reduction and owner reduction.

The size of the

reduced test case
suite has the same

or smaller size

than that generated
by the traditional

heuristic

algorithms

2006

Preeyavis

Pringsulaka and

Jirapun
Daengdej,

Coverage Based
Coverall Algorithm for

Test Case Reduction

Coverall algorithm uses algebraic

conditions to give a value to variable, this
variable value resulting in fewer numbers

of test cases. This method can be used in

loops and arrays.

The reduction rate
of test cases reach

99%.

2006

Saif-ur-Rehman

Khan, Aamer

Nadeem,

Coverage Based

TestFilter: A Statement-

Coverage Based Test Case

Reduction Technique

TestFilter uses statement coverage by

choosing non-redundant test cases

according to their weight.

This process
reduce the test

cases storage

management and
execution cost.

2006
B. Suri, I.
Mangal, and V.

Srivastava,

Hybrid Algorithm

Regression Test Suite

Reduction using an Hybrid

Technique Based on BCO
And Genetic Algorithm

Combine genetic algorithms and bee

colony. Bee colony consists of three
groups of bees: employed, onlookers and

scouts. Using bees as agents the algorithm

can explore the minimum set of test cases.

Explore the
minimum set of

test cases.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

272 | P a g e

www.ijacsa.thesai.org

2007

Gordon Fraser

and Franz
Wotawa ,

Requirement Based
Redundancy Based Test-

Suite Reduction

Subsets of test cases that fulfill the

requirements are chosen. Model-checker

take a finite state model and temporal logic

property as input and as a result counter

example will be returned if the property is
no not fulfilled.

The reduction is

significant but one

drawback is the
run time

complexity

2008

Zhenyu chen,

baowen xu,

xiaofang zhang,
changhai nie.

Requirement Based

A novel approach for test

suite reduction based on

Requirement relation
contraction.

a requirement relation graph is proposed to

minimize the requirement set by graph

contraction. An empirical study on
specification-based testing is performed.

The study

compares the
relative

effectiveness of

testing
requirement

optimization to

test case reduction

2010
Shin Yoo , Mark
Harman.

Hybrid Algorithm

Using hybrid algorithm for

Pareto efficient multi-
objective test suite

minimization

introduce a hybrid multiobjective genetic

algorithm. Their algorithm combine the

efficient approximation of the greedy
approach with the genetic algorithm to

produce high quality Pareto fronts in order

th achieve multiple objectives.

The testing

decisions that are

taken by their
technique have

been more

efficient.

2010

Siripong
Roongruangsuwa

n and Jirapun

Daengdej,

Coverage Based
Test Case Reduction

Methods by Using CBR,

use an artificial intelligent concept of case

based reasoning (CBR).
propose three methods using CBR: Test

Case Complexity for Filtering (TCCF),

Test Case Impact for Filtering (TCIF) and
Path Coverage for Filtering (PCF) Method

In PCF the number
of test cases is

minimized more

than other
algorithms and it

consumes the least

reduction time

2010

S. Nachiyappan,

A. Vimaladevi

and C.B.
SelvaLakshmi,

Genetic Algorithm
An Evolutionary
Algorithm for Regression

Test Suite Reduction

initial population is built based on test

history, but it calculates the fitness value

depending on coverage and run time of test
cases,

Reduce test case

suite size.

2011

Lingming Zhang,

Darko Marinov,
Lu Zhang,

Sarfraz Khurshid,

Greedy ALgorithm
An Empirical Study of
JUnit Test-Suite Reduction

The study cares about benefits and the cost
of test suite reduction by testing four

techniques on JUnit test suites; greedy

technique, Harrold Heuristic, GRE
Heuristic and ILP.

The results show

that JUnit suite

reduced with
affection the fault

detection

capability.

2012

Shengwei Xu,

Huaikou Miao,

Honghao Gao,

Greedy Algorithm

Test Suite Reduction

Using Weighted Set

Covering Techniques.

Weighted greedy algorithm is used for test

suite reduction also called Weighted Set

Covering Technique. It starts by
determining test cases which can satisfy all

the requirements. If the test case does not

satisfy requirements then the algorithm
repeatedly eliminate redundant test cases

then update the test suite and the

remaining requirements that are
uncovered. The experiment is made on a

test suite of Student Achievement

Retrieval Navigation Model.

The optimized test
suite had a higher

efficiency. The

algorithm reduces
the size of the test

suites and

minimizes test
cost.

2012
Liang You,

Yansheng Lu
Genetic Algorithm

A genetic algorithm for the
time-aware regression

testing reduction problem

removes redundant test cases in the

regression testing suite

minimizes running time of the remaining
test cases

Reduce the size of
test suite and

running time.

2012

Haider, A.A.;

Rafiq, S.;
Nadeem

Fuzzy logic
Test suite optimization

using fuzzy logic

an expert system that use a technique and

level of testing based on a defined

objective function, similar to human
judgment using fuzzy logic based

classification

Optimize test

suite.

2013

Christian

Murphy, Zoher

Zoomkawalla,
Koichiro Narita,

Coverage Based

Automatic Test Case

Generation and Test Suite

Reduction for Closed-Loop
Controller Software

An algorithm that covers all reachable
states in closed loop controller. It focuses

on path coverage since it generates test

cases from accessing the source code. Two
steps of this approach: Identify the test

cases that cover all sub paths in program

based on implementation of code and
remove any test case that covers already

covered sub paths. For experiments

purposes this approach applied to five
controller programs for real world medical

protocols.

The number of test
cases is reduced

by tens of

thousands with no
reduction in fault

finding capability.

2013 A. Ali Haider, A. Fuzzy logic Computational Intelligence Use CI based approach and analyses the fuzzy logic is a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

273 | P a g e

www.ijacsa.thesai.org

Nadeem, S.

Rafiq,

and Safe Reduction of Test

Suite

test suite for safe reduction which can be

estimated using control flow graphs. Test

cases of optimal solutions are traversed on

these graphs and it is found that only fuzzy

logic is safe while other approaches will be
inadequate for regression testing

safe approach and

it is adequate for

regression testing

2013

Sampath, S.;

Bryce, R.;
Memon, A.M.

Hybrid Technique

A Uniform Representation

of Hybrid Criteria for
Regression Testing

Three hybrid combinations are formulated,

Rank, Merge, and Choice, and describe
their usefulness. They produce a uniform

representation for hybrid criteria and

suggest that hybrid criteria of others can be
described using Merge and Rank

formulations, and that the hybrid criteria

outperform the constituent individual
criteria.

Use Rank, Merge,

and Choice

operations to
perform hybrid

criteria that

outperform the
constituent

individual criteria.

2013

Asghar

Mohammadian ,
Bahman Arasteh.

Program Slicing

Using Program Slicing

Technique to Reduce the
Cost of Software Testing.

A method that focuses on parts of the

program code that have significant impact
on its output while those parts of program

that have no effect on the program output

are eliminated from testing process.
It shows that a large number of program

instructions, branches and paths can be

covered by a small number of test cases in
the sliced program.

As code size

reduced, testing

time and cost are
decreased.

2014

Gupta,

A. ; MNNIT

Allahabad,
Allahabad, India

; Mishra,

N. ; Kushwaha,
D.S

Requirement Based
Rule Based Test Case
Reduction Technique

Using Decision Table

A framework consists of three steps:

functional requirements, analysis and
condition determination.

the proposed algorithm does not require

the tester to have knowledge of coding.

The redundancy

reduction of test
case is up to 30%

which save cost

and time;

2014
B.subashini ,

d.jeyamala..
Clustering

Reduction of test cases

using clustering Technique

Use data mining approach of clustering

technique to reduce the test suite.
By using clustering the program can be

checked with any one of the clustered test

cases rather than with the entire test case

that is produced by the independent paths.

the number of test

cases is reduced

and the efficiency
of software testing

is improved.

2015
Sudhir Kumar
Mohapatra,

Srinivas Prasad

Genetic Algorithm

Finding Representative

Test Case for Test Case
Reduction in Regression

Testing

Reduce test cases in a test suite by finding
a representative set of test cases that fulfill

the testing criteria.

Reduce the
number of test

cases.

2015
R. Wang, B. Qu,
Y. Lu,

Clustering

Empirical study of the

effects of different profiles
on regression test case

reduction

divide the test cases into clusters according

to the similarity in profiling.

provide enhancements by making three
types of profiles: file execution sequence,

function call sequence and function call

tree.

The relation

between function
calls and

sequential

information will
improve detecting

the faults.

2015

Preethi Harris
and

Nedunchezhian

Raju.

Greedy Algorithm

A Greedy Approach for

Coverage-Based Test Suite

Reduction.

The reduction process starts with the
construction of test case requirement

matrix which maps the test cases with the

testing requirements. An association
between a test case and requirement is

represented by one or zero otherwise. Then

the generation of the reduced test suite is
made through simple mathematical

operations.

It selects near

optimal test cases
that satisfy the

maximum

percentage of

Requirement

Coverage. and it

reduce the test
suite size

REFERENCES

[1] D. Binkley, The application of program slicing to regression testing,
Information and Software Technology, 40(11-12), pp. 583-594.

[2] X. Ma, B. Sheng, and C. Ye, Test-Suite reduction using genetic
algorithm,Vol. 3756 of the series Lecture Notes in Computer Science,
2005, pp. 253-262, springer.

[3] S. Yoo, and M. Harman, Regression testing minimization, selection and
prioritization: a survey, Software Testing, Verification and Reliability.
22(2012), pp.67–120, DOI: 10.1002/stvr.430

[4] I. Mangal, D. Bajaj and P. Gupta, Regression Test Suite Minimization
using Set Theory, International Journal of Advanced Research in
Computer Science and Software Engineering, Vol. 4, No. 5, 2014, pp.
502-506

[5] N. Kosindrdecha, S. Roongruangsuwan and J. Daengdej, Reducing test
cases created by path oriented test case generation, American Institute of
Aeronautics and Astronautics, Inc. AIAA Infotech@Aerospace 2007
Conference and Exhibit, California, USA.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mishra,%20N..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mishra,%20N..QT.&newsearch=true

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

274 | P a g e

www.ijacsa.thesai.org

[6] Y. Chen, R. Probert, H. Ural, Regression test suite reduction using
extended dependence analysis, Proceedings of the 4th international
workshop on Software quality assurance, in conjunction with the 6th
ESEC/FSE, ACM Press, 2007, pp.62-69.

[7] B. Guo, M. Subramaniam and H. Guo, An approach to regression test
selection of adaptive EFSM Tests, Fifth IEEE International Conference
on Theoretical Aspects of Software Engineering.2011. pp. 217 – 220.

[8] Md. Arafeen and H. Do., Adaptive regression testing strategy: An
empirical study, 22nd IEEE International Symposium on Software
Reliability Engineering, 2011.

[9] P. Harris and N. Raju, A greedy approach for coverage-based Test Suite
reduction, The International Arab Journal of Information Technology,
Vol. 12, No.1, 2015 pp. 17-23.

[10] S. Tallam, N. Gupta, A concept analysis inspired greedy algorithm for
test suite minimization, 2005 ACM 1595932399/05/0009

[11] V. Chaurasia, Y. Chauhan and T. K, A survey on test case reduction
techniques, International Journal of Science and Research (IJSR), 2012

[12] J. Offutt, Z. Jin and J. Pan, ―The dynamic domain reduction procedure
for test data generation,‖ Software Practice and Experience, Vol. 29, No.
2, 1999, pp. 167-193.

[13] Q. Wang, S. Jiang and Y. Zhang, ―An approach to generate basis path
for programs with exception-handling constructs‖, In IACSIT Press,
2012, International Conference on Computer Science and Information
Technology (ICCSIT), Singapore.

[14] Dr. R.P. Mahapatra, M. Mohan and A. Kulothungan, ―Effective tool for
test case Execution time reduction,‖ In IACSIT, International
Symposium on Computing, Communication and Control (CSIT),
Singapore, 2011.

[15] C. Sharma, S. Sabharwal, R. Sibal, A survey on software testing
techniques using genetic algorithm, IJCSI International Journal of
Computer Science Issues, 2013, Vol. 10, No. 1, No 1.

[16] L. You, Y. Lu, "A genetic algorithm for the time-aware regression
testing reduction problem", International conference on natural
computation, IEEE, 2012, pp. 596 – 599.

[17] Jyoti and K. Solanki, A comparative study of five regression testing
techniques : A Survey , INTERNATIONAL JOURNAL OF
SCIENTIFIC & TECHNOLOGY RESEARCH, Vol. 3, No. 8, 2014, pp.
76-80.

[18] R. Singh and M. Santosh, Test case minimization techniques: A review,
International Journal of Engineering Research & Technology (IJERT),
Vol. 2, No. 12, 2013. Pp.1048- 1056

[19] I. Hooda and R. Chhillar, A review: study of test case generation
techniques, International Journal of Computer Applications. Vol. 107,
No.16, 2014, pp. 33-37

[20] S. Biswas and R. Mall, Regression test selection techniques: A survey,
Informatica 35. 2011, pp. 289–321

[21] M. Harrold, R. Gupt and M. Soffa, ―A methodology for controlling the
size of a test suite,‖ ACM Transactions in Software Engineering and
Methodology, Vol. 2, No. 3, 1993, pp. 270-285.

[22] Isha Mangal Deepali Bajaj Priyanka Gupta, Regression Test Suite
Minimization using Set Theory , International Journal of Advanced
Research in Computer Science and Software Engineering 4(5), May -
2014, pp. 502-506

[23] S. Nachiyappan, A. Vimaladevi and C.B. SelvaLakshmi, &ldquo, An
evolutionary algorithm for regression test suite reduction, Proc. Int',l
Conf. Comm. and Computational Intelligence, 2010, pp. 503-508.

[24] S. Mohapatra, S. Prasad, "Finding representative test case for test case
reduction in regression testing", IJISA, vol.7, no.11, , 2015, pp.60-65.
DOI: 10.5815/ijisa.2015.11.08

[25] R. Singh and M. Santosh, Test case minimization techniques: A review,
International Journal of Engineering Research & Technology (IJERT).
Vol. 2, No. 12. 1048 -1056.

[26] Z. chen, b. xu, x. zhang, c. nie, A novel approach for test suite reduction
based on Requirement relation contraction, ACM. 390-394.

[27] G. Fraser and F. Wotawa, Redundancy based test-suite reduction, In
Proceedings of the 10th International Conference on Fundamental
Approaches to Software Engineering, Springer. Vol. 4422, 2007, pp.
291-305.

[28] R. SALWAN , R. SEHGAL, Test cases reduction technique considering
the time and cost as evaluation standards, International Journal of
Computer Science and its Applications, 2013, pp.347-351.

[29] A. Gupta, N. Mishraa and D. Kushwaha, Rule based test case reduction
technique using decision table, 2014, pp. 1398 – 1405.

[30] Z. Anwar and A. Ahsan, Multi-objective regression test suite
optimization with Fuzzy logic, IEEE. INMIC 2013.

[31] Haider, A.A.; Rafiq, S.; Nadeem, A. "Test suite optimization using
fuzzy -logic", Emerging Technologies (ICET), International Conference
on, 2012, pp. 1 – 6

[32] Haider, A.A.; Nadeem, A.; Rafiq, S. "Computational intelligence and
safe reduction of test suite", Emerging Technologies (ICET), IEEE 9th
International Conference on, 2013, pp. 1 – 6

[33] Haider, A.A.; Nadeem, A.; Rafiq, S. "On the Fly Test Suite
Optimization with FuzzyOptimizer", Frontiers of Information
Technology (FIT), 11th International Conference on, 2013, pp.101 – 106

[34] B.subashini, d.jeyamala, Reduction of test cases using clustering
Technique. International Journal of Innovative Research in Science,
Engineering and Technology Vol 3, Special Issue 3, 2014, International
Conference on Innovations in Engineering and Technology (ICIET’14).
1992-1995

[35] R. Wang, B. Qu, Y. Lu, Empirical study of the effects of different
profiles on regression test case reduction, IET Softw., 2015, Vol. 9, No.
2, pp. 29–38

[36] S. Roongruangsuwan and J. Daengdej, Test case reduction methods by
using CBR, Assumption University, ceur-ws.org,Vol-646,2010.

[37] P. Pringsulaka and J. Daengdej.2006., Coverall algorithm for test case
reduction. In Aerospace Conference, 2006 IEEE.IEEE.

[38] C. Murphy, Z. Zoomkawalla and K. Narita, Automatic test case
generation and test suite reduction for closed-loop controller software,
Technical Report, 2013.

[39] S. Khan, A. Nadeem, TestFilter, a Statement-coverage based test case
reduction technique. Proc. 10th IEEE Int, Multitopic Conf. 2006, pp.
275-280, doi:10. 1109/INMIC.

[40] M. Weiser, Program slicing. In Proceedings of the 5th international
conference on Software engineering, ICSE ’81, 1981, pp. 439–449,
Piscataway, NJ, USA, IEEE Pres0s.

[41] M. Weiser, Program slicing.1984. IEEE Trans, Softw. Eng. Vol. 10, No.
4, pp. 352–357.

[42] M. David Weiser, Program slices: formal, psychological, and practical
investigations of an automatic program abstraction method. PhD thesis,
Ann Arbor, MI, USA, 1979. AAI8007856.

[43] Bogdan Korel and Janusz Laski. Dynamic program slicing. In
Information Processing Letters, 1988.

[44] Bogdan Korel and Janusz Laski. Dynamic slicing of computer programs.
J. Syst. Softw., 13(3):187–195, December 1990.

[45] T. Gyim´othy, A. Besz´edes, and I. Forg´acs, An efficient relevant
slicing ´ method for debugging. SIGSOFT Softw. Eng. Notes, Vol. 24,
No. 6, 1999, pp. 303–321.

[46] D. Binkley, Semantics Guided Regression Test Cost Reduction. IEEE
International Conference on Software Maintenance, Vol. 23, No. 8,
1997, pp. 498516.

[47] A. Mohammadian , B. Arasteh, Using program slicing technique to
reduce the cost of software testing. Journal of Artificial Intelligence in
Electrical Engineering, Vol. 2, No.7, 2013, pp.24-33.

[48] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001).
Introduction to algorithms. MIT Press, Cambridge, MA

[49] Ana Emília V. B. Coutinho, Emanuela G. Cartaxo1, Patrícia D. L.
Machado. "Test suite reduction based on similarity of test cases." 7st
Brazilian workshop on systematic and automated software testing—
CBSoft 2013.

[50] S. Xu, H. Miao and H.Gao, Test suite reduction using weighted set
covering techniques, 13th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing. IEEE, 2012.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

275 | P a g e

www.ijacsa.thesai.org

[51] L. Zhang, D. Marinov, L. Zhang and S. Khurshid, An empirical study of
JUnit test-ruite Reduction, 22nd IEEE International Symposium on
Software Reliability Engineering, 2011, pp.170-179.

[52] B. Suri, I. Mangal, and V. Srivastava, Regression test suite reduction
using an hybrid technique based on BCO and genetic algorithm, Special
Issue of International Journal of Computer Science & Informatics
(IJCSI), ISSN (PRINT) : 2006, 2231–5292, Vol.- II, No-1, 2

[53] Sampath, S.; Bryce, R.; Memon, A.M, "A Uniform representation of
hybrid criteria for regression testing", Software Engineering, IEEE
Transactions on. Vol. 39, No. 10. , 2013, pp. 1326 – 1344.

[54] S. Yoo, M. Harman, ―Using hybrid algorithm for Pareto efficient multi-
objective test suite minimization‖, The Journal of Systems and Software
.83, 2010, pp. 689–70.

[55] Nguyen Huu Phat. 2013. Slicing-based test case generation 2013,
University of Bordeaux. Internship Report

