
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

401 | P a g e

www.ijacsa.thesai.org

Analyzing Virtual Machine Live Migration in

Application Data Context

Mutiullah Shaikh

Faculty of Electrical, Electronic and Computer Engineering,

Mehran University of Engineering and Technology,

Jamshoro, Pakistan

Asadullah Shaikh

College of Computer Science and Information Systems,

Najran University,

Najran, Saudi Arabia

Muhammad Ali Memon

School of Information Technology,

Shaheed Benazir Bhutto University,

Shaheed Benazirabad, Pakistan

Farah Deeba

Faculty of Engineering Science and Technology,

Hamdarad Institute of Engineering and Technology,

Karachi, Pakistan

Abstract—Virtualization plays a very vital role in the big

cloud federation. Live and Real-time virtual machine migration

is always a challenging task in virtualized environment, different

approaches, techniques and models have already been presented

and implemented by many re- searchers. The aim of this work is

to investigate various parameters of Real-time and live data

migration of virtual machines in stateful and data context at the

application level. The migration of one virtual machine to

another requires some time depending on the network

bandwidth, guest availability, hardware limitation overcomes,

resource allocation, server reallocation, hypervisor compatibility

and many more. To enhance and ensure the performance and

optimization of the time this work presents the some analysis

in the form of different time stacks in multiple piece of data

stored in the virtual machines. To optimize the migration time

virtual machine checkpoints are used in order to achieve the

better results by using the xen hypervisor memory technique

which dynamically allows the migration of the configured

memory while the allocated memory could be discarded for a

while. By this the bad memory remains un-migrated only the

good memory consisting the used data would be migrated by

means of Real-time.

Keywords—component; Cloud Computing; Virtualization;

Virtual Machine Monitor VMM; Xen; VMResume; Xen Save and

Restore; DC Data Centers Copy on Write CoW

I. INTRODUCTION

As the demand of cloud computing is increasing, storage
and communication resources within data centers (DC) are
developing new ways for the distributed resources of
computing and sharing infrastructure by using virtualization.
Virtualization actually was deployed for the cost saving. But
very soon organizations realized that it is also effective in
terms of speed, flexibility and robustness. In general,”
virtualization” refers to the process of turning a hardware-
based entity into a software-embedded component and this is
encapsulated in an entity called Virtual Machine (VM). By
using Virtual Machines technique the resources are utilized in
much more effective manner [2]. Virtualization has attracted
considerable interest in recent years, particularly from the data
centers and cluster computing communities. Since clusters are

costly to own, therefore transferring and sharing access to a
single general cluster is an optimal solution when demands
vary time by time [3]. In other words, sharing of access or
clusters is known as migration of virtual machines, means
moving a VM from one source host to another sink host. If
one VM has lot of load to carry, it can move and share some
of load to another VM for better performance and results.
Migration is also useful in maintenance of VMs. Additionally,
if one VM fails, then through live migration the VM host
failure recovery could be achieved. Live migration makes
these invisible and seamless to users and end users [4]. Hence,
this research typically focuses on the problems and different
approaches to analyze the performance of the parameters for
the Real-time on live data. Additionally, virtual machine
migration between the single/multiple virtual machines on the
basis of data availability, state maintenance in terms of time
using multiple scenarios of data context in virtualized
environment.

Virtual machine live migration in the cloud federation
virtualized environment is always a much spirited task.
Live migration of Virtual Machines plays vital role by
providing virtual machine robustness. The main objective
behind this research is to investigate and analyze
different parameters achieved after implementation of live
virtual machine migration. Specifically, this work aims to
conduct the analysis for the optimization of migration
time and live migration down time in the multiple
scenarios such as:

– Time required for the Data Migration

– Time required for the State Maintenance

– Time Required for the Network Migration

In order to achieve the optimization and results in
terms of time required by migration this research aims
to perform the Migration between the virtual machines
with the different amount of data and memory.

To implement the Virtual Machine Migration in the
Cloud environment ini- tially tools required are:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

402 | P a g e

www.ijacsa.thesai.org

– Ubuntu Cloud server 14.04 LTS TrustY

– Virtual Machine Monitor/Hypervisor Xen

Xen is the enhanced and updated type1 hypervisor
which helps in creation of guest VMs and provide full
access to the created guest VMs. It has the capability to
save a Virtual Machine in a running state. After taking
the snapshot of the saved Virtual Machine xen migrates
that Virtual Machine to the another Virtual Machine in
Real-time. This technology of xen called the xen
Virtual Machine Xen save and resume.

II. RELATED WORK

This section aims to describe some related work about
the virtualization in the big cloud federation as well as the
virtual machine live migration in the virtualized cloud
environment and cluster based system. The idea behind
this chapter is to present the earlier work for the
sharing of resources between the virtual machines in
terms of real-time and some discussion on enhancement in
live migration. For the shared resources and to avoid the
congestion of huge work load from a virtual machine
various models and techniques have been specified by
numerous researchers to study the workload and to
present the overhead solutions.

A. Background & overview: live migration

As far as migration is concerned, it also took place in
terms of offline migration, typically non-real-time. Web
suspends/resume highlights on saving/resumption the
current computing position and state on unspecified
hardware [5]. Sapuntzakis et. al. attends to end user
mobility and system management by encapsulating the
computing atmosphere into capsules that could be shared
between distinctive guests [6]. Schmidt et. al. by deploy
capsules, in the form of interrelated processes with their
network addresses i.e., IP and the entire network states,
as the shape of migration decades [7]. In the same way,
Zap uses process groups (pods) as well as their state at the
kernel level in the shape of migration decades [8]. In all
these proposed preceding, the running execution
suspended for a while and the processes which is in use
in the form of applications within the VM remained un-
progressed.

To get the always availability of the data and other
computing resources, presently many techniques of live
migration exits in the virtualization-based environment
[9, 10]. From all two of the illustrations are live migration
in Xen [11] i.e., xen motion and migration of VMwares
i.e., Vmotion [12], which migrates in the same manner as
pre-copy strategy. For the duration of migration, pages
of physical memory transfers from the one primary sink
host to the another new host (backup), while the state
of the VM is running on the sink host (pri-
mary).Memory pages which are replicated during the
migration of VMs should ensure their consistency and
integrity. After that iterative procedure of VM shar- ing
phase, stop-and-copy phase will be initiated and
executed for a while and that caused VM suspended, the
remaining pages of the configured memory are transferred

, due to this the machine monitor (Hypervisor) of the
destination (backup) VM generate a signal for the
resumption of the executed VM. Though, the pre-copy
takes minimal downtime of VM being migrated in
comparison of the others [13].

In addition with pre-copy procedure according to
Kemari, there are some previous related techniques
which proposed the better solution for optimization
during the migration [14–20]. Such as post-copy migration
technique has pointed out the cons of pre-copy migration
[21, 22]. Some experimental results shows that the
downtime taken by post-copy migration for a VM being
migrated is less than the time spend by the pre-copy
migration [21]. However, pre-copy implementation
supports the (PV) para-virtualized users as the catching
memory method is involved which accesses and manages
a memory based pseudo-paging system within a guest.
Since, as the upgraded/patched version of OS needed by
the post- copy procedure so due to this it could not be
commonly used as the pre-copy. Hines et. al. introduces
the design by combining the post-copy and pre-copy
mutually [21]. By this combination an adaptive pre-paging
method proposed by them, which maintains the access
patterns of the user applications.

B. Improved live vm migration

Now apart from that Remus is of the official Xen
warehouse [23]. It gains the huge and always availability
by keeping an copy of the updated VM along with its
running state on the secondary host computer i.e.,
(backup), which is alert and activated whenever the
primary host get failed and its state being destroyed. LLM
initially updates the memory after that copied dirty data
and then uses the pages of the memory excluding copying
[24]. Although, the tracking of the bad data is not so
much efficient, the onwards goal is to further enhance
and save the memory and processing time as well as
power by analyzing the performance in the different
decades of data context within the VMs would be
migrated from sink to backup.

Lu et al. also achieved the always availability by using
three state memory synchronization [28], like in systems
Remus: bad memory tracing, active VM backup along
with tentative transfer of the state. This method
describes main idea o f the proposed work in the paper and
tells us about the actual pros of the migration, however, it
implies with the associated memory migration overhead.
For instance, in the shared environment the swapping of
workload and its estimation, the memory overhead is more
than the 50%. Since the main and configured memory is the
essential resource, the ratio in high percentage overhead is a
trouble. To overcome the memory issues in the systems
which are Xen-based, several ways are available to
inflexibility memory redundancy in guest VMs, like as
patching and sharing of memory pages. Some previous
efforts have shown the potential memory sharing in
virtualized systems. Some changes in working sets were
inspected and their results demonstrated that changes
were essential for the host to host VMs migration [11, 26].
For the guest virtual machine with 512MB allocated

Identify applicable sponsor/s here. If no sponsors, delete this text box
(sponsors).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

403 | P a g e

www.ijacsa.thesai.org

memory, roughly changed low load with 20MB, roughly
changed medium load with 80MB, roughly changed high
load with 200MB. Therefore, the workloads normally take
places between these boundaries. The previous evaluation
also makes known the amount in memory changes with
different workload running in the VMs (within minutes)
[11, 26]. Within two minutes none of the VM make changes
in the memory more than 4MB. The Content-Based Page
Sharing (CBPS) technique also revealed the memory
sharing potentially [21]. CBPS typically based on the
technique known as Compare-by-hash introduced in [23,
24]. As claimed, the CBPS was capable to recognize form
all pages 42.9% as much as sharable, and reclaimed from
the all pages 32.9% doing real-world workload in the ten
instances of Windows NT. Nine guests VMs were capable
to illustrate the sharable pages as much as 29.2% and
reclaimed when decreased from nine to five guest VMs as
18.7%, and the resultant numbers were 10.0% and 7.2%,
correspondingly.

For Sharing the memory pages in the efficient manner,
nowadays, the technique known as CoW (Copy-on-Write)
was broadly adopted in Xen Hypervisor [27]. Unlike the
OS that uses CoW method for the sharing of memory
pages in a conventional way, in virtualized environment,
pages are shared between the multiple guest VMs. as an
alternative of using CoW to migrate the memory pages
between the VMs, here we use the same idea but in the
more efficient manner like by sharing the pages between
smaller blocks. The Difference Engine illustrated the
potential saving in memory obtainable from the leveraging
a mixture of page patching, sharing and in-core level
memory compression [13]. It also reveals the vast potential
of exploiting memory redundancy in guest VMs. On the
other hand, Difference Engine also faces difficulty problems
when using the patching technique because some
additional modification required by Xen.

III. CONTRIBUTIONS

In this section of paper we aim to describe the work
done during the conduct of this research. Specifically, few
proceeding overviewed and detailed described in this section
in order to achieve our aims and objectives. To overcome
the issues faces during the Live migration we discussed an
adaptive way of Live migration to improve the Load
balancing, optimize the Downtime, VM disk/data
migration. Furthermore, this section also defined
resumption of a VM into another VM in the Real-time.
The key idea behind this research work i.e., Live migration
in data context is discussed in this section as well.

A. Virtual machine resumption

While during the resumption of saved VM using a
stored checkpoint file from slow-access storage, the saved
states in a checkpoint file should be retrieved. Those
saved states are virtual/shared CPU states, the states
for emulated de- vices as well as contents of memory
disk of VM. Usually, most of the data saved in the
checkpoint file retrieves from contents of VM memory.
Therefore, a straightforward method for the resumption of
VM is to restore first all the saved memory data from the

saved check-point file of VM, and then retrieve the rest
of data which includes device and CPU data. The VM
cannot start without the required device and CPU states,
it cannot be initialized until all data have been retrieved
from memory along with its all previously stored memory
pages have been set up. Presently, Xen hypervisor uses
this method for VM resumption from a check-point file.

we can summarize that the same issue of the check-
pointing VM mechanism also takes place in VM
resumption: as amount of contents of VM memory
dominate the stored and saved data in check-point file,
when assigned memory to VM increases, the time
consumed on restoring its saved data rapidly develop
into bottleneck. As illustrated in figure 1, with the
increase of size of VM memory, the time took by
command xm restore would also increase linearly. For
small amount of memory (i.e. with a size of VM memory
128MB), but while retrieving in gigabytes from a saved
check-point file (i.e. 10s in the 1GB), there is a significant
increase in time to resumption.

However, in the first solution, which t y p i c a l l y
restores data from memory before the device and CPU data,
which results in-effective. Also, it is very difficult to consider
data before the CPU and device while restoring the data
memory in reverse order.

Fig. 1. Comparison of mechanisms for VM resumption

That means, letting the VM to boot initially to load
required necessary devices and CPU states, after this
loading, now restore the data of memory pre saved in
check-pointed file after VM starts. In a certain case,
when the VM requires to access a page from memory
which has not still been loaded, then this corresponding

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

404 | P a g e

www.ijacsa.thesai.org

data is retrievable from on-disk check-point file and get
sets up the pages. This solution provide the benefit as it
starts of VM very quickly, and always keeps it in running
state while restoring the data memory. Moreover, since
in this manner, the VM only require the restoration of
small and less amount of necessary device and CPU
states to start VM, its performance would not be affected
by the size of VM memory.

However, in contrast with the first solution, the second
one has some demerits. In the first solution, after the
startup of VM (although it takes 10s or even few minutes),
the works well and as better as before checkpointing. In
comparison, with the second solution, the VM appears
and supposed to be in running state after restoring the
necessary device and CPU states. However, when it
wants to accesses a page from memory which has not still
be stored, a page fault immediately occurs. Then the in
process execution must be paused by hypervisor, then the
checkpoint file restores the memory pages, and then it will
be resumed. Since at the beginning significant number of
page faults occur due memory data is not restored by VM
at first, which degrades somehow VM performance. Our
performed experiments shows, for a VM consist of 1GB
RAM, the VM runs so much slow to be useful in duration
of first 10 seconds. Almost all of this time in seconds was
consumed on restoring the necessary required memory data.

To pick the dual benefits of both solutions for VM
resumption and to over- come their limitations, a
mechanism for dual purpose is hybrid resumption called as
VMresume.

Our aim is to start a VM in the running state as soon as
possible, but to avoid degradation in performance caused
by page faults when VM starts. Our basic aim and
purpose is to examine the memory pages which have
high possibility to access at the beginning period after
the VM startup, restore those pages form check-point
file, and then boot the VM by loading the necessary
required device and CPU states. By reason of preloading
all likely-to-be-accessed pages of memory, we ensure the
after the startup of VM, there could not be as much as
page fault found in the second solution. Also, we can
ensure the earlier startup of VM compared with first
solution, this is due to reason we do not preload all the
data from memory which is saved in the checkpoint file
before the restoring the device and CPU states. This
hybrid mechanism for resumption provides some benefits
in data context by ensuring the high availability of memory
pages during the resumption in the running state.

So now, for the likely-to-be-accessed pages from
memory, how it can be determined? Their determination
can be achieved by principle of temporal locality, pages
recently updated are likely to get updated in near future.
Therefore, we can trust on the facts on the recent activities
of memory access to forecast the upcomin activities for
memory access. For suppose we get an upgraded
checkpoint and now we wish to VM resume from the
latest checkpoint. According to the principle temporal
locality, pages which would have highest possibility to

be access during the initial period, so those memory
pages get accessed during the latest checkpoint interval.
Thus, while receiving the checkpoint file from a
checkpointing interval, we maintain a record of the
memory pages recently likely to be accessed during that
interval, and use that maintained record to forecast such
memory pages which are likely to accessed after the VM
resumption. This needs a predictive mechanism for
checkpointing.

B. Virtual machine disk migration

In comparison with live migration in LANS (Local
Area Networks), migration for VM possess additional
challenges in WANS (Wide Area Networks). While
migrating a VM within a LAN network, the storage in
disk for both source and destination/target VMs are often
shared by network-attached storage (NAS) or SAN
(Storage area Network) media. Therefore, in LAN-based
migration most part of the data that requires to be
migrated is derived from run-time state of memory of
VM. However, while migrating a VM within a WAN
network, besides the state of memory, entire disk data,
along with file system and I/O devices state, should also
be migrated, this is due to they are not shared between
both source and destination/target VMs. The disk data,
particularly for I/O likewise applications, is commonly
very large (e.g., in order of 100s of GBs). Therefore,
LAN-based VM migration approaches that can only
migrate the data from memory (usually in order of GBs)
may not be go well with when applied to WAN-based
VM migration.

A straightforward method to mi g r a t e a V M a t t h e
d a t a co n t e x t l e v e l is to suspend the VM on source
host machine, then transfer the s t o r e d data in local disk
memory (in the form of a self-contained image file) on
the network, them towards the destination/target host
machine, after then reload memory and file system to
resume the VM [6]. Although, these stop-and-resume faces
long downtime. In order to decrease the larger amount of
data within a disk that is going to be transmitted, many
optimization techniques have also been earlier
introduced-i.e. data compression while migration and
content-based comparison between disk data and memory
[25, 26]. However, sometimes these optimization techniques
introduces either computational or memory overheads.
Therefore, it really needs to develop new scenarios for
migration of VMs with their potentially larger file systems
with acceptable overhead and minimal downtime.

In order to achieve quick live migration within WANs,
the disk data with larger amount that is going to be
transferred over the WAN should be reduced. Traditional
migration techniques in LAN-based systems include in
previous work uses checkpointing/resumption approaches
discussed earlier to migrate data of memory [23, 24].
Moreover, to migrate the shared disk they use some
incremental checkpointing mechanism to decrease the
updated memory data that has to be transferred during
each migration stage. These incremental checkpointing
are often used for the virtual disk migration to gain
the low downtime, but the problem occurs when larger

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

405 | P a g e

www.ijacsa.thesai.org

data in disk and memory combined can still prevents in
unacceptable total migration time.

C. Live migration in data context

In order to get effective live migration as well as
high availability of computational resources along with
rapid resource allocation VM resumption is the most
important feature in virtualization. Also, it is a
straightforward approach for the maintenance of data
consistency in data sharing context and application
context from source machine to the destination/target
machine. However, by implementing the predictive
checkpointing technique and hybrid solution for VM
resumption i.e. VMresume, we get the data in run-time
with application context without any unacceptable
migration downtime. This is our main goal behind this
work.

Since in contrast with previous work and citations,
we aim to present a new technique based on incremental
checkpointing mechanism to share the data pages during
the resumption i.e. a predictive checkpointing for
resumption of VM mechanism. In this mechanism, we
assume VMresume, when the system initialized, first of all
the complete image of data in VM memory as well as
emulated devices/CPU states saved by the VMresume to
on-disk file, which becomes the VM initial checkpoint.
After that, it checkpoints the VM at constant and fixed
frequency. Then all off the memory pages are set to be as
read-only at the start of the checkpointing interval (i.e.
which typically shows the time between the previous and
leads to next checkpoint). Thus, if there is found any write
mode in memory pages, it triggers an alert, that alert is
coded for page fault. By leveraging shadow-paging feature
in Xen, VMresume captures whether a page settle as
read-only and tracks either it a dirty or otherwise.
Whenever write mode found in a read-only page, alert
triggers a page fault and it would be reported to VMM,
then that page is set up as writable. Thereafter,
VMresume adds the address of the triggered faulted page in
the list of changed pages and discards the write mode
protection from the page for the application proceeding in
write. The list of changed pages which are modified
during that particular interval updated, at the end of
that interval. VMresume copies to the checkpoint state of
all changed pages, and resets again all pages as read-only.
This provides high availability of data resumption during
the migration.

By using this incremental checkpointing approach, it
helps to find the entire write mode accessed pages in
memory during the latest checkpoint interval. These all
write accessed pages are probably to get accessed after VM
resumption. However, write accessed pages are often a
small section of pages that are likely to get accessed after
resumption of the VM. Besides this, there are some more
pages in memory which are purely read accessed during
the same checkpoint interval. The pages which are read
accessed are not recorded by in our used checkpoint
method, but they should also get preloaded while
resuming the VM to decrease the potential paging faults
on those pages.

Live migration in data context perspective from our

work proposes a quick VM resumption by taking the

snapshot/VM image. Here in our performed experiments

as shown in f, A and B, we take 3 host VMs in the active

state and enough configured. From the data context

perspective, we assigned VMs with memory of 1GB, 2GB

and 3 GB respectively. The assigned memory is al- located

memory which is a complete memory of that particular

VM. But, from the allocated memory some portion of

memory either has data pages or otherwise. Portion of

memory that has some data pages is configured memory.

We proposed VMresume with the mechanism of allocated and

configured memory. As discussed above about the read-

accessed and write-accessed memory pages. The entire

allocated memory is read-accessed while the configured

memory is write accessed. While performing the Live

migration from the source machine to the

target/destination machine some our work focus on

transferring the con- figured memory pages which has the

actual data that has the high possibility to be accessed

rather than the allocated memory. This solution overcomes

and overheads unacceptable downtime during the

migration, data duplication and trigger page faults.

Fig. 2. Comparison of VM resumption from configured memory

Therefore, figure 2 illustrates the migration downtime
needs to transfer the configured memory. The configured
memory is the main focus behind our pro- posed work,
which includes the facts and figures that does not involve
any bad memory. All of the memory is configured means
the data is also configured data (useful for the user). As
shown in the figure 2, the comparison of configured data
migration is meanwhile seems to be not too high, the
both lines are coinciding with each other, this could
happened due to the memory migration based on the
configuration memory which saves the computational and
migration downtime in the meanwhile which can also
overcome the load balancing of VMs and also helps in
performance degradation.

Additionally figure 3 illustrates comparison of VMs
with allocated memory rather than the configured. The
allocated memory consist all the memory storage which is
assigned to a particular VM, and data within the
allocated memory consist all over the memory that can
be either user needed or otherwise. As shown in figure

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

406 | P a g e

www.ijacsa.thesai.org

the migration downtime consumption is quite high due to
big storage and raw data and the lines are too far to each
other, so in the resultant it presents performance
degradation due to the high storage and raw allocated
migration.

Fig. 3. Comparison of VM resumption from allocated memory

Moreover in the summary of our performed
experiments aims the migration of configured memory
(i.e. memory that has the actual data and write-
accessed pages) rather than the allocated memory (i.e.
memory that has whole VM data read-accessed and
write-accessed pages), while migration of entire al-
located memory results a high downtime etc. Therefore,
to perform an efficient migration we propose VMresume
mechanism with migration of configured memory
technique. Therefore, By implementing this, at the end
of checkpoint interval, for the data pages (i.e. write-
accessed) in the interval, VMresume saves in checkpoint
file and observes their R/W bit. For those memory
pages whose A bit set to 1, then VMresume determines
whether they are read-accessed or write-accessed. If pages
are write-accessed, then they are already saved in check-
point file and going to be migrated. If they are read-
accessed, VMresume keeps copy of those pages read-
accessed pages for future prediction purpose whenever
resuming VM from corresponding checkpoint file. It is
completely unnecessary to save the read-accessed memory
pages contents because they are not updated and
modified during migration checkpoint interval.

While resuming the VM, VMresume initially reloads
all of the write-accessed pages (i.e. they are newly saved in
checkpoint file), also other likely-to-accessed by tracking
the record of all read-accessed pages. Then the VM will be
resumed and started with required CPU/devices states
along with the data resumption which is typically
configured and likely-to-be-accessed with any
unacceptable downtime and delay.

IV. EXPERIMENTS & OBSERVATIONS

In this section, the performance from the proposed work

and techniques (i.e. Xen Hypervisor) and estimated results
are presented. We measured some overhead and
migration downtime by using under FGBI, and analyzed
and compared the achieved results with that under Remus
and LLM.

A. Experimental setup

We have designed an experimental setup which includes
two hosts. One host is primary or master and second one is
used as backup. The two hosts are Intel core2 Duo
processor 2.6 GHz and 4 GB RAM. The two hosts are
connected through a 2 Mbps network connection. The
network connection is used for migration of the Primary
host to the second host.

TABLE I. SPECIFICATIONS OF GUEST VMS

B. Experimental results

Here VMs are migrated in two situations. The first
one when there is no work load on VMs and second one
when there is workload of different applications on VMs.

VM Migration with no Load Live Migration is the
practice of transfer of the Virtual Machines active memory
state and accurate execution state over a high- speed
network, which permits the VM to shift from running on
the source host to destination host. Live migration of a
VM has some time parameters named as Real, User and
Sys. These parameters have different values, depending on
the virtual RAM and hard disk of the VM.

TABLE II. SPECIFICATIONS OF GUEST VMS

 Real User Sys

Testvm1 10.378s 2.068s 5.252s

Testvm2 19.789s 3.015s 9.651s

Testvm3 28.651s 3.859s 14.798s

Parameter /
VM

Guest vm1 Guest vm2 Guest vm3

ID: 2 3 4

Name: Testvm1 Testvm2 Testvm3

Hypervisor: Xen Xen Xen

OS Type: Hvm (Ubuntu) Hvm (Ubuntu) Hvm (Ubuntu)

State: Running Running Running

CPU: 1 1 1

CPU Time: 11.2 s 12.5 s 14 s

Virtual
Memory
(RAM):

524288 KiB 524288 KiB 524288 KiB

Allocated
Memory
(ROM):

1048576 KiB 2097152 KiB 3145728 KiB

Disk Space: 1 GB 2 GB 3 GB

UUID: 192.168.0.60 192.168.0.30 192.168.0.20

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

407 | P a g e

www.ijacsa.thesai.org

Fig. 4. Migration Time taken by XenServer in our system

Real: It is the time taken by host VM for live
migration of guest VM. User: It describes the time taken
by host VM for state migration of guest VM. Sys: It
expresses the time which is taken by host for memory
migration of guest VM.

The table 2 specifies the three migration time
parameters of the entire guest VMs. The parameters
specify that how much time it takes to migrate the entire
VM from source to destination.

By plotting the above parameters data in pictorial form
it looks like as follows:

From figure 4, one can estimate the total migration
time, state migration time and memory migration time
taken by the VMs in our system. The three VMs named as
Testvm1, Testvm2 and Testvm3. All the VMs are of
different sizes consecutively of 1GB, 2GB and 3GB.
Greater the virtual hard disk is longer time is taken by
Xen Hypervisor to migrate, as shown in fig 4. Here in the
result, the three parameters we achieved are the Real
(time taken by Data migration), user (time taken by the
Network migration), system (time taken by the State
migration). All the parameters and their data in
accordance with time are shown meanwhile in figure 4.

Fig. 5. Downtime of VMs with different memory size m

While the VM is migrated from source host to
destination host, the both hosts will be down. In other
words, the hosts will not be able to communicate or run
any application. This downtime also depends on the RAM
and hard disk of virtual machine (VM). The graph below
(Fig 5) shows the down time of migration time
parameters of the three VMs. The Testvm1 is smaller is
size as compared to Testvm2 and Testvm3, therefore it
takes lesser downtime of the parameters (Real, Sys and
User).

Live migration consists of three parameters: migration
of entire VM, state migration and memory migration. The
memory migration also depends on the hard disk and RAM
of VM. As mentioned earlier and our main focus is to
overall migration the figure 5 states that how much
time VMs take to transfer the memory state. Moreover,
it is illustrated from figure 5 the individual parameters are
plotted of each of all three VMs. Hence the size of each
VM is different the time taken by each parameter for each
depends on the size and processing speed in order to
achieve the better mean time while performing the
migration.

Hence the primary motivation behind this proposed work
is to perform live migration the data context level. So figure
6 shows the memory and data migration of all of three
VMs. Therefore, here two parameters Real and sys are
plotted which typically shows the data migration and
memory migration. In order to mi- grate the data between
the VMs the hypervisor will check either the memory is
configured or otherwise then the migration will be
performed accordingly. If the hypervisor found the memory
which configured and then perform migration so we can
assume this strategy ensures the best results and
performance.

Fig. 6. Memory Migration of Xen Hypervisor

V. CONCLUSIONS AND FUTURE WORK

This work presents some set of methods and approaches
for the analysis off VM live migration in data sharing
perspective between the VMs in run-time. Further- more
live migration in data sharing perspective without any
unacceptable halt, delay and performance degradation.
This happened possible with VM resumption techniques
i.e. save and restore technique and VMresume hybrid
solution. The design, implementation and analysis of our
proposed techniques ensure the high availability with
unacceptable downtime and performance degradation. This
happened possible with the help of Xen hypervisors save
and restore commands and VMresume mechanism. In
this research we analyzed and aim to propose that, from
our performed experiments and evaluations it can be
analyzed that we can achieve minimal downtime with
unacceptable performance degradation and high
availability of data and resources by migrating the
configured memory of VM (i.e. likely to be accessed
memory pages or real/occupied data) rather than the
allocated memory (i.e. entire assigned data may be blank
space) while performing the live migration

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

408 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] What is cloud computing?? Luit Infotech

[2] Diego Perez-Botero, A Brief Tutorial on Live Virtual Machine
Migration From a Security Perspective, Princeton University,
Princeton, NJ, USA

[3] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm
Hansen Eric July, Christian Limpach, Ian Pratt, Andrew
Warfield, Live Migration of Virtual Ma- chines, University of
Cambridge Computer Laboratory 15 JJ Thomson Avenue,
Cambridge, UK, Department of Computer Science University of
Copenhagen, Denmark

[4] NSRC, Virtual Machine Migration

[5] Mahadev Satcyanarayanan, B. Gilbert, M. Toups, N. Tolia,
D.R. OHallaron, Ajay Surie,A. Wolbach, J. Harkes, A. Perrig,
D.J. Farber, M.A. Kozuch, C.J. Helfrich, P. Nath, and H.A.
Lagar-Cavilla. Pervasive personal computing in an internet
suspend/resume system. Internet Computing, IEEE, 11(2):1625,
2007.

[6] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim
Chow, Monica S.Lam, and Mendel Rosenblum. Optimizing the
migration of virtual computers. SIGOPS Oper. Syst.Rev.
36(SI):377390, December 2002.

[7] Brian Keith Schmidt. Supporting ubiquitous computing with
stateless consoles and computation caches. PhD thesis, Stanford,
CA, USA, 2000. AAI9995216.

[8] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. The
design and im- plementation of Zap: a system for migrating
computing environments. SIGOPS Oper. Syst. Rev, 36:361376,
December 2002.

[9] Wei Huang, Qi Gao, Jiuxing Liu, and Dhabaleswar K. Panda.
High perfor- mance virtual machine migration with RDMA over
modern interconnects. In CLUSTER 07:Proceedings of the 2007
IEEE International Conference on Clus- ter Computing, pages
1120, Washington, DC, USA, 2007. IEEE Computer So- ciety,

[10] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu.
Live migration of virtual machine based on full system trace and
replay. In Proceedings of the 18th ACM international symposium
on High performance distributed computing, HPDC 09, pages
101110, New York, NY, USA, 2009. ACM.

[11] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm
Hansen, Eric Jul, Christian Limpach, Ian Pratt, and Andrew
Warfield. Live migration of virtual machines. In Proceedings of
the 2nd conference on Symposium on Networked Systems Design
and Implementation - Volume 2, NSDI05, pages 273286, Berke-
ley, CA, USA, 2005. USENIX Association.

[12] Michael Nelson, Beng Hong Lim, and Greg Hutchins. Fast
transparent migration for virtual machines. In ATEC 05:
Proceedings of the annual conference on USENIX Annual
Technical Conference, pages 2525, Berkeley, CA, USA, 2005.
USENIX Association.

[13] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage,
Alex C. Snoeren, George Varghese, Geoffrey M. Voelker, and
Amin Vahdat. Difference engine: harnessing memory redundancy
in virtual machines. Commun. ACM, 53:8593, October 2010.

[14] Renato J. Figueiredo, Peter A. Dinda, and Jose A. B. Fortes.
A case for grid computing on virtual machines. In Proceedings
of the 23rd International Con- ference on Distributed
Computing Systems, ICDCS 03, pages 550,Washington, DC,
USA, 2003. IEEE Computer Society.

[15] John R. Lange and Peter A. Dinda. Transparent network
services via a vir- tual traffic layer for virtual machines. In
Proceedings of the 16th international symposium on High
performance distributed computing, HPDC 07, pages 2332, New
York, NY, USA, 2007. ACM.

[16] A. Feldmann R. Bradford, E. Kotsovinos and H. Schioeberg. Live
wide-area mi- gration of virtual machines including local
persistent state. In VEE07: Proceed- ings of the third

International Conference on Virtual Execution Environments,
pages 169116, San Diego,CA, USA, 2007. ACM Press.

[17] Yoshiaki Tamura, Koji Sato, Seiji Kihara, and Satoshii Moriai.
Kemari: Vir- tual machine synchronization for fault tolerance
using DomT (technicalre-
port).http://wiki.xen.org/xenwiki/Open Topics For
Discussion?action=Attach File&do=get&target=Kemari 08.pdf,
2008.

[18] Franco Travostino, Paul Daspit, Leon Gommans, Chetan Jog,
Cees de Laat, Joe Mambretti, Inder Monga, Bas van
Oudenaarde, Satish Raghunath, and Phil Yonghui Wang.
Seamless live migration of virtual machines over the man/wan.
Future Gener. Comput. Syst.22 (8):901907, October 2006.

[19] William Voorsluys, James Broberg, Srikumar Venugopal, and
Rajkumar Buyya. cost of virtual machine live migration in
clouds: A performance evaluation. In Proceedings of the 1st
International Conference on Cloud Computing, Cloud- Com 09,
pages 254265, Berlin, Heidelberg, 2009. Springer-Verlag.

[20] Ming Zhao and Renato J. Figueiredo. Experimental study of
virtual machine migration in support of reservation of cluster
resources. In VTDC 07:Proceedings of the 2nd international
workshop on Virtualization technology in distributed computing,
pages 5:15:8, New York, NY, USA, 2007. ACM.

[21] Michael R. Hines and Kartik Gopalan. Post-copy based live
virtual machine migration using adaptive pre-paging and
dynamic self-ballooning. In Proceed- ings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual
execution environments, VEE 09, pages 5160, New York, NY,
USA, 2009. ACM.

[22] Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi
Sekiguchi. Re- active consolidation of virtual machines enabled
by postcopy live migration. In Proceedings of the 5th
international workshop on Virtualization technologies in
distributed computing, VTDC 11, pages 1118, New York, NY,
USA, 2011. ACM.

[23] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley,
Norm Hutchin- son, and Andrew Warfield. Remus: high
availability via asynchronous virtual machine replication. In
Proceedings of the 5th USENIX Symposium on Net- worked
Systems Design and Implementation, NSDI08, pages 161174,
Berkeley, CA, USA, 2008. USENIX Association.

[24] Bo Jiang, Binoy Ravindran, and Changsoo Kim. Lightweight
live migration for high availability cluster service. In
Proceedings of the 12th international conference on
Stabilization,safety, and security of distributed systems, SSS10,
pages 420434, Berlin, Heidelberg,

[25] Hai Jin, Li Deng, Song Wu, Xuanhua Shi, and Xiaodong
Pan. Live virtual machine migration with adaptive, memory
compression. In Cluster Computing and Workshops, 2009.
CLUSTER 09. IEEE International Conference on, pages 1-10,31
2009 sept 4, 2009

[26] Pierre Riteau, Christine Morin, and Thierry Priol. Shrinker:
Improving live mi- gration of virtual clusters over wans with
distributed data deduplication and content-based addressing. In
Emmanuel Jeannot, Raymond Namyst, and Jean Roman, editors,
Euro-Par 2011 Parallel Processing - 17th International Confer-
ence, Euro-Par 2011, Bordeaux, France, August 29 - September 2,
2011, volume

[27] Yifeng Sun, Yingwei Luo, Xiaolin Wang, Zhenlin Wang, Binbin
Zhang, aogang Chen, and Xiaoming Li. Fast live cloning of virtual
machine based ceedings of the 2009 11th IEEE International
Conference on High Performance Computing and
Communications, pages 392399, Washington, DC, USA, 2009.
IEEE Computer Society.

[28] Maohua Lu and Tzi cker Chiueh. Fast memory state synchronization for
virtualization-based fault tolerance. In Dependable Systems Networks,
2009.DSN 09. IEEE/IFIP International Conference on, pages 534543,
2009

http://wiki.xen.org/xenwiki/Open

