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Abstract—This paper deals with the asymptotic stability of 

neutral systems with mixed time-varying delays and nonlinear 

perturbations. Based on the Lyapunov–Krasovskii functional 

including the triple integral terms and free weighting matrices 

approach, a novel delay-decomposition stability criterion is 

obtained. The main idea of the proposed method is to divide each 

delay interval into two equal segments. Then, the Lyapunov–

Krasovskii functional is used to split the bounds of integral terms 

of each subinterval. In order to reduce the stability criterion 

conservatism, delay-dependent sufficient conditions are 

performed in terms of Linear Matrix Inequalities (LMIs) 

technique. Finally, numerical simulations are given to show the 

effectiveness of the proposed stability approach. 
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I. INTRODUCTION 

Neutral time-delay appears in many fields of sciences and 
engineering, including neural networks, industrial, economy, 
chemical processes and population models. In fact, the 
presence of time-delay causes the instability, the oscillation, 
and performances’ degradation of dynamical systems. Neutral 
systems are a part of a specific class of infinite dimensions. 
Their stability study can be a complex issue. Recently, the 
stability problem of neutral systems has been the subject of 
considerable research [1-23]. Thus, several approaches of 
delay-dependent stability criteria have been developed for this 
problem. 

The stability criteria of neutral systems with mixed time-
varying delays can be classified into two concepts. Firstly, the 
delay-dependent stability which is based on the size of time-
delay and it gives the upper bound of delay in the formulation. 
Secondly, the delay-independent stability class doesn’t include 
any information about the size of the time-delay. Indeed, the 
delay-dependent is often less conservative than the delay-
independent. 

In order to reduce the conservatism, many researchers 
studied the nonlinear neutral systems stability with mixed 

time-varying delays such as in [1] where authors consider the 
delay-dependent robust stability of uncertain neutral systems 
with mixed time-varying delays. In [2], I. Amri et al. have 
been studied a delay-dependent exponential stability condition 
for nonlinear neutral systems with mixed delays. They employ 
a delay-decomposition approach and the known free 
weighting matrices method.In [3], novel delay-decomposition 
condition of neutral systems with time-varying delays is 
proposed and new stability results were derived. In [4], the 
authors have been presented a new asymptotic stability results 
for nonlinear neutral system with mixed delays by using the 
delay-dividing approach. In [5], the exponential stability of 
neutral delay differential systems with nonlinear uncertainties 
is used. The problem of the delay-dependent robust stability 
criteria for neutral systems with mixed time-varying delays 
and nonlinear perturbations has been studied in [6]. In [7], 
new less conservative robust stability criteria of neutral 
systems with mixed time-varying delays and nonlinear 
perturbations are derived by using the delay method. 

In this paper, the problem of asymptotical delay-
decomposition stability for nonlinear neutral systems with 
mixed time-varying delays is investigated. By using a new 
augmented Lyapunov–Krasovskii functional including the 
triple integral terms for interval time-varying delays as well as 
the free-weighting matrices technique and Jensen integral 
inequality, new sufficient delay-dependent stability conditions 
have been proposed and expressed in terms of LMIs. These 
stability conditions can be easily solved by various convex 
optimization algorithms. 

The remainder of this paper is organized as follows. In 
Section 2, the stability problem of nonlinear neutral systems is 
described. Some related preliminaries are also given. The 
main result of this paper is presented in Section 3. Numerical 
examples are carried out in Section 4 in order to illustrate the 
proposed results. Section 5 concludes this paper. 

II. PROBLEM DESCRIPTION AND PRELIMINARIES 

This paper considers the nonlinear neutral systems with 
mixed time-varying delays of Equation (1): 
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where   nx t  is the state vector
1 2, , n nA A A  are 

constant matrices with appropriate dimensions. ( ), ( )t h t  are 

neutral and discrete time-varying delays satisfying the 
following equations: 

0 ( ) , ( ) 1,m Mh h t h h t                          (2)          

0 ( ) , ( ) 1,m Mt t                             (3)  

The initial conditions functions
 t

,
 t

 are 

continuously differentiable on  [ max , ,0]M Mh
. The functions

  0 ,f t x t
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   1 ,f t x t h t and    2 ,f t x t t are unknown nonlinear 

uncertainties satisfying 0( ,0) 0,f t  1( ,0) 0,f t  2( ,0) 0f t 
and 
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where 0 10, 0  
, 2 0 

are given constants. 

Constraint (4) can be rewritten as follows: 
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For simplicity, note that: 

0 0 1 1 2 2: ( , ( ))), : ( , ( ( ))), : ( , ( ( )))f f t x t f f t x t h t f f t x t t      

Moreover, for dividing the each interval time-varying 

delay into two equal subintervals  1,m Mh h  1 ,M Mor h h  and 

 2,m M    2 , ,M Mor    two different cases for time-varying 

delays have been presented. 

Case I: ( ), ( )h t t are differentiable functions, satisfying for 

all 0t   : 

          ( )m Mh h t h  and ( ) 1,h t    

( )m Mt    and ( ) 1.t                                    (6) 

Case II: ( )h t is not differentiable or the upper bound of the 

derivative of ( )h t and ( )t is a differentiable function, and 

( ), ( )h t t satisfying: 
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                                  (7) 

where 
, , , ,m M m Mh h d 

and  are positive scalars. 

This paper is devoted to investigate the delay-dependent 
stability analysis of time-varying delays system (1) satisfying 
(2) and (3) equations and under nonlinear perturbations 
inequalities (4) and (5). It aims to formulate a less 
conservative stability technique to estimate the upper bound 
for the delay interval. Before deriving the proposed stability 
criteria, the following lemmas are needed. 

Lemma 1. [8] 

For any constant matrix ,n n TR R R     a scalar 

function : ( )h h t   and a vector valued function 

 : ,0 nx h  such that the following integrations are well 

defined, then: 
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where
1 ( ) ( ) ( )T T Tt x t x t h    

and
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Lemma 2. [9]: The following matrix inequality 
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Lemma 3. [10]: For any scalar ( ) 0t   and any constant 

matrix , 0,n n TR R R    the following inequality holds: 
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and F is free-weighting matrix with appropriate 

dimensions. 

III. MAIN RESULTS 

In order to obtain some less conservative conditions, new 
delay-decomposition method for nonlinear neutral system (1) 

is developed. The first delay-interval  ,m Mh h is divided into 

two segments  1,m Mh h and  1 ,M Mh h . The second delay-

interval  ,m M  is decomposed into two subintervals 

 2,m M    and
 
 2 , .M M  

 
The following theorem presents 
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new stability criteria for interval time-varying delay system 
(1). 

Theorem1.  In Case I,  if 
1( )m Mh h t h   1 1    

and 
2( )m Mt    

  2 1   , for given positive 

scalars , , , , , ,m M m Mh h     0 , 1  and 
2 , the system (1) 

with uncertainty (5) and mixed time-varying delays 
satisfying(2)   and (3) is asymptotically stable if  there  exist  
symmetric  positive  definite n n matrices

   , 1,..,7 , 1,..,7 ,i jP Q i R j 
 

for any free matrix variables

, , , , , ( 1,2)a a a a a aT Y W N X F a  and scalars

0 ( 0, 1, 2)i i   such that the following symmetric 

LMI holds: 
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Proof. Choose a new augmented Lyapunov–Krasovskii 
functional as: 
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Then, the time derivative of ( )V t along the trajectory of 

system (1) is given by: 
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The upper bound of the integral terms in inequality 3( )V t is 

estimated as: 

 

1 1 2

2

1 2 3

2 4

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

m

M M M

m

M

t ht t

T T T

t h t h t

t

T

M m

t

x s R x s ds x s R x s ds x s R x s ds

x s R x s ds

   



 

  



  





  

 

  



 

 

1 1

2

2

( ) ( )

1 1 2

( )

( )

2 3 3

( ) ( )

2 4

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

M M

m

M

m

M

t h t t h tt

T T T

t h t h t t h

t h t t t

T T T

t h t t t t

t

T

M m

t

x s R x s ds x s R x s ds x s R x s ds

x s R x s ds x s R x s ds x s R x s ds

x s R x s ds

 



  



 

  

 

  

 

  





   

  

 

  

  



 (11) 

Using Jensen’s inequality, such that: 
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By using Lemma 3, an upper bound of integral term of 

( )V t can be obtained as: 
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For any matrices 
1 2,F F  with appropriate dimensions, the 

following equation, from the system (1), verifies: 

 1 2 1 2 0 1 22 ( ) ( ) ( ) ( ( )) ( ( )) ( ) 0T Tx t F x t F Ax t A x t h t A x t t x t f f f                                                                                                     

(21) 
Therefore, combining Equations (10) and (21) yields: 
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and   is given in Equation (8). 

By using the Schur Complement, it is clear to see that the 

results ( ) 0V t  holds if 0 , 1( )m Mh h t h   and
 

2( )m Mt     .Thus, the system (1) is asymptotically stable 

according to the Lyapunov-Krasovskii theory. 

Remark 1: Inspired by the previous works [2-10], some 
Lyapunov-Krasovskii functional including triple integral 
terms involving lower and upper bounds of each interval time 
varying delays have been improved an important role in 
reduction of conservatism to estimate the maximum allowable 
delay bound. 

Theorem 2. In Case I, if 1 ( )M Mh h t h  
 1 1    

and 2 ( )M Mt    
 2 1   , for given positive 

scalars 
,mh ,Mh 0 1, , , , ,m M     

and 2 , the system (1) with 
uncertainty (5) and mixed time-varying delays satisfying 
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2 2

5 1 1 1 2 2 3 2 4

2 2 2 2 2

1 2

5 6 7

(1 ) (1 )

(1 ) (1 )

2 2 2

M M M M

M M M

Z Q h R h R R R

h
R R R

     

   

      

 
  

 

 
Proof. Choose a new augmented Lyapunov–Krasovskii 

functional as: 

1 2 3 4( ) ( ) ( ) ( ) ( )V t V t V t V t V t   
                                   (24) 

where 

1( ) ( ) ( ),TV t x t P x t  

1

2

2 1 2 3

( )

4 5 6

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

M M

M

t t t

T T T

t h t h t t h

t t t

T T T

t t t t t

V t x s Q x s ds x s Q x s ds x s Q x s ds

x s Q x s ds x s Q x s ds x s Q x s ds
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M

t

T

t

x s Q x s ds


 

1
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2

2

0

3 1 2

0
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M
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M
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V t x s R x s ds d x s R x s ds d
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1
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7
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M

M
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t h t

t

T

t
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x s R x s ds d d



    

 

  

   

 



   



 

 



     

  

with

1 2

1 2

0 1 2

( ) ( ) ( ( )) ( ) ( ) ( ( )) ( )

( )
( ) ( ( )) ( ) ( ) ( )

M M

M M M

T T T T T T T

M M M M

T T TT t h tt

T T T T T
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x t x t h x t h t x t h x t x t t x t

t
x t x t t x s ds x s ds x s ds f f f

  

 

    




 

  

      
 
       

       
            
  

 
Then, the time derivative of ( )V t along the trajectory of 

system (1) is given by: 

1 2 3 4( ) ( ) ( ) ( ) ( )V t V t V t V t V t   
                                   (25) 

where 

1( ) ( ) ( ) ( ) ( ),T TV t x t P x t x t P x t 
  

 2 1 2 3 4 6 7

1 1 1

2 3

4 5 5

2 6
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T
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T T
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T T

T

M
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Q x t h t x t h Q x t h t x t t

Q x t t t x t t Q x t t x t Q x t

x t Q x t

 

 

   

  

     

     

      

     

   2 7) ( ) ( )T
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1
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2
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2
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The upper bound of the integral terms in inequality 3( )V t  is 

estimated as: 

 

1

2

1 2 3

( ) ( )

2 4
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M
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                                                                                         (26) 
Using Jensen’s inequality, such that 
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 (27)                                                                                          
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(30) 
By using Lemma 3, an upper bound of integral term of 

( )V t can be obtained as: 
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From Equation (5), the following inequalities hold: 

2
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Further, for any scalars 0i  (𝑖 = 0, 1, 2), it follows from 

Equation (35), that 
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Therefore, combining Equations (25) and (36) yields: 

    ( ) ( ) ( ),TV t t t                                        (37) 
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and is given in Equation (23). By using the Schur 
Complement, it is clear to see that the results ( ) 0V t  holds if 

0  , 
1 ( ) ,M Mh h t h    and

2 ( )M Mt     .  

Thus, the system (1) is asymptotically stable according to 
the Lyapunov-Krasovskii method. 

Theorem 3.  In Case II, for given positive scalars , ,m Mh h  

,m 0 1, , , ,M     and
2 , the system (1) with 

uncertainty (5) and mixed time-varying delays satisfying 
Equations (2) and (3) is asymptotically stable if there exist 
symmetric positive definite n n matrices 

   , 1,3,..7 , 1,..,7 ,i jP Q i R j  for any free matrix variables 

, , , , , ( 1,2)a a a a a aT Y W N X F a  and scalars 0 ( 0, 1, 2)i i    such 

that the following symmetric LMI holds: 

1 1 1 2 2

1 2
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In Case II, a Lyapunov-Krasovskii functional can be 

chosen as (8) with 
2 0.Q  Similar to the above analysis, one 

can get that the results ( ) 0V t  holds if 0  , 

1( ) ,m Mh h t h   and 2( )m Mt     .Thus, the proof is 

completed. 

Remark 2: By introducing a new class of augmented 
Lyapunov-Krasovskii functional approach, new delay-
decomposition stability criteria for nonlinear neutral systems 
with mixed time-varying delays are obtained in Theorems 1-3. 
The proposed augmented Lyapunov functional using the novel 
triple integral inequality is more robust than existing results in 
literature. It gives the upper bounds of time-varying delays

( ), ( )h t t for the asymptotic stability of system (1) which can 

be provided larger stability domain. In addition, by applying 
free-weighting matrices and Jensen integral inequality, our 
decomposition approach, developed in Theorems 1-3, yields a 
much less conservative delay bounds and extends the feasible 
region of stability method for system (1). 

Remark 3: In order to derive a fewer restrictive stability 
criteria for system (1), many free-weighting matrix variables 
are employed in Theorems 1-3. In fact, this technique of 
decision variables reduces the computational complexity of 
the obtained stability approach which is less than the previous 
methods. 

Remark 4: In this work and from the practical point of 
view, several problems related to this studied field are still 
open such as singular descriptor systems with multiple mixed 

time-varying delays, chaotic systems with varying delays and 
neural networks systems. 

IV. ILLUSTRATIVE EXAMPLES 

In this section, two examples are presented in order to 
show the less conservatism of the elaborated stability 
condition and to demonstrate the effectiveness of the proposed 
approach. 

Example 1. 

Consider the following nonlinear neutral system with 
mixed time-varying delays, as given in [10]: 

1 2

1.2 0.1 0.6 0.7 0
, , ,

0.1 1 1 0.8 0

c
A A A

c

      
       

        
     (39) 

where 0 c  0 10, 0,  
and 2 0. 

 

Case I. For 0.1c  , 1 0.1,  1,M  0.5,  0, 
 

2 0.2 
and different values of 2 ,

the maximal allowable 

delay of Mh
estimated by Theorems 1 and 2 are illustrated in 

Table 1. This table shows the numerical results for different 

values of 2 , 0 0 
 and 0 0.1 

. As 2 increases, Mh
 

decreases.  In addition, the proposed stability technique gives 
a much less conservative result than other recent ones. 

Case II.  For 0 1 20.1, 0.2, 0.1,    
2 0.2  , 1   

and different values of c, the maximum admissible upper 

bound on the allowable time delay of M Mh  obtained from 

Theorem 1 are listed in Table 2. As c increases, Mh decreases. 

It is clear that the proposed stability method in this paper 
provides larger upper bounds of delay system than the 
previous results for different values of c. 

Case III. For c = 0.1, 2 0.2 
, 1 0.1,  2 0,  0 0 

 

and 0 0.1 
, and different values of 

, 
the maximum 

upper bounds on the allowable delay of M Mh 
obtained from 

Theorems 1 and 2 are illustrated in Table 3. As


increases, 

Mh
decreases. The presented stability criterion is less 

conservative than existing results. 

TABLE I.  MAXIMUM ALLOWABLE DELAY BOUND OF Mh
WITH

0.5, 0  
AND DIFFERENT VALUES OF 2  

0 0   

 
2                                      0             0.1           0.2          0.3 

Rakkiyappan et al.[18]   1.4886    1.2437    0.9921     0.7367 

Lakshmanan  et al.[13]   1.6325    1.3386    1.0816     0.8563 

Cheng et al. [23]             1.6865    1.3721    1.0923     0.8613 
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Qiu and Zhang [21]        2.2937    1.8505    1.4565     1.1105 

Theorem1(
1 0.25  )      6.0782    5.1772    3.4872      1.9325 

Theorem2 (
1 0.1  )        4.7856    4.0752    2.7424     1.5156 

0 0.1   

 
2                                       0            0.1         0.2           0.3 

Rakkiyappan et al.[18]   1.3244    1.0901    0.8475     0.6300 

Lakshmanan  et al.[13]   1.4440    1.1950    0.9734     0.7760 

Cheng et al. [23]             1.4721    1.2466    0.9996     0.7804 

Qiu and Zhang [21]        2.0417    1.6541    1.3062     0.9982 

Theorem1(
1 0.25  )      5.6888    4.9444     3.4125     1.9128  

Theorem2 (
1 0.1  )       4.4785    3.8915     2.6834     1.5000 

TABLE II.  MAXIMUM UPPER BOUND OF 
M Mh  WITH DIFFERENT 

VALUES OF C 

 c                                        0.1           0.2             0.3         

Zhang and Yu [17]         0.4911      0.4125      0.3382  

Qiu et al. [15]                 1.8567      1.6242      1.3917 

Qiu and Zhang [21]        2.1916      1.6632      1.4743 

Theorem1(
1 0.1  )         6.4209      5.5817      4.7240   

c                                         0.4           0.5             0.6 

Zhang and Yu [17]         0.2671      0.1975      0.1294  

Qiu et al. [15]                 1.1592      0.9270      0.6945 

Qiu and Zhang [21]        1.2396      0.9288      0.7446 

Theorem1(
1 0.1  )         3.8303      2.8351      1.5622 

TABLE III.  MAXIMUM UPPER BOUND OF M Mh  WITH DIFFERENT 

VALUES OF    

                                     
0 0      

1 0.1            
0 0.1      

1 0.1     

                                 0             0.5               0              0.5  

Chen et al. [23]            2.7423     1.1425        1.8753      1.0097 
Liu [22]                        2.7429     1.4462        1.8895      1.1485   

Qiu and Zhang [21]      3.8066     1.6402        2.6039      1.4534 

Theorem1(
1 0.6  )       8.1497     2.3438        5.6008      2.1964 

Theorem2 (
1 0.7  )      5.8444     1.6738        4.0165      1.5683 

Example 2. 

Consider the mixed time-varying delay systems as 
depicted in Equation (40): 

1 2

2 0.5 1 0.4 0.2 1
, , ,

0 1 0.4 1 0 0.2
A A A

     
       

      
       (40) 

with 

2

0 0 0( , ( )) ( , ( )) ( ) ( )T Tf t x t f t x t x t x t  and 

2

1 1 1( , ( ( ))) ( , ( ( ))) ( ( )) ( ( )).T Tf t x t h t f t x t h t x t h t x t h t      

While using the parameters  1 0.1 
, 2 0.2 

,
0  

, 

0 0.2  , 1 0.1  and
2 0  , the upper bound of Time Delay

M Mh   obtained from Theorem 3 is feasible for any delay

3.8561Mh   . 

It is remarkable that this proposed criterion is much less 
conservative than the results shown in [14, 16]. 

V. CONCLUSION 

This paper studied the problem of asymptotic stability for 
nonlinear neutral mixed time-varying delays systems. By 
using the Lyapunov–Krasovskii functional with triple integral 
terms and free weighting matrices approach, new delay-
dependent stability criteria are derived by developing a delay 
decomposition technique. The elaborated approach is then 
expressed in terms of LMIs. Finally, numerical simulations 
have been investigated in order to show the robustness and the 
flexibility of the proposed stability method. 
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