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Abstract—Model defects are a significant concern in the
Model-Driven Development (MDD) paradigm, as model trans-
formations and code generation may propagate errors present in
the model to other notations where they are harder to detect and
trace. Formal verification techniques can check the correctness
of a model, but their high computational complexity can limit
their scalability.

Current approaches to this problem have an exponential
worst-case run time. In this paper, we propose a slicing technique
which breaks a model into several independent submodels from
which irrelevant information can be abstracted to improve the
scalability of the verification process. We consider a specific static
model (UML class diagrams annotated with unrestricted OCL
constraints) and a specific property to verify (satisfiability, i.e.,
whether it is possible to create objects without violating any
constraints). The definition of the slicing procedure ensures that
the property under verification is preserved after partitioning.
Furthermore, the paper provides an evaluation of experimental
results from a real-world case study.
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I. INTRODUCTION

Model-Driven Development (MDD) is a methodology
widely used in the process of software development. The focus
of MDD is on the use of models which can be transformed
into code to save software developers time and effort. Trans-
formation and code generation from models may spread errors
in the code if the models are not verified, however.

There are formal verification tools for automatically check-
ing correctness properties of models, but the lack of scalability
of such tools is a serious problem. Addressing this problem is
the goal of this paper.

At present, we face efficiency problems when verifying
Object Constraint Language (OCL) constraints of complex
Unified Modeling Language (UML) class diagrams. As the
complexity of a model can be exponential in terms of model
size (i.e., the number of classes, associations, and inheritance
hierarchies), reducing the size of a model can cause a drastic
speed-up in the verification process. We focus on analysis of
static elements of a software specification, modelled as a UML

class diagram. Complex integrity constraints will be expressed
in OCL. In this context, the fundamental correctness property
of a model is satisfiability [9], [3], [37] and whether it is
possible to instantiate the model without violating any integrity
constraints. Constraints can be either textual OCL invariants
or graphical restrictions like multiplicities of association ends.

This property is important because it can identify inconsis-
tent models, but also it can be used to check other interesting
properties like the redundancy of an integrity constraint. For
example, a pair of constraints C1 and C2 are not redundant if
the following is satisfiable: (C1∧¬C2)∨ (¬C1∧C2), i.e., it is
possible to satisfy C1 but not C2 and vice versa. For instance,
the redundancy of an integrity constraint C can be expressed
as a satisfiability test: if we change the integrity constraint
to ¬C and the model is still satisfiable, this means that C is
not redundant as it effectively avoids at least one undesired
instance.

Furthermore, the addition of unrestricted1OCL constraints
makes the problem undecidable. For example, reasoning on
UML class diagrams is EXPTIME-complete [5] and, when
general OCL constraints are allowed, it becomes undecidable.

In order to provide practical and workable solutions, tools
for formal verification of UML/OCL class diagram must
consider several aspects of the verification problem pragmat-
ically: the desired degree of automation (fully automatic or
user-guided?), the desired degree of completeness (conclusive
answer for any input model?), and the degree of expressiveness
allowed in OCL constraints.

Current solutions for checking satisfiability employ for-
malisms such as description logics [3], higher-order logics
[8], database deduction systems [4], linear programming [35],
SAT [21]2, or constraint satisfaction problems (CSP) [5], [9].
Each method provides different trade-offs in terms of de-
cidability, completeness, expressiveness, and efficiency, which
depend on the underlying formalism and tool support. All the
approaches which support general OCL constraints share a
common drawback, however: high worst-case computational
complexity. Their execution time may depend exponentially
on the size of the model, understanding size as the number of
classes/attributes/associations in the model and/or the number
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Fig. 1. High-level description of the slicing process.

of OCL constraints. This complexity is a serious limitation
for the scalability of these techniques and their application in
large-scale class diagrams.

A review of sample UML/OCL models highlights two
observations which are relevant to this problem. First, models
typically contain elements which are either unconstrained or
constrained in a trivially satisfiable way. For instance, attributes
acting as identifiers should have unique values, but often there
are no other constraints on these attributes. Similarly, some
integrity constraints regarding the multiplicity of association
ends may be abstracted as well, e.g. an association end with
a multiplicity of * does not constrain the model in any way
which affects its satisfiability. A second observation is that
some constraints refer to independent entities. For example,
constraints about the password of a user and the price of a
product are likely to be unrelated.

These observations can be used to improve the scalability
of verification methods for satisfiability. Our proposal is based
on model slicing: given an input UML/OCL model, the dia-
gram and its constraints will be automatically partitioned into
submodels while unnecessary model elements are abstracted.
The structure of the class diagram (associations and class
hierarchies) and the OCL invariants (abstract syntax tree) guide
the partitioning process. Intuitively, the underlying idea is
that all constraints restricting the same model element should
be verified together and therefore belong to the same slice.
Then, satisfiability of each slice is checked independently
and the results are combined to assess the satisfiability of
the entire model. Figure 1 illustrates the overall flow. To
ensure soundness, slicing should not alter the outcome of the
verification.

In contrast, there are a few verification and validation
tools and techniques that verify the model properties and finds
valid objects of the class diagrams [1], [20], [8], [17]. These
tools and techniques are, however, inefficient (high Central
Processing Unit and memory consumption) and unable to
verify large UML/OCL class diagrams. The efficiency analysis
of a few UML/OCL tools can be found in [41]. Therefore,
the general question addressed in this paper is how we can
improve the efficiency of the verification process for complex
UML/OCL class diagrams.

A few hypotheses can be derived from the above discus-
sion:

1) H1. Model slicing can be implemented in existing
verification tools independent of their formalism.

1Some approaches restrict the set of supported OCL constructs, e.g., to make
the verification decidable. In this paper, we consider general OCL constraints
with no limitations on their expressivity.

2“SAT stand for ‘satisfiablity’: a solution to a boolean formula is an
assignment of values to the formula’s boolean variables that ‘satisfies’ the
forumula”[21].

2) H2. Model slicing will reduce the verification time.
3) H3. Model slicing enables verification of certain types

of UML/OCL class diagrams that cannot be verified
with current tools.

II. CONTRIBUTIONS

This paper proposes a slicing technique for complex
UML/OCL class diagrams which have a high worst-case
computational complexity. This slicing technique is called
the UML/OCL Slicing Technique (UOST). High worst-case
computational complexity represents the amount of time in
which the information in the model will be processed. The
slicing procedure is based on breaking a complex UML/OCL
model into several independent submodels where all irrelevant
components of the model are abstracted from the complex
hierarchy. The defined slicing procedure ensures that if all
submodels are satisfiable then the entire model is satisfiable.
If the model is unsatisfiable then some submodel is also
unsatisfiable. The contributions of this paper are as follows:

1) A slicing procedure for a disjoint set of submodels
2) A procedure for analysis of OCL constraints
3) A procedure for detection of trivially satisfiable con-

straints
4) A procedure for analysis of UML class diagram
5) Application of the slicing technique in a real-world

case study Digital Bibliography and Library Project
(DBLP) conceptual schema

6) Experimental results in UMLtoCSP (UOST) [39] and
in Alloy [20]

The major contribution of this paper, however, is improve-
ment of the scalability of verification of UML class diagrams
with OCL constraints. The presented slicing technique slices
the model before it passes to any satisfiability analyser/engine,
rather than passing a complete or complex model to any
verification engine. We slice the model in the memory before
checking satisfiability and this is the major reason for speed-
ups in verification. In this paper, the experiments are conducted
in Alloy [20] and UMLtoCSP [9]. The underlying satisfiability
analyser used in Alloy is the Kodkod model finder and a
variety of SAT solvers [47] whereas UMLtoCSP uses CSP
[10]. With the help of the slicing technique these satisfiability
analysers receive the original model as several independent
submodels and check the satisfiability independently, which
causes drastic speed-up in verification time. Verification time
is totally dependent, however, on how fast these satisfiability
analysers can find the valid objects as per conditions given in
OCL constraints.

Previously, we have proposed a slicing technique for a
non-disjoint set of submodels [41], [40], however, this paper
extends our work published in ASE 2010 [38] with the
contributions given in sections “Contributions”, VI, and VII.
We have implemented slicing techniques for disjoint and
non-disjoint sets of submodels in UMLtoCSP (UOST) [39].
Furthermore, comparison with other tools and techniques has
been discussed in [41].

III. OVERVIEW OF PROPOSED SLICING TECHNIQUE

The input for the slicing procedure is a UML class di-
agram annotated with OCL invariants. Figure 2 presents a
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(a) Slice 1 (b) Slice 2

Fig. 3. Slices for the verification of strong satisfiability in the running
example.

class diagram that will be used as an example modelling
the information system of a bus company. Several integrity
constraints are defined as OCL invariants.

Our goal is to determine whether the input class diagram
has legal instances, that is, instances that satisfy all integrity
constraints. An instance of a UML class diagram is a collection
of objects (according to the class definitions) and a collection
of links between them (according to the associations). The
output of the verification process will be either : ‘satisfiable’
or ‘unsatisfiable’. In the case of satisfiability, a sample instance
proving the satisfiability will be computed as well.

Two different notions of satisfiability will be considered
for verification: strong and weak satisfiability [9], [3], [37]. A
class diagram is weakly satisfiable if it is possible to create a
legal instance which is non-empty, i.e., it contains at least one
object from some class. On the other hand, strong satisfiability
is a more restrictive condition requiring that the legal instance
has at least one object from each class and a link from each
association. Some parts of the slicing algorithm will work
differently depending on the satisfiability notion to be verified.

The algorithm works by partitioning the UML/OCL class
diagram into a set of disjoint slices. A slice S of a UML/OCL
class diagram D is a subset of the original model: another
valid UML/OCL class diagram where any element (class,
association, inheritance, aggregation, invariant, . . . ) appearing
in S also appears in D, but the reverse does not necessarily
hold. Figure 3 represents the slices for strong satisfiability
for the example system. Each slice is verified independently
and the verification result of the whole model is obtained by
combining the results of all slices. If we are checking strong
satisfiability, it is necessary to check also whether all slices
are strongly satisfiable. On the other hand, if we are checking
weak satisfiability, it is sufficient to ensure that at least one
slice is weakly satisfiable.

A. Preserving Satisfiability

The fundamental requirement of the slicing algorithm is
that it should preserve the outcome of the verification: the
answer provided by the verification with slicing should be the
same as the one given by a verification tool without slicing.

Each slice is a disjoint subset of the integrity constraints
and a disjoint fragment of the original class diagram. Disjoint

fragment contains different classes for each slice. As each
slice is less constrained than the original model, it is clear
that if the original model was satisfiable, the slices will also
be satisfiable. Therefore, it is only necessary to ensure that if
the original model was unsatisfiable, the answer will also be
‘unsatisfiable’: if we are checking strong satisfiability, at least
one slice will be strongly unsatisfiable, and if we are checking
weak satisfiability, all slice[s] will be weakly unsatisfiable.

A class diagram can be unsatisfiable for several reasons.
First, it is possible that the model provides inconsistent con-
ditions for the number of objects of a given type. Inheritance
hierarchies, multiplicities of association/aggregation ends, and
textual integrity constraints (e.g., Type::allInstances()−>size()
= 7) can restrict the possible number of objects of a class.
Second, it is possible that there are no valid values for one or
more attributes of an object in the diagram. Within a model,
textual constraints provide the only source of restrictions on
the values of an attribute, e.g., self.x = 7. Finally, it is possible
that unsatisfiability arises from a combination of both factors,
e.g., the values of some attributes require a certain number of
objects to be created which contradict other restrictions.

To sum up, an unsatisfiable model contains an unsatisfiable
textual or graphical constraint or an unsatisfiable interaction
between one or more textual or graphical constraints. To ensure
that unsatisfiability is propagated in the slices, three conditions
should be guaranteed:

1) No potentially unsatisfiable constraint should be re-
moved from the problem.

2) If there are two or more constraints whose interac-
tion could be unsatisfiable, none of them should be
removed from the problem.

3) All constraints referring to the same model element
should appear together in the same slice, i.e., their
interaction should not be split into different slices.

The procedure presented in this paper guarantees all con-
ditions (1 to 3). Before slicing, the class diagram and integrity
constraints are analysed to detect unconstrained elements,
constraints which do not affect satisfiability and constraints
which cannot interact adversely with other constraints. In order
to provide this assurance, it is necessary to analyse the UML
class diagram before slicing in order to know what can be
partitioned and abstracted and what should be kept together.
The analysis is performed at two levels, a syntactic analysis
of the OCL constraints and a structural analysis of the UML
class diagram:

• A traversal of the syntax tree of each OCL constraint
identifies which classes, attributes, and navigations are
used. Additional analysis identifies trivial constraints
and constraints that can be checked independently.

• The analysis of the UML class diagram reveals depen-
dencies among the number of objects in each class,
like inheritance hierarchies or multiplicity constraints
of association/aggregation ends.

The following sections describe the analysis of OCL in-
variants and the UML class diagram. The combination of the
verification results from each slice is straightforward (either all
slices have to be satisfiable or at least one has to be for strong
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context Coach inv MinCoachSize:
self.noOfSeats ≥ 10

context Coach inv MaxCoachSize:
self.trips −>forAll( t | t.passengers −>size() ≤ noOfSeats)

context Trip inv CorrectTripDestination:
not self.origin = self.destination

context Ticket inv UniqueTicketNumber:
Ticket::allInstances() −>isUnique ( t | t.number )

context Ticket inv MachineNumber:
self.name=self.vendingMachine.bookingOffice.location.concat(self.number.toString())

context Passenger inv NonNegativeAge:
self.age ≥ 0

Fig. 2. UML/OCL class diagram used as running example (model Coach).

and weak satisfiability, respectively) and will not be detailed
further.

IV. ANALYSIS OF OCL CONSTRAINTS

OCL allows the definition of expressions on UML class
diagrams. An expression which evaluates to ‘true’ or ‘false’,
e.g., a class invariant, will be called a constraint. OCL can
also be used to define the result of query operations, which
can then be invoked inside other expressions.

Any OCL expression is defined within the context of a
type. Typically, an OCL expression involves several objects
from one or more classes of the model. To get a starting
object, we can use the keyword self, which denotes an object
of the context type, or the method allInstances(), which
can be used to access all objects of a given type, e.g.,
Trip::allInstances() and returns a set of all objects of class

Trip. Given an object, OCL provides operators to read the
values of its attributes (attribute access) and access the objects
connected to it through associations (navigation). Combining
these operators with arithmetic, logic, and relational operators,
iterators and user-defined query operations, it is possible to
write complex constraints about class diagrams.

This section describes how to analyse OCL invariants
in order to extract information relevant to its satisfiability.
We are interested in identifying which model elements are
constrained by an invariant, as interactions between constraints
appear when two or more constraints restrict the same model
elements.

A. Constraint Support

The support of an OCL expression is the subset of classes
of the class diagram referenced by the expression. For invari-
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TABLE I. SUPPORT, ATTRIBUTES, AND NAVIGATIONS IN THE RUNNING
EXAMPLE.

Invariant Support Attributes Navigations
MinCoachSize Coach Coach.noOfSeats None
MaxCoachSize Coach, Trip, Passenger Coach.noOfSeats Travels, Uses
CorrectTripDestination Trip Trip.(origin,destination) None
MachineNumber VendingMachine, Ticket(name,number) Sells, Has

BookingOffice, Ticket BO.location
UniqueTicketNumber Ticket Ticket.number None
NonNegativeAge Passenger Passenger.age None

ants, the support describes the set of classes restricted by the
constraint. This information will be used to identify classes
that appear together in the same constraint and therefore must
be analysed within the same slice. Formally, the support of an
expression E and the supertypes of E contains the following
types:

1) The context type where E is defined and all its
supertypes, as long as the ‘self’ variable appears
within E.

2) The type of each association end navigated within E.
3) Each type referenced explicitly in E by the operation

Type::allInstances() or by a type check or conver-
sion operation, e.g., oclIsKindOf, oclIsTypeOf, or
oclAsType.

4) The union of the supports of all query operations
invoked from E.

Another piece of information required by the remaining
steps of the analysis is the set of attributes and navigations
used in each invariant. This information can be gathered with
a straightforward traversal of the OCL syntax tree. Table I
summarises all these data for the invariants of the running
example.

The support information can be used to partition a set of
OCL invariants into a set of independent clusters of constraints,
where each cluster can be verified separately. The following
procedure can be used to compute the clusters:

• Compute the support of each invariant.

• Initially, each constraint is located in a different clus-
ter.

• Select two constraints x and y with non-disjoint sup-
ports (i.e., support(x) ∩ support(y) 6= ∅) and located
in different clusters, and merge those clusters.

• Repeat the previous step until all pairs of constraints
with non-disjoint support belong to the same cluster.

Using this procedure and the information from Table I, we can
identify three clusters in our model: invariants MinCoachSize,
MaxCoachSize, CorrectTripDestination and NonNegativeAge
(support: Coach, Trip, Passenger); invariant MachineNumber
(support: VendingMachine, BookingOffice) and invariant Uni-
queTicketNumber (support: Ticket). In the following sections,
however, we describe additional analysis that can abstract
constraints before this clustering, simplifying the problem that
has to be verified.

B. Local and Global Constraints

Some parts of a verification problem can be checked in
isolation within the boundaries of a class and without affecting

TABLE II. EXAMPLES OF LOCAL AND GLOBAL INVARIANTS.

Type Expression (context Trip) Description
Local self.origin 6= self.destination Attribute access
Global not self.passengers−>isEmpty() Navigation
Global Ticket::allInstances()−>isUnique(t|t.number) allInstances()
Global self.oclIsTypeOf(“PrivateTrip”) oclIsTypeOf()

the overall solution. Intuitively, if there is a constraint on an
attribute which is not used anywhere else in the model, we can
split the verification problem into two separate subproblems:
checking that the constraint on the attribute is feasible and
verifying the rest of the system. This section will present the
techniques which identify such local constraints.

An expression is called local to a class C if it can be
evaluated by examining only the values of the attributes in
one object of class C. Expressions that do not fit into this
category, because they need to examine multiple objects of
the same class or some objects from another class, are called
global.

In other words, a local expression can be defined as
follows: (1) it does not use navigations through associations,
(2) it does not call allInstances(), (3) it does not use attributes
defined in a superclass, (4) it does not call any global query
operation, and (5) it does not perform any type check or type
conversion operation. Table II shows some examples of local
and global expressions written in the context of class Trip.

Attributes may appear in local constraints, global con-
straints, or both. We are interested in detecting those attributes
that can be studied locally, like those that do not appear
in global constraints and are not related to attributes that
appear there. In this sense, the set of global attributes will be
iteratively defined as follows: (1) the attributes used in global
expressions plus (2) the attributes used in local expressions
where there is at least one global attribute. All other attributes
of the model will be called local. A local expression which
uses only local attributes will be called strongly local.

It should be noted that according to our definition the
result of a strongly local invariant does not depend on (1)
attributes outside those mentioned in the expression or (2) the
number of objects in any class. The only chance of potential
interaction with other invariants is with other strongly local
invariants of the same class, if they have any attribute in
common. Therefore, strongly local invariants of a class can be
analysed separately from the rest of the model. The division
into subproblems is as follows:

• A problem defined by the class, its local attributes,
and its strongly local invariants (which can be further
partitioned if these invariants restrict disjoint sets of
attributes).

• Another problem defined by the original model, re-
moving the attributes and constraints that appear in
the first subproblem.

In our running example, invariants MinCoachSize, Non-
NegativeAge, and CorrectTripDestination are all local invari-
ants. Of these, invariant MinCoachSize is not strongly local as
the attribute ‘noOfSeats’ is also used in the global invariant
MaxCoachSize. The remaining invariants, NonNegativeAge
and CorrectTripDestination, can be abstracted from the model
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together with the attributes they reference and their satisfiabil-
ity can be checked independently.

C. Trivially Satisfiable Constraints

A final analysis that can improve the efficiency of satis-
fiability verification is the detection and removal of trivially
satisfiable invariants from the UML/OCL class diagram. De-
tecting satisfiable constraints is as hard as satisfiability itself,
so we restrict ourselves to considering typical patterns which
may arise in different applications.

The first trivially satisfiable pattern which can be safely re-
moved is the key constraint stating that a given attribute’s value
must be unique, e.g. Type::allInstances() −>isUnique(obj
| obj.attr ). If the attribute is of Integer, Float, or String
type and it is not referenced by any other constraint, it
can be trivially satisfied: a different value can be assigned
to each potential instance, e.g., 1, 2, 3, . . . The verification
engine does not need to spend time computing the value of
the attribute in each object and enforcing uniqueness among
different objects. Therefore, the attribute and the constraint
can be safely removed from the problem without affecting its
satisfiability.

Another trivially satisfiable pattern which can also be
removed is the derived value constraint, where the value
of one attribute depends on the values of other attributes.
The pattern is self.attrib op expression where attrib is an
attribute of a basic type (Boolean, Integer, Float, String) not
constrained by any other constraint, op is a relational operator
(=, 6=, <,>,≤,≥) and expression is a ‘safe’ OCL expression
which does not include any reference to attrib. By ‘safe’ we
mean a side-effect-free expression which cannot evaluate the
undefined value in OCL (OclUndefined). This means that we
do not allow divisions that can cause a division-by-zero or
collection operations which are undefined on empty collections
like first().

Intuitively, this constraint cannot make the model unsat-
isfiable: if an instance for the rest of the model can be
created, it is simply a matter of evaluating expression to
find the right value of attrib. The conditions for expression
(no self-references, no undefined values) guarantee that the
evaluation always computes a feasible value for attrib. In
some cases, derived value constraints involving recursive query
operations may render/make a model to become unsatisfiable.
In that case, if there is any repetition in the same constraint
(i.e., using recursive query operations) with the same pattern
self.attrib op expression will not be counted as a derived
value constraint. The recurrence of values of same objects
make a model unsatisfiable. Therefore, if there is any repetition
in OCL constraint will not be removed from the problem.
Table III briefly summarises the patterns and conditions where
the column Pattern shows the possible expressions and the
column Condition illustrates the criteria for including the
corresponding pattern.

With regard to the running example, invariant MinCoach-
Size is a derived value constraint where the expression is
the constant 0. This invariant is not trivially satisfiable, how-
ever, and therefore cannot be abstracted, because the attribute
‘noOfSeats’ is also constrained by the invariant MaxCoach-
Size. On the other hand, the constraints NonNegativeAge,

TABLE III. PATTERNS WITH CONDITIONS.

Pattern Condition
Type::allInstances() −>isUnique(at) Key constraint if attribute is not constrained

anywhere else.
self.at op exp Derived value constraint if attribute is not used

anywhere else and expression does not involve attribute.
A or B Trivially satisfiable if either A or B are satisfiable.
A and B Trivially satisfiable if both A and B

are satisfiable and have no interdependencies.
A implies B =¬A∨B Trivially satisfiable if either ¬A or B are satisfiable.
Not A Trivially satisfiable if A is trivially satisfiable

and it is not a key constraint.
self.navigation−>isUnique(at) Trivially satisfiable if attribute is not used anywhere else.

CorrectTripDestination, and MachineNumber are derived value
constraints which can be abstracted. Finally, the invariant
UniqueTicketNumber is a key constraint which can also be
abstracted.

V. ANALYSIS OF UML CLASS DIAGRAMS

In this section, we will consider a UML class diagram
composed of binary associations and inheritance relations. The
features of class diagrams like associative classes or n-ary
associations can be expressed in terms of binary associations
(and potentially additional OCL constraints) [18].

In this phase, we will compute a graph-based represen-
tation (dependency graph) that captures the dependencies of
the elements within the UML/OCL class diagram. Then, the
computation of slices will simply consist of computing the con-
nected components of the graph, i.e., the maximal subgraphs
where there is a path among each pair of vertices. Intuitively,
each connected component represents a set of interdependent
constraints which have to be analysed as a whole.

A dependency graph is an undirected graph where each
vertex is a class of the model. The core challenge is the
definition of the conditions under which two vertices will be
connected: they should be as aggressive as possible (removing
irrelevant dependencies) but also conservative (related vertices
will not be separated under any circumstances).

In order to define these relationships, we will use an
auxiliary graph-based representation called a flow graph. A
flow graph is a labelled directed pseudograph, i.e., there can
be arcs from a vertex to itself and multiple arcs between two
vertices. The vertices of the flow graph are the classes of
the class diagram and the labels in the arcs are non-negative
integers. An arc X

n→ Y has means ‘if there is an object in
class X , at least n objects of class Y must exist’. Using this
definition, there is an arrow X

n→ Y if:

• X is a subclass of Y (n = 1): each object of a subclass
is also an object of the superclass.

• There is an association between X and Y and the
lower bound of the multiplicity of the association end
at Y is n.

Arcs with a label of zero can be removed because they
are not imposing any constraint. Multiple arcs between two
vertices can be replaced by a single arc labelled with maximum
label. For example, Figure 4 illustrates the flow graph for the
running example after these simplifications.

Intuitively, a path in the flow graph among vertices X and
Y establishes a dependency from X to Y . A cycle defines
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Fig. 4. Flow graph (left) and dependency graph (right) for the running
example.

a cyclic dependency and it is therefore a possible source of
unsatisfiability. Any cycle where the maximum label is one
is inherently satisfiable, and it will be called safe, but cycles
where (1) the maximum label ≥ 2 and (2) there are two
or more participating associations/inheritance relations which
also form a cycle in the class diagram can be unsatisfiable.
Such cycles will be called unsafe. In our running example
(Figure 4), there are three cycles: Trip-Coach, Trip-Passenger
and Manager-Bonus. The first two are safe (they only involve
one association so there is no cycle in the class diagram)
whereas the third one is unsafe (two associations participate
in the cycle and there is a multiplicity with lower bound 2).

Using this information, the dependency graph will be
created in two steps. In the first step, we identify classes which
are potentially unsatisfiable, i.e., classes constrained by OCL
invariants and classes belonging to an unsafe cycle:

1) Create a vertex for each class that appears in the
constraint support of an OCL constraint.

2) Add an edge X − Y if both X and Y belong to the
constraint support of the same constraint.

3) Create a vertex (if it does not previously exist) for
each class that appears in an unsafe cycle in the flow
graph.

4) Add an edge X − Y among all vertices participating
in the same unsafe cycle.

In the second step, we iteratively add classes that constrain
vertices already in the dependency graph. Let X and Y be a
pair of vertices in the dependency graph, where X and Y can
be the same vertex, and Z a class that does not appear in the
dependency graph. Then, if there is a path from X to Z and
from Z to Y in the flow graph, vertex Z must be added to
the dependency graph together with edges X − Z and Y −
Z. This process propagates dependencies between potentially
unsatisfiable classes that cross through other classes. In our
running example, the resulting flow graph is shown in Figure 4,
with two connected components: one coming from the unsafe
cycle in the flow graph Manager-Bonus and another coming
from the constraints Min/Max-CoachSize, formed by classes
Coach, Trip, and Passenger.

It is possible to extract its connected components from
the dependency graph. Each component defines a slice of the
class diagram that can be analysed independently: the set of
classes from the class diagram, the set of associations and
the inheritance hierarchies among them, the invariants that
have some of these classes in their support and the attributes
referenced by any of those invariants. For example, Figure
3 highlights the final slices passed to the verification tool

for strong satisfiability. Strikethrough text indicates attributes
from the original model which have been abstracted in the
slice. Notice how, thanks to the detection of trivially satisfiable
invariants described in the previous section, some attributes
like origin which were originally constrained by an invariant
can be simply abstracted.

With this approach, the slices of the class diagram cor-
respond to those fragments that could be unsatisfiable. The
implication is that if the slices can be populated, then the
remaining classes can be populated as well. But what happens
if these slices cannot be populated? This does not matter for
strong satisfiability, as all classes must be populated so any
failure means the whole model is unsatisfiable. As regards
weak satisfiability, however, it could be the case that all slices
are unsatisfiable but some of the remaining classes can be
satisfied independently. Considering our running example, let
us consider class Employee: creating an employee does not
impose any obligation on any other class of the model. Thus,
it is clear that this class can be populated and the model is
weakly satisfiable. Formally, if there is any class X such that
(1) X does not appear in the dependency graph and (2) the
flow graph has no path from X to a class in the dependency
graph, the model is weakly satisfiable. In this case X and any
classes which depend on X can be populated even if no class
of the dependency graph can be populated. In our running
example, class Employee is the only class which exhibits this
trait.

VI. DBLP CONCEPTUAL SCHEMA

This section demonstrates the application of the slicing
algorithm in a real-world case study: the conceptual schema
of the DBLP system, modelled as a UML class diagram. It
is a computer science bibliographical website, dating from the
1980s [15]. The DBLP structural schema deals with people
and their publications, which can be edited books and authored
publications. The class diagram has 17 classes and 26 integrity
constraints. This case study is interesting for our problem
since it has complex invariants and is a real-world case study.
Therefore, we applied our slicing approach to this DBLP case
study in order to show that our method works for external
case studies and can improve the efficiency of the verification
process.

Figure 5 introduces the DBLP class diagram that will be
used as an example to demonstrate slicing. Several integrity
constraints are defined as OCL invariants which we classify
in three types of categories: key constraints, derived value
constraints, and indispensable integrity constraints. Table IV
describes the list of constraint names, constraint supports,
and the category of constraints (key, derived value or in-
dispensable). The key constraints and derived value con-
straints are considered as trivially satisfiable patterns and can
safely be removed from the problem in order to improve
the efficiency of the verification process without considering
its satisfiability. Another category of integrity constraint is
the indispensable integrity constraints which are neither key
constraints nor derived value constraints and therefore cannot
be abstracted. These types of OCL invariants cannot be re-
moved because their attributes are constrained by more than
one invariant which affects their satisfiability. For example,
self.journalVolume −>isUnique(volume) could be considered
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Fig. 5. DBLP class diagram.
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a key constraint, but it is not a key constraint because there
is another constraint which affects the same attribute such as
self.journalVolume −>sortedBy(volume).volume = sequence {
1..self.journalVolume −>size() }.

A. Slicing DBLP

The input model is a DBLP case study annotated with
26 OCL invariants. After the elimination of key constraints
and derived value constraints, we have 10 other integrity
constraints whose satisfiability needs to be checked. Out of
these 10 constraints, there are two local and eight global
constraints. In order to identify the slices, we need, first
of all, to compute a flow graph of the DBLP case study
that captures the dependencies of the model elements, then
the connected components of the graph will be computed
respectively. In a flow graph, each vertex is a class and the
arcs are non-negative integers showing the association between
one vertex and another. Arcs with a label 0 are removed
from the DBLP class diagram because they are not restrict-
ing any OCL invariant except ConferenceEdition-EditedBook,
ConferenceEdition-BookSeriesIssue, and ConferenceEdition-
JournalIssue. Figure 6 illustrates the flow graph of the DBLP
class diagram after the elimination of the unnecessary arcs. The
next step involves the detection of cycles among the vertices.
Because of cyclic dependency, it is possible that the model
may become unsatisfiable. In the case of DBLP case study,
all cycles have the maximum label 1 and therefore all will
be deemed safe. There are two cycles: Person-Publication and
JournalPaper-JournalIssue which exists in a DBLP conceptual
schema; however, no unsafe cycle exists. Applying all this
information, we create the dependency graph. Initially, the
classes constrained by the OCL invariants will be identified.
Second, the vertices corresponding to these classes will be
added. For example, there is an arc between vertex JournalPa-
per and JournalIssue in the graph; however, the arc between
JournalVolume and JournalIssue is not included in the graph.
Using the path from JournalIssue to JournalVolume, an arc
between JournalVolume and Journal can now be added to the
flow graph. Edges with a multiplicity 0 which are not navigated
through any constraint are not depicted in the diagram.

Finally, the connected components will be extracted from
the flow graph. Each of these single components is a slice and
is composed of a set of classes, associations, and invariants.
Figure 7 describes two resulting slices, whose satisfiability
must be checked. These slices are made on the results from
indispensable integrity constraints which are not trivially sat-
isfiable. Table V summarises the constraint name, support,
required classes, and submodel for the indispensable integrity
constraints. As the DBLP case study involves complexity, there
is only the possibility of slicing the conceptual schema between
JournalIssue and JournalVolume. Consequently, five classes
are eliminated from the hierarchy, i.e., Person, BookSection,
BookSeries, JournalSection, and ConferenceSeries.

The detection of trivially satisfiable invariants means that
some attributes like title, name, or city which were constrained
before by an invariant can now be simply abstracted as can be
seen in Table VI. The description of the columns is as follows:
column name describes the names of the classes; column
attribute outlines the list of attributes for the entire DBLP class
diagram; column restricted attributes describes those attributes

Fig. 6. DBLP flow graph.

Fig. 7. Submodels 1 and 2 of DBLP.

which are constrained by indispensable integrity constraints;
column unrestricted attributes refers to those attributes which
are not constrained at all and, finally, column unrestricted after
removal shows those constraints which were constrained by
key and derived value constraints. In the end, the only attributes
which need to be considered are those from column restricted
attributes.

VII. EXPERIMENTAL RESULTS

In this section, we measure the speed-up achieved by
implementing the slicing technique in two different tools.

538 | P a g e
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 5, 2016

TABLE IV. NAME, SUPPORT, AND CATEGORY IN THE DBLP CLASS DIAGRAM.

Constraint Name Constraint Support Is Key or Is Derived
Value or Indispensable Constraints

nameIsKey Person (name) Is Key
isbnIsKey Book (isbn) Is Key
idIsKey BookSeries (id) Is Key

BookSeriesAndNumber BookSeries (number) Is Key
IdentifyBookSeriesIssue

issnIsKey Journal (issn) Is Key
titleIsKey Journal (title) Is Key

editedBookWithout EditedBook, BookSection (title) Is Key
Repetitions

bookSeriesIssueWithout BookSeriesIssue, BookSection (title) Is Key
Repetitions

journalSectionWithout JournalSection, JournalPaper (title) Is Key
Repetitions

bookSectionWithout BookSection, BookChapter (title) Is Key
Repetitions

journalVolumeAndNumber JournalVolume, JournalIssue (number) Is Key
IdentifyJournalIssue
journalIssueAndTitle JournalIssue, JournalSection (title) Is Key

IdentifyJournalSection
nameIsKey ConferenceSeries (name) Is Key
titleIsKey ConferenceEdition (title) Is Key

journalAndVolume Journal, JournalVolume (volume) Indispensable
IdentifyJournalVolume

correctPagination BookChapter (iniPage, endPage) Indispensable
correctPagination JournalPaper (iniPage, endPage) Indispensable
correctPagination JournalIssue, JournalPaper (iniPage, endPage) Indispensable
correctPagination EditedBook, BookChapter (iniPage, endPage) Indispensable
correctPagination BookSeriesIssue, BookChapter (iniPage, endPage) Indispensable

consecutiveVolumes Journal, JournalVolume (volume) Indispensable
compatibleYear EditedBook, ConferenceEdition (year), Indispensable

Book (publicationYear)
compatibleYear BookSeriesIssue, ConferenceEdition (year), Indispensable

Book (publicationYear)
conferenceIsPublished ConferenceEdition, EditedBook, Indispensable

BookSeriesIssue, JournalIssue
theSamePublisher Book, BookSeriesIssue, BookSeries (publisher) Is Derived Value
compatibleYear JournalIssue (year), ConferenceEdition (year) Is Derived Value

TABLE V. CONSTRAINT NAME, SUPPORT, TIGHTLY COUPLED CLASSES AND SUBMODEL FOR INTEGRITY CONSTRAINT.

Constraint Name Constraint Support Tightly Couped Classes Submodel
correctPagination BookChapter (iniPage, endPage) BookChapter, AuthoredPublication 1

Publication
correctPagination JournalPaper (iniPage, endPage) JournalPaper,JournalIssue 1

AuthoredPublication,
Publication, JournalVolume,Journal

correctPagination JournalIssue, JournalPaper,JournalIssue 1
JournalPaper (iniPage, endPage) AuthoredPublication, 1

Publication, JournalVolume,Journal
correctPagination EditedBook, EditedBook,BookChapter, 1

BookChapter (iniPage, endPage) AuthoredPublication
correctPagination BookSeriesIssue, BookSeriesIssue,BookSeries, 1

BookChapter (iniPage, endPage) AuthoredPublication
Publication, Book,BookChapter

compatibleYear BookSeriesIssue, Book (publicationYear), BookSeriesIssue,Book 1
ConferenceEdition (year) BookChapter, AuthoredPublication,

Publication, ConferenceEdition
compatibleYear EditedBook, Book (publicationYear), EditedBook,Book 1

ConferenceEdition (year) Publication, ConferenceEdition
BookChapter, AuthoredPublication

conferenceIsPublished ConferenceEdition, EditedBook, ConferenceEdition, EditedBook, Book 1
BookSeriesIssue, JournalIssue BookSeriesIssue, journalIssue, Publication,

JournalPaper, AuthoredPublication
journalAndVolume Journal, JournalVolume (volume) Journal,JournalVolume 2

IdentifyJournalVolume
consecutiveVolumes Journal, JournalVolume (volume) Journal,JournalVolume 2

Initially, we had developed a prototype implementation of the
slicing procedure on top of the tool UMLtoCSP [9]. UML-
toCSP transforms verification problems involving UML/OCL
class diagrams into constraint satisfaction problems (CSP)
which can be solved by a constraint solver. Solutions to the
CSP are instances of the diagram which prove or disprove
the property to be verified. Figure 8 presents the method of
applying slicing technique in UMLtoCSP. Further discussion
on translation of UML/OCL class diagrams, transformation
of classes and, definition of correctness of properties can be
found in [10]. Second, we slice the conceptual schema of the
DBLP programmed in Alloy [20] in order to show the drastic

speed-up. Alloy is a widely-used structural modelling language
based on first-order logic (FOL) and can generate instances
of invariants and simulate the execution of operations. The
purpose behind showing the results in the Alloy specification
is to demonstrate that the developed slicing technique is
neither tool dependent nor formalism dependent. It can be
implemented in any verification-driven UML/OCL tool. These
two cases support hypothesis 1 (H1).

A. Slicing in UMLtoCSP

In the first case, we compare the verification time of
several UML/OCL class diagrams using (1) the original tool
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TABLE VI. RESTRICTED AND UNRESTRICTED ATTRIBUTES FOR DBLP CASE STUDY.

Class Name Attributes Restricted Attributes Unrestricted Attributes Unrestricted
Attributes

After Removal
Person name: String None homePage: String name: String

homePage: String numPublications:Natural
numPublications: Natural

Publication title: String None title:String None
year: Year year:Year

edition: String edition:String
Book numPages: Natural publicationYear:Year numPages:Natural

homePage: String homePage:String isbn:String
publicationYear: Year publisher:String

isbn: String
publisher: String

EditedBook None None None None
AuthoredBook None None None None

AuthoredPublication None None None None
BookChapter iniPage: Natural iniPage: Natural conferencePaper:Boolean None

endPage: Natural endPage: Natural
conferencePaper:Boolean

BookSection title: String None order:Natural title:String
order: Natural

BookSeriesIssue number: Natural None None number:Natural
BookSeries id: String None None id:String

publisher: String publisher:String
ConferenceEdition title: String year: Year city: String title: Sting

year: Year country: String
city: String homePage: String

country: String
homePage: String

ConferenceSeries acronym: String None acronym:String name: String
name: String

JournalPaper iniPage: Natural iniPage: Natural conferencePaper:Boolean None
endPage: Natural endPage: Natural

conferencePaper:Boolean
JournalSection title: String None order:Natural title: String

order:Natural
JournalIssue number: Natural None number: Natural year: Year

year: Year month: String
month: String numPages: Natural

numPages: Natural
JournalVolume volume:Natural volume: Natural None None

Journal title: String None None title: String
isbn:String isbn:String

TABLE VII. DESCRIPTION OF THE UML/OCL BENCHMARKS.

Example Classes Associations Attributes Invariants Strongly Satisfiable?
Atom-Molecule 2 1 6 1 Yes
Paper-Researcher 2 2 5 4 No
Coach 13 13 27 6 Yes
Production System 50 30 72 5 Yes
Company 100 100 100 100 Yes
DBLP Conceptual Schema 17 19 38 26 Yes
Script 1 100 53 122 2 Yes
Script 2 500 227 522 5 Yes
Script 3 1000 505 1022 5 Yes
Cycle 1 10 10 10 10 No
Cycle 2 100 100 100 100 No

UMLtoCSP and (2) the tool UMLtoCSP (UOST) with slicing
[39]. UMLtoCSP (UOST) is developed in JAVA and “the
basic approach behind the UMLtoCSP (UOST) tool is a
model slicing technique that enables efficient verification of
UML/OCL class diagrams. The tool can verify different sets
of properties for UML/OCL class diagrams with disjoint and
non-disjoint sets of slicing. The features strong satisfiability
and weak satisfiability are same as in UMLtoCSP [9].
However, other new features in UMLtoCSP (UOST) are:
Strong satisfiability: the class diagram should have a legal

instance for at least one object from each class and a link
from each association.
Weak satisfiability: the class diagram should have a legal

instance/object which is non-empty, i.e., it contains at least
one object from some class.

Remove attributes: for weak or strong satisfiability,

unrestricted attributes can be removed from the class diagram.
Non-disjoint slicing: slicing of a class diagram with non-

disjoint sets of submodels.
Disjoint slicing: slicing of a class diagram with disjoint sets

of submodels.
Show specific invariants: detection of failing submodel(s) in

disjoint slicing and a specific unsatisfiable invariant(s) in non
disjoint slicing”[39].

In each example verified in UMLtoCSP (UOST), the prop-
erty to be verified has strong satisfiability. Table VII describes
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Fig. 8. Slicing procedure in UMLtoCSP.

the set of benchmarks used for our comparison: the number of
classes, associations, invariants, and attributes. For each class
diagram, we also indicate whether it is strongly satisfiable
or not. The benchmarks ‘Company’, ‘Script’, and ‘Cycle’
were programmatically generated, in order to test large input
models. Of these models, we consider the ‘Script’ models to
be the best possible scenario for slicing (large models with
many attributes and very few constraints). The models ‘Paper-
Researcher’, ‘Atom-Molecule’, ‘Company’, and ‘Cycle’ serve
as worst-case scenarios (models with many interdependent
constraints, designed so they cannot be sliced).

UMLtoCSP has a set of parameters that can have a strong
influence on its runtime. These parameters set an upper bound
on the size of the instance (number of objects per class, number
of links per association) and the domain of attributes (set of
feasible values for each attribute). In UMLtoCSP, verification
is not complete in the sense that it will only explore potential
instances within these bounds. Nevertheless, the size of the
solution space to be explored by UMLtoCSP is exponential
in terms of these parameters. Therefore, parameters of large
value will make the comparison more favourable in terms
of slicing, as abstracting attributes and classes will cause a
larger reduction of the solution space. In our analysis, we
considered small but reasonable values for parameters: at most
four objects will be created for each class, at most 10 links
for each association and each attribute will have at most 10
distinct values.

(a) Submodel 1 of ‘Model Coach’

(b) Submodel 2 of ‘Model Coach’

Fig. 9. UMLtoCSP output of model coach.

Table VIII shows the experimental results computed using
a Intel Core 2 Duo Processor 2.1Ghz with 2Gb of RAM. All
times are measured in seconds and a time-out limit was set
at two hours (7200 seconds). For each model, we describe the
original verification time (OVT), the number of slices in which
the model is divided, the number of attributes that we manage
to abstract, the time required to perform all the UML/OCL
slicing analysis (ST), and the verification time after the slicing
(SVT). Figure 9 shows the UMLtoCSP output, i.e., object
diagram of ‘Model Coach’.

The first conclusion is that slicing is a very fast procedure
even in diagrams with hundreds of classes and it is a for-
malism independent technique. As expected, the effectiveness
of the technique depends on the specific model analysed:
small models and models where UMLtoCSP has already been
performed will gain little from slicing. This also happens with
models where there are no unconstrained attributes and all
classes and constraints are interdependent. In the worst case,
the verification time with slicing is the same as that without
slicing. In models where slicing manages to partition the model
and abstract attributes, however, the speed-up reaches several
orders of magnitude. Therefore, its success will depend on the
type of model where it is applied. Small models which have
been manually preprocessed for verification will gain little
from slicing. Models created for other purposes or models gen-
erated through automatic transformation can, however, benefit
greatly from the application of slicing. Therefore, hypothesis
2 (H2) is supported.

The tiny overhead introduced by slicing and the tool-
independent nature of this approach are additional reasons in
favour of adding slicing to existing formal verification toolkits.
A larger real-world case study where further benefits of slicing
are illustrated in different formalism (i.e., SAT) is presented
in Section “Slicing Alloy Specification (DBLP)”.

B. Slicing in Alloy

In the second case, we have applied the slicing technique on
a few examples programmed in the Alloy specification in order
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TABLE VIII. DESCRIPTION OF EXPERIMENTAL RESULTS (CASE 1).

Example OVT Slices Attr ST SVT Times
Atom-Molecule 0.03s 1 3 0.00s 0.03s 0x
Paper-Researcher 0.04s 1 0 0.00s 0.04s 0x
Coach 5008.76s 2 26 0.00s 0.15s 33392x
Production System 3605.35s 4 59 0.02s 0.03s 72107x
Company 0.08s 1 0 0.00s 0.08s 0x
DBLP Conceptual
Schema Time-out 2 18 0.19s 0.37s Not verifiable without slicing
Script 1 Time-out 2 117 0.02s 0.03s Not verifiable without slicing
Script 2 Time-out 4 509 0.09s 0.02s Not verifiable without slicing
Script 3 Time-out 4 1009 0.29s 0.34s Not verifiable without slicing
Cycle 1 Time-out 1 10 0.00s Time-out Not Available
Cycle 2 Time-out 1 100 0.00s Time-out Not Available

OVT Original Verification Time Attr # of abstracted attributes
SVT Total verification time for all slices ST Slicing Time

to prove that our developed slicing technique is neither tool-
dependent nor formalism-dependent. To translate the models
into the Alloy language, we have used the model finder to
generate possible model instances, which proves satisfiability
of the model.

We compare the verification time of UML/OCL class
diagrams using the Alloy analyser with and without the slicing
technique. Table IX describes the set of benchmarks used for
our comparison: the number of classes, associations, invariants,
and attributes.

Tables X, XI, and XII summarise the experimental results
obtained with the Alloy analyser before and after slicing,
running on an Intel Core 2 Duo Processor 2.1Ghz with 2Gb
of RAM. Each table represents the results as described in
the benchmark (Table IX). The execution time is largely
dependent on the defined scope. Therefore, in order to analyse
the efficiency of verification, the scope is limited to four. The
Alloy analyser will examine all the examples with up to four
objects, and try to find one that violates the property. For
example, specifying scope four means that the Alloy analyser
will check models whose top level signatures have up to four
instances.

All times are measured in milliseconds (ms). For each
scope (before slicing), the translation time (TT), solving time
(ST), and the summation of the TT and ST, which is the
total execution time, are described. Similarly, for each scope
(after slicing) we measure the sliced translation time (STT),
sliced solving time (SST), and the summation of STT and SST.
Similarly, the column speed-up shows the efficiency obtained
after the implementation of the slicing approach.

Previously, with no slicing, it took 200 ms (scope 4) for
the execution of ‘University’ and 254 ms (scope 4) for ‘ATM
Machine’. With the UOST approach, it takes only 72 ms (scope
4) for ‘University’ and 24 ms (scope 4) for ‘ATM Machine’. It
is an improvement of 64% and 90%, respectively. In addition,
the improvement can also be achieved for larger scopes as
well.

C. Slicing Alloy Specification (DBLP)

We have also applied our slicing technique to the DBLP
structural schema programmed in the Alloy specification. The
schema that we slice with our approach defines 26 integrity
constraints. The approach is manually implemented in the

Fig. 10. Slicing procedure in Alloy analyser.

DBLP in order to show how fast it generates satisfying
instances of the example before and after the slicing is applied.
The same model is used for slicing in Alloy to check the
advantages of slicing. The execution time is largely dependent
on the defined finite scope and therefore, in order to analyse
the efficiency of verification, we limit the scope to a minimum
of two and a maximum of 22. Figure 10 shows the general
procedure of implementation of the slicing technique in the
Alloy analyser.

After application of the technique, two submodels are
obtained: submodel 1 consists of 10 classes annotated with
eight OCL constraints and submodel 2 comprises two classes
annotated with two OCL constraints. Table XIII summarises
the experimental results obtained with the Alloy analyser
before and after slicing, running on an Intel Core 2 Duo
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TABLE IX. DESCRIPTION OF THE EXAMPLES.

Example Classes Associations Attributes Invariants
Atom-Molecule 3 3 4 4
University 5 4 9 7
ATM Machine 50 51 51 7

TABLE X. SLICING RESULTS IN ALLOY FOR ATOM-MOLECULE EXAMPLE.

Before Slicing After Slicing
Scope TT ST TT+ST STT SST STT+SST Speedup %

2 115ms 70ms 185ms 109ms 56ms 165ms 10%
3 138ms 76ms 214ms 117ms 65ms 182ms 15%
4 153ms 100ms 253ms 119ms 70ms 189ms 25%

TT Translation Time ST Solving Time
STT Sliced Translation Time SST Sliced Solving Time

TABLE XI. SLICING RESULTS IN ALLOY FOR UNIVERSITY EXAMPLE.

Before Slicing After Slicing
Scope TT ST TT+ST STT SST STT+SST Speedup %

2 67ms 50ms 117ms 24ms 10ms 34ms 29%
3 92ms 56ms 148ms 35ms 30ms 65ms 56%
4 134ms 66ms 200ms 39ms 33ms 72ms 64%

TT Translation Time ST Solving Time
STT Sliced Translation Time SST Sliced Solving Time

TABLE XII. SLICING RESULTS IN ALLOY FOR ATM MACHINE.

Before Slicing After Slicing
Scope TT ST TT+ST STT SST STT+SST Speedup %

2 20ms 46ms 66ms 5ms 8ms 13ms 81%
3 83ms 91ms 174ms 9ms 11ms 20ms 89%
4 96ms 185ms 254ms 13ms 11ms 24ms 90%

TT Translation Time ST Solving Time
STT Sliced Translation Time SST Sliced Solving Time

Processor 2.1Ghz with 2GB of RAM . All times are measured
in milliseconds (ms). For each scope (before slicing), the
translation time (TT), solving time (ST), and the summation of
the TT and ST, which is the total execution time, are described.
Similarly, each scope after slicing time is also measured: i.e.,
the sliced translation time (STT), sliced solving time (SST),
and the summation of STT and SST, which is equivalent to
the summation of TT and ST. The only difference is that the
total execution time varies before and after slicing. Similarly,
the column speed-up shows the efficiency obtained after the
implementation of the slicing approach.

It took 1453 ms (scope 7) for the execution of the DBLP.
Using the approach for the slice computed by this method, it
takes only 828 ms (scope 7) to generate a satisfying instance
for the slice. It is an improvement of 43% and we have
also achieved minimum 18% (scope 2) and maximum 80%
(scope 22) speed-up which is marked progress in terms of
total execution time. In addition, the improvement can also
be achieved for larger scopes as well. For instance, we have
conducted experiments with a maximum scope of 22, and
therefore, at certain scopes, it is possible to reach up to 99%
improvement. Without slicing, however, we could only run the
analysis only up to a limited scope. Figure 11 shows the object
diagram of DBLP in the form of submodel 1 and submodel
2 as output in the Alloy analyser. This experiment supports
hypothesis 3 (H3) - that model slicing enables verification
of certain types of UML/OCL class diagrams that cannot be
verified with current tools.

(a) Submodel 1

(b) Submodel 2

Fig. 11. Alloy output of DBLP conceptual schema.
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TABLE XIII. DESCRIPTION OF EXPERIMENTAL RESULTS (CASE 2).

Before Slicing After Slicing
Scope TT ST TT+ST STT SST STT+SST Speedup %

2 125ms 47ms. 172ms 110ms 31ms 141ms 18%
3 187ms 78ms 265ms 125ms 62ms 187ms 29%
4 281ms 172ms 453ms 219ms 78ms 297ms 34%
5 473ms 190ms 663ms 299ms 110ms 409ms 38%
6 671ms 344ms 1015ms 438ms 156ms 594ms 41%
7 969ms 484ms 1453ms 672ms 156ms 828ms 43%
8 1132ms 567ms 1699ms 602ms 240ms 842ms 50%
9 1694ms 906ms 2600ms 787ms 302ms 1089ms 58%

10 2049ms 1149ms 3198ms 854ms 208ms 1062ms 66%
11 2751ms 1297ms 4048ms 1054ms 179ms 1233ms 70%
12 3934ms 1935ms 5869ms 1283ms 351ms 1634ms 72%
13 6361ms 2838ms 9199ms 1902ms 435ms 2337ms 75%
.. .... .... .... .... .... .... ...
.. .... .... .... .... .... .... ...
.. .... .... .... .... .... .... ...

22 26034ms 11049 37083ms 6736ms 584ms 7320ms 80%
TT Translation Time ST Solving Time
STT Sliced Translation Time SST Sliced solving Time

VIII. RELATED WORK

Slicing techniques can be classified according to two cri-
teria: the entity to be sliced (e.g., a program, a UML model,
an ontology, etc.) and the goal of the slicing process (e.g.,
synthesis, analysis, optimisation, visualisation, comprehension,
etc.). Intuitively, all slicing techniques proceed in two steps:
first, the subset of elements of interest that should appear in the
slice is identified; second, elements which depend on elements
of the slice are iteratively appended to the slice. The notions
of ‘element’, ‘element of interest’ and ‘dependency between
elements’ are completely determined by what is being sliced
and why.

Program-slicing [56], [46] techniques work at the level
of source code. Given a set of variables of interest and
a program location which are provided as input, program-
slicing computes the set of statements of the program that can
affect (backward) or be affected (forward) by those variables.
The applications of program-slicing include program analysis,
optimisation, verification and comprehension. Slicing has also
been used in the analysis of the architectural specifications of
a software system [43], [26], [57]. In this context, extracting
the set of components related to a component of interest can
facilitate component reuse and provide a high-level view of
the architecture that helps in its comprehension.

Another type of program slicing is used for Declarative
Specifications [52], [51]. This work proposes a tool known as
Kato which relies on heuristics to identify ‘core’ (slices) and
it is targeted towards the relational logic underlying Alloy.
Few details are provided on the set of heuristics used. The
declarative modelling language Alloy plays a vital role in
model verification and the complexity of declarative models
is equal to that of the UML model with OCL constraints;
therefore, the slicing in Alloy is needed. A novel optimisation
technique based on program slicing for declarative models in
order to perform efficient analysis is proposed. The algorithm
works by partitioning slices for Alloy models into a case and
derived slices. Afterwards, a satisfying instance of a base slice
is generated to find the solution for the entire model. If the
base slice is unsatisfiable then the entire model is unsatisfiable
[53].

A challenging area is the testing of software product
lines using SAT-based analysis. An interesting technique is
proposed which incrementally generates tests for product
lines. In this approach, the features of the program are the
basis of incremental test cases. Afterwards, these features
are converted into incremental test suites via transformation
[50]. For model-based abstractions, a novel approach towards
general automation for Model Driven Architecture (MDA)
is introduced which is known as the FORMULA framework.
FORMULA is a specification language and analysis tool that
can be used to construct general MDA abstractions [22].

A further interesting angle of related work is systematic
constraint-based test generation for programs and slicing for
Alloy models. An interesting method for constraint-based test
generation for programs is proposed which is based on organ-
ised generation of structurally complex test data from declara-
tive constraints. The approach takes structurally complex data
as an input, generates high-quality test cases and finds bugs in
non-trivial programs [25]. Moreover, a novel approach which
incrementally generates tests for product lines is proposed. In
this work, test generation derives from the functions of the
program [54]. A software system grows in size and complexity
and therefore testing becomes a challenging task. In order to
address the complexity issues, a novel approach to synthesising
declarative specifications is presented. Partitioning is applied
to enable efficient incremental analysis which defines a suite
of optimisation in order to improve the analysis [49].

The most recent work on program slicing focuses on the
reduction of the source code by program slicing before test
generation [11]. This method is implemented in a tool called
SNATE (Static Analysis and Testing). Furthermore, dynamic
backward slicing for programs and the model transformation
explores the idea of tracing the model transformations [48].
This work is based on program slicing for model transfor-
mations where the primary aim is to assess data and control
dependencies.

Ontologies provide a formal description of a set of con-
cepts and their relationships. General-purpose ontologies may
represent a large number of concepts and their size makes
them impractical for many applications. Several approaches
[14], [36], [45] focus on pruning large ontologies to produce
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smaller ontologies which are more manageable.

Slicing methods have also been proposed in the manage-
ment of different types of UML models. Context-free slicing
[24] provides a framework for defining model slices in UML
diagrams, e.g., class diagrams. This work proposes a general
theory of model slicing which has to be adapted to each
specific goal by defining a slicing criterion suitable for the
goal. There is no discussion on the definition of suitable slicing
criteria for verification. A different approach focusing on class
diagram comprehension uses coupling metrics [27] to slice
large models for visualisation. This type of approach would not
be suitable for verification purposes, as metrics do not provide
guarantees about the properties satisfied by the partitions.
Finally, the slicing of models consisting of both UML class
diagrams and UML sequence diagrams is considered in [29],
[30]. A common representation, Model Dependency Graphs,
is used to encode both types of diagrams. Again, the slicing
criterion must be provided as an input to the algorithm.

Other similar work to our approach is the slicing of state-
charts. Slicing hierarchical automata for model checking [23]
presents an approach for slicing statecharts for the verification
of properties. This research highlights the concept of slicing
criteria for states and transitions. The algorithm is based on
the removal of irrelevant hierarchies and concurrent states
whereas our goal is the verification of specific properties
using OCL constraints. We remove the OCL invariants to
reduce the complexity of the model and then slice. The
slicing criteria described in this paper are based on the scope
of OCL constraints. Another piece of work related to our
own is System Verification through logic (SVtL) [55]. SVtL
provides a verification environment based on slicing for UML
statecharts. It also removes irrelevant hierarchies in order to
reduce the complexity of the verification for statecharts. The
slicing criteria are based on dependency relations among states
and transitions of the system.

Slicing of UML state machines is another type of related
work [31]. This research provides a framework for creating
smaller models for UML state machines given the fact that
the behavior of the model should be the same. The method
of slicing simplifies the model with the help of features. It is
based on path predicates. Furthermore, slicing of state-based
models [28], [12], [19], [2] classifies the segments of the model
based on the element of interest. This approach presents a
slicing technique that reduces the complexity of state-based
models. The main use of slicing is for extended finite state
machine (EFSM) models; however, the technique can also
be applied to Specification and Description Language (SDL)
models and statecharts.

Recent work on the slicing of UML models using model
transformation has been presented by Kevin Lano [32], [33].
The purpose of slicing is to break the model into several sub-
models for better analysis and understanding. The slicing tech-
nique is applied to UML class diagrams and state machines.
The main goal of slicing is model transformation. Similar
practical approach for model slicing is also proposed which
is based on extraction of sub-models from original model to
ease software visualization. The proposed methodology uses
the idea of model based slicing of sequence diagrams to extract
desired sub-models [42]. Further recent work is introduced
by Wuliang Sun et al. [44] where authors invented model

slicing for invariant checking, and applied a slicing technique
to reduce the size inputs to improve efficiency of verification
process in current tools. It is further proven that model slicing
can drastically reduce the verification time. A general model-
based slicing framework is also proposed that can be used
to define both program and model slicing. The purpose of
the framework is to construct slices written in a UML-like
language [13].

The Kompren language to generate model slicers for Do-
main Specific Modeling Languages (DSMLs) is recommended
for different purposes: for example, examining and model
understanding. This work presents the model properties of the
slices which can be extracted from different forms of the slicer
[6], [7].

In contrast to these previous works, our paper describes a
slicing criterion oriented towards the verification of satisfiabil-
ity of UML/OCL class diagrams. We slice UML/OCL class
diagrams before transformation. Previous works either do not
target UML class diagrams or do not consider OCL (other than
as a notation to express slicing criteria) and none propose a
slicing criterion for verification.

Another source of relevant work appears in the underly-
ing theorem provers and solvers used to check satisfiability
in UML/OCL models. At this level, similar concepts for
partitioning, symmetry-breaking and other optimisations have
been considered extensively, for instance [16], [34], [52]. We
suggest that slicing before the translation into a formalism
like SAT or CSP is worthwhile for several reasons. First,
slicing analysis is independent of the underlying formalism,
so it can benefit a variety of tools. Furthermore, at this level
of abstraction the problem is smaller, so it is feasible to
perform more complex analysis. Finally, we can take advantage
of our knowledge of the semantics of UML/OCL and the
property to be verified, information which can be lost in
the translation into the formalism. For instance, the removal
of derived value constraints proposed in Section “Trivially
Satisfiable Constraints” would not be possible without precise
information about the property to be checked.

IX. CONCLUSIONS AND FUTURE WORK

This paper presents a novel slicing technique for
UML/OCL class diagrams aimed at making the verification
of satisfiability more efficient. The approach receives as input
a UML class diagram annotated with OCL constraints and
automatically breaks it into submodels whose satisfiability
can be analysed independently. Then, the satisfiability of the
original model can be established by checking if at least
one submodel (weakly satisfiable) or all submodels (strongly
satisfiable) are satisfiable. A benefit of this approach is that
it is independent of the underlying formalism used to check
satisfiability and can therefore be applied in many existing
tools.

A prototype implementation of the slicing procedure has
been developed on top of the tool UMLtoCSP. Experimental
results show that slicing can produce a significant speed-up
in verification time. The amount of speed-up achieved by
this method depends on the specific model, from none to
several orders of magnitude. As the overhead introduced by
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slicing analysis is negligible, we believe that slicing is a use-
ful addition to any UML/OCL satisfiability-checking toolkit.
Furthermore, we have demonstrated the slicing technique on
a real-world case study (DBLP conceptual schema) to analyse
the benefits. This real-world case study is programmed in
Alloy, which is a popular tool and widely used for verification
of models. We applied the slicing technique and achieved
drastic speed-up in this tool as well.

As regards our future work, we plan to create a verification
engine with slicing techniques that can break unverifiable mod-
els into several independent submodels and verify them. With
the help of slicing procedures, current verification methods will
be efficient enough to verify models with an additional level
of complexity that no current tool can handle.

ACKNOWLEDGEMENTS

This paper is a revised and extended version of the one
presented at Automated Software Engineering (ASE 2010),
Antwerp, Belgium had have received 38 citations.

REFERENCES

[1] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: A
challenging model transformation. In ACM/IEEE 10th Int. Conf. on
Model Driven Engineering Languages and Systems (MODELS 2007),
volume 4735 of LNCS, pages 436–450, 2007.

[2] K. Androutsopoulos, D. Binkley, D. Clark, N. Gold, M. Harman,
K. Lano, and Z. Li. Model projection: simplifying models in response
to restricting the environment. In ICSE, pages 291–300, 2011.

[3] M. Balaban and A. Maraee. A UML-based method for deciding finite
satisfiability in Description Logics. In DL’2008, volume 353 of CEUR
Workshop Proceedings. CEUR-WS.org, 2008.

[4] P. Baumgartner, U. Furbach, M. Gross-Hardt, and T. Kleemann. Model
based deduction for database schema reasoning. In KI 2004: Advances
in Artificial Intelligence, pages 168–182. Springer, 2004.

[5] D. Berardi, D. Calvanese, and G. D. Giacomo. Reasoning on UML
class diagrams. AIntelligence, 168:70–118, 2005.

[6] A. Blouin, B. Combemale, B. Baudry, and O. Beaudoux. Modeling
model slicers. In MoDELS, pages 62–76, 2011.

[7] A. Blouin, B. Combemale, B. Baudry, and O. Beaudoux. Kompren:
Modeling and generating model slicers. Software and Systems Modeling
(SoSyM), 2012.

[8] A. D. Brucker and B. Wolff. The HOL-OCL book. Technical Report
525, ETH Zurich, 2006.
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