
Virtual Heterogeneous Model Integration Layer

Muhammad Ali Memon 
School of Information Technology, 
Shaheed Benazir Bhutto University, 

Shaheed Benazirabad, Pakistan

Asadullah Shaikh
College of Computer Science and Information Systems, 

Najran University,
Najran, Saudi Arabia

Khizer Hayat
Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology, 

Hyderabad, Pakistan

Mutiullah Shaikh
Faculty of Electrical, Electronic and Computer Engineering, 

Mehran University of Engineering and Technology, 
Jamshoto, Pakistan

Abstract—The classic way of building a software today sim-
plistically consists in connecting a piece of code calling a method
with the piece of code implementing that method. We consider
these piece of code (software systems) not calling anything,
behaving in a non deterministic way and providing complex
sets of services in different domains. In software engineering
reusability is the holly grail, and specially the reusability of code
from autonomus tools requires powerful compostion/integration
mechanisms. These systems are developed by different developers
and being modified inceremently. Integrating these autonomous
tools generate various conflicts. To deal with these conflicts,
current integration mechanisms defines specific set of rules to
resolve these conflicts and accompalish integration. Indeed still
there is a big chance that changes made by other developers,
or they update their changes in order to make them compliant
with other developers cancel the updates done by others. The
approach presented here claims three contributions in the field of
Hetrogeneous Software Integration. First, this approach eliminate
the need of conflicts resolving mechanism. Secondly, it provides
the mechanism to work in the presence of conflicts without
resolving them. Finally, contribution is that the integration
mechanism does not affect if either of the system evolves. We
do this by introducing an intermediate virtual layer between two
systems that introduce a delta models which consist of three parts;
viability that share required elements, hiding that hide conflicting
elements and aliasing that aliases same concepts in both systems.

Keywords—Model Driven Engineering; Co-evolution; Co-
adaptation; Delta models; Model Integration

I. INTRODUCTION

Scale changes everything. This is one of the main obstacles
that software community has to conquer to build systems of the
future. Issues that are not significant at smaller scale become
significant when scale grows larger. Future systems will move
far beyond the size of today’s systems by every measure: lines
of code; people employing the system for different purposes;
data storage, accessibility and manipulation. We call these
systems as Large Scale Systems (LSS) or Systems of Systems
(SOS).

LSS systems will essentially be distributed and allow only
limited possibilities of centralized control over data, develop-
ment, evolution and operation. The reasons to their distributed
nature are their development and usage by wide variety of

stakeholders with conflicting needs and continuous evolution.
More LSS system, does more conflicts are likely to engender.

LSS system will comprises of different variety of sub
systems. These sub systems will have their own domain
specific languages (DSLs) designed according to different
methodologies and philosophies. Sub systems expand from
different places that are created and modified by dispersed
teams with different schedules, processes and goals. Some of
the sub systems may originate from legacies, that were already
designed before they were chosen to be part of LSS system.
Moreover all new sub systems will be written in different
languages and built on variety of platforms.

One way to integrate sub systems and share as much data
between them is by resolving all of their conflicts. Resolving
conflicts for these independently developed sub systems looks
next to impossible. Second way is to live with these conflicts
and still share the features and data. In this paper, we pro-
pose an approach that help us to integrate two independently
developed subsystems without resolving their conflicts.

Our approach introduces an intermediate mechanism be-
tween two subsystems; that work as a virtual layer. We name it
as Virtual Heterogeneous Model Integration Layer (VHMIL).
VHMIL work independent of both sub systems and do not
propose any modification in the structure of both the systems.
As the matter of fact, it works as a new central independent
layer to facilitate sharing of features and data between both
the systems. We already stated that it is a virtual layer,
which implies that it does not affect the structure of both sub
systems. On the contrary, it takes domain specific language of
two systems as input plus necessary requirements from their
domain experts and defines a new composed language.

In other words, VHMIL works as a filter of features
between both the systems. Domain experts from both systems
identify the features that what should be and should not be
shared. After identification of features when it comes to the
step of sharing stage. Some of the features raise conflicts.
Shared features of one system may conflict with the second
system’s existing structure and vice versa. For the simplifica-
tion of the process of integration we create two categories; one
is non conflicting features and other is conflicting features.

Non conflicting features are handled by the visibility

591 | P a g e
www.ijacsa.thesai.org 

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 



Fig. 1: Path between MM1 and MM2 meta-models

mechanism and conflicting features are handled by invisibility
and masking mechanism. Visibility contain those features
and data which are needed to be shared and do not generate
any conflict. Invisibility contains those features which are not
needed to be shared to avoid conflicts. Masking contains those
features which are similar in nature and causes conflicts.

Non conflicting : Visibility
Conflicting: Invisibility and Masking

VHMIL creation is an automated activity except the
identification of shared features, which domain experts
propose manually. Domain experts have to decide which
features need to be shared.

II. MODEL AND METAMODEL CONCEPT

When meta-model state every concept defined in the model
and model uses the metamodel concepts according to rules
stated by the metamodel then we call that model as instance
of that meta-model. Conformance is described by a set of con-
straints between models and meta-models. When all constraints
are validated, the model is said to conform to the meta-model.
In this rest of paper we will be using MM for meta-model and
M for instance model.

III. VHMIL: VIRTUAL HETEROGENEOUS MODEL
INTEGRATION CREATION

Consider two meta-models MM1 and MM2, both of them
represent language for different systems. MM1 wants to use
MM2’s some features without modifying its own as well as
MM2’s language. Similarly MM2 wants to use MM1’s some
features without modifying its own as well as MM1’s language.
VHMIL layer consists of two paths. One path is from MM1 to
MM2, and other is from MM2 to MM1. Both paths have one
an intermediate meta-model as shown in figure 1. Path from
MM1 to MM2 is represented as ∆(delta) and path from MM2
to MM1 is represented as 5(nebla).

∆ MM12 metamodel share MM1’s features for MM2.
In the same way MM21 metamodel between path MM1 to
MM2 provide MM2 features for MM1.

MM1 # MM2 = MM12 MM2 # MM1 = MM21

Delta and nebla consists of the same structure. Both con-
sists of three sections (Visible, Hiding, Aliasing). Delta makes

visible those elements for MM2, which need to be shared,
hide those elements which need to hide and cause conflicts
and alias those elements which has same syntax and semantics
between the MM1 and MM2. Similarly nebla will hold those
elements for MM1 which need to be shared for MM2, hide
those elements which need to hide from MM2 and alias those
elements which has same syntax and semantics between the
MM1 and MM2.

Generally, these three sections are explained in the intro-
duction section that what intermediate metamodel consists of
and now we will explain in the perspective of metamodel.

We consider that it is more intuitive to represent a delta in
operational terms; it is sequence of transformations that make
visible , hide or mask elements from a metamodel. We have
identified six elementary transformations in a metamodel that
will be used as the basis for defining a delta. We assume that
it is not possible to change the type of a model element, e.g., a
UML Class cannot become a Package, and an element cannot
change its UUID.

These operations are:

1) visibleElement: Make visible an element of type of
the MM1 which MM2 require.

2) visibleLink: Make visible an MM1link which is re-
quired by the MM2.

3) hideElement: Hide an element which is not required
by MM2

4) hideLink: Hide an association link which is not
required by MM2.

5) aliasElement: Assign an alias(rename ) to the element
of MM1 required by MM2.

6) aliasLink: Assign an alias to the element of MM1
required by MM2.

IV. METHODOLOGY

VHMIL consists of several sub tasks. Figure 2 provides an
overview of the proposed approach. We propose an approach
to share common concepts between two metamodel variants
with the impact of application of those common concepts on
their instance models with emphasis on the minimization of
manual effort. The envisioned steps are

1) Requirements collection and writing pre direc-
tives: Input gathering from domain experts of both
metamodel variants and writing directives for these
requirements manually .

2) D2. Raw delta concepts: Taking two meta-models
variants plus directives as input and with transforma-
tion generate a list of direct (visible, hidden and alias)
concepts. Etract information from paper to represent
it.

3) Generation of delta meta-model: In this step is
to generate an intermediary metamodel from list of
direct concepts.

4) Intermediate Directive Transformation (IDT) or
Adapter: This step have two options depending on
the requirements of the system. One option is IDT,
that take delta meta-model as input and generate
a generic rule based transformation. Second option

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

592 | P a g e
www.ijacsa.thesai.org 



Fig. 2: VHMIL methodolgy diagram

is adapters to provide interface to existing instance
model.

5) Execution of IDT :This step simply executes trans-
formation on instance model generated from IDT.
After applying these directives on the instance models
of MM1 will yield new instance models that will
work with the MM2 and delta meta-model.

V. RUNNING EXAMPLE

We present here a small scenario to show that how VHMIL
is created on a real time case study. We consider two systems
of different banks. Both banks have different systems designed
by different teams and built with different programming lan-
guages. Both the banks have different type of accounts and
services and customers. Management of both banks decided to
integrate and share some of the features between these banks
in order to facilitate customers or we can call it as partial
merger of banks.

Figure 3 shows a metamodel of bank A and figure 4 shows
a metamodel of bank B. The ultimate goal is to facilitate
customers of both banks to access their accounts and services
from both the banks. Simply customer of bank A is able to
access his account and associated services from bank B and
vice versa.

∆ help customers of bank A to access

To avoid the repetition, I explain only calculation of ∆
here, because calculation of 5 also follow the same process .

A. Requirements Collection and Writing Pre-directives

In this step, domain experts provide their view that
what features have the same similar meaning between both
meta-models. In our example, two accounts and one service
have same semantics in both banks. Bank B will treat
customer of Bank A ”SuperCurrent” account as their basic
account and provide ”InternetBanking” service who requests
for ”WebInfo” service. Similarly in Foreign Currency account

Fig. 3: Meta-model of bank A

Fig. 4: Meta-model of Bank B

is treated as ForeignCurr as shown in the table I. All other
related features will be imported of Bank A meta-model that
Bank B does not have. Delta model will import the service of
BillingReports from Bank A. Similarly the concept that are
not required from Bank A accounts will be make hidden for
example ”SMSBanking”.

After identifying the similar concepts, developer writes pre
directives for those concepts in directive language as shown
below:

1) ABC::ForeignCurrency.name=ForeignCurrency
2) ABC::SuperCurrent.name=Basic
3) ABC::WebInfo.name=InternetBanking

B. Raw Delta Concepts

In this step an automated transformation takes both Bank
A, Bank B meta-models and pre directives as an input and
produce the raw input of all the concepts containing three
parts: visible elements, alias elements and hidden elements
for both delt and nebla.

Bank A Bank B
Account : ForeignCurr Account : ForeignCurrency
Account : SuperCurrent Account : Basic
Service : WebInfo Service :InternetBanking

TABLE I: Similar concepts between Bank A and Bank B

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

593 | P a g e
www.ijacsa.thesai.org 



Fig. 5: Representation of delta meta-model for current example

∆ Dela meta-model
VisibleElement(Class, BillingReports)
VisibleElement(Parameter, Renumerated)
VisibleLink(Link,SuperCurrent,BillingReports)
VisibleLink(Link,ForeignCurrency,WebInfo)
HideElement(Class, SMSBanking)
HideAttribute(Class,Account, OpeningCharges)
HideElement(Containment, Basic, SMSBanking)
HideElement(Cotainment, ForeignCurrency, SMSBanking)
HideElement(Cotainment, ForeignCurrency, InternetBanking)
Alias(Class, SuperCurrent, Basic)
Alias(Class, Webinfo, InternetBanking)

5 Nebla meta-model
VisibleElement(Class, SMSBanking)
VisibleElement(Parameter, OpeningCharges)
VisibleLink(Link,Basic,SMSBanking)
VisibleLink(Link,ForeignCurrency, SMSBanking)
VisibleLink(Link,ForeignCurrency, InternetBanking)
HideElement(Class, BillingReports)
HideAttribute(Class,Account, Renumerated)
HideElement(Containment, SuperCurrent, BillingReports)
HideElement(Cotainment, ForeignCurrency, WebInfo)
Alias(Class, Basic, SuperCurrent)
Alias(Class, InternetBanking, WebInfo)

C. Generation of Delta Meta-Model

In this step an intermediary delta meta-model is generated
showing the visible, hidden and aliases concepts from list of
direct concepts as shown in figure 5.

D. IDT Transformation or Adapter

In this step, the intermediary delta meta-model is translated
into an executable generic transformation. The Intermediate
Directive Transformation (IDT) takes as an input the final
composed delta meta-model, and generate as output a model
transformation written in a particular transformation language
(e.g., ATL, XSLT, SQL-like, kermeta) as shown in figure 6.

import ’model.xmi’;
Element : Webinfo
{
name ::=InternetBanking
}
Element : ForeignCurr
{
name ::=ForeignCurrency
}
Element : SuperCurrent
{
name ::=Basic
}

E. Execution of IDT

This step simply executes transformation on instance
model. After applying transformation generated from IDT
directives on the instance models of MM1 will yield new
instance models that will work with the MM2 and delta meta-
model.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

594 | P a g e
www.ijacsa.thesai.org 



Fig. 6: Transformation of input models of one bank to another using detal and nebla meta-models

VI. RELATED WORK

We may divide the related approaches work on the basis
of Software Integration and Software Evloution.

Xavier lanc et al. [2] presented a software integration
mechanism called model bus. Model Bus is an approach to
support data integration and control integration. ModelBus
is based on the copy-modify merge mechanism. Models
are split into several XML fils that are stored in a central
storage, called the model base. Control integration facilitate
heterogenous tools to invoke modeling services of each other.
Each developer has his own workspace, called the model
workspace, that stores only the XMI files modified by the
developer. Developers can then modify their models locally
and save their modifications to the model base. To manage
the integration of developers’ updates into the model base,
ModelBus proposes dedicated delta extraction and delta
integration mechanisms The section.When several developers
modify a shared model and then generate different deltas
on a same model, a delta integration mechanism has to
combine together all the changes they do. Such a mechanism
should automatically combine all possible changes but should
also raise conflicts when changes cannot be automatically
combined.to resolve these conflicts it also provides the
conflicts resolving mechanism. In contrast to our approach
we donot resolve these conflicts but try to live with these
conflicts.[2]

Software Federations [13], [6], [5] approach provides the

mechanism to build a large software application by composing
Commercial Off The Shelf tools (COTS). This approach is
based on two level programming paradigm.

Marcus et al. describes a generic approach for calculation
of difference between two versions of models. When two
developers change the same subset of the model, this lead to
conflicts and it may not be possible to apply all changes in the
model. On the contrary, In our approach, we calculate delta
model between two model variants but not model versions
and we do not compose this difference model to acquire new
model. Instead delta model work with the base model in
synchronization rather [1].EMF compare is a tool provided
by the Eclipse Project. EMF Compare generate delta model,
which reports simple changes between terminal models pairs
or metamodel pairs [4]

Software Evolution is the most important factor to
consider because if software evolves, it affects the validity
of other software systems integrated with it. Hoessler et al.
[10] identify transformation model for transition of M to M’
conforming to the new Metamodel. This model consist of
three types of patterns. First pattern is metmamodel extension
that describes addition of class or property. Second pattern is
metamodel projection for removal of a class or property. Third
pattern is factoring for refinement of metamodel(Property
Movement,Property Amalgamation, Class Splitting and Class
Amalgamation). They do not develop any implementation for
their proposed models.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

595 | P a g e
www.ijacsa.thesai.org 



Kelly et al. [7]have presented an approach for adapting
model to evolving metamodels. This approach consists
of three steps. In first step it computes similarities and
differences between base metamodel and evolved metamodel
by executing set of heuristics . In the second step HOT
(Higher Order Transformation)translate takes all equivalences
and differences and yield an executable transformation in
ATL. Afterwards the transformation transform the model
confirming to the base model to the newly evolved model
while preserving the unchanged model elements.

Prawee Sriplakich et al. [18] shows a work of collaborating
development and follows the copy-modify-merge approach to
MDA models, where copy-modify-merge is consist of two
steps delta calculation and delta integration. Further Author
also propose a framework for automated to build programs
for automated conflicts resolution resulted of deltas modifying
same set of elements.

Gracia et al. [9] presents semi-automatic process for meta-
model evolution that supports the co-evolution of transfor-
mation. The work is devided in two steps: (1) detection
stage, where the changes in the metamodel are identified and
classified (2) the action for the changes is being taken in co-
evolution stage.

Schonbock et al. [17] presented an extensive survey for
several co-evolution approaches from different areas such
as software engineering like data, ontology, and grammar
engineering by considering a certain roadmap for development
in the field of co-evolution for agile MDE. Furthermore, the
authors presented a conceptual co-evolution framework with
help of running example for decrease in co-evolution effort
and increase in co-evolution performance.

Garcés et al. [8] presented an approach for transforma-
tion that covers external transformation of metamodel. The
approach works by identifying the transformation which deal
with either refactoring/destruction changes or construction
changes. It semi-automatically generates transformation with
the help of AtlanMod matching language.

Yu et al. [21] proposed a framework for metamodel which
is based on formal analysis for composition and adaptation.
The framework is able to explore and evolve metamodel based
on certain strategies. It also re-establish uniformity between
existing models and the metamodels. The approach proves that
model is able to accumulate information from the analysis.

Demuth et al. [3] presented a vision of co-evolution be-
tween metamodels and models that has an ability to adopt
change propagation. The approach handles co-evolution issues
without being dependent on specific metamodels or evolution
scenarios. The approach can also detect failures that can
occur during co-evolution process and generate appropriate
suggestions for corrections.

Paige et al. [16] discussed key problems that occur in
evolution process in the Model Driven Engineering (MDE)
field. The authors discussed about up to date work of models
and metamodels evolution and summarized the challenges it
in this paper.

Taentzer et al. [19] proposed an approach which is related
to graph transformation for model co-evolution. The models
represent graphs with model relation and type-instance rela-
tions with respect to their metamodels.

Meyers et al. [15] presented a technique that help the user
to solve the issues related to migration from one model to
another. This approach simplifies migration specification and
reduces the work of evolver. The formal framework of migra-
tion of the model which is independent of specific modeling
approaches is presented by Mantz et al. [14]. While Wagelaar
et al. [20] proposed a model transformation language for
coupled evolution in metamodel. It shows executable semantics
for EMFMigrate. Iovinoet al. [11] discussed the metamodel
change impact of existing artifacts.

OCL plays an important role with respect to models and
metamodels. Kusel [12] expressed the solution of actions for
all metamodel that violate the changes of syntactic correctness
of OCL expressions.

VII. CONCLUSIONS

It is a permanent effort in computer sciences, to find ways
to integrate existing applications with new ones. This paper
presents the current state of work in attempting to overcome
the difficulties involved in application integration and reuse
each other’s services. While services in each application have
different signature and structures, which may cause conflicts
when trying to be integrate with each other. We propose an
intermediatory layer to facilitate this integration of applications
by eliminating the need of resolving these conflicts. In contrast
conflicts are being handsled in a way that there conflicting
behaviours effect the integration. Future work involves rigerous
testing, verification and validation of our approach with large
models.

REFERENCES

[1] Marcus Alanen and Ivan Porres. Difference and union of models. pages
2–17, 2003.

[2] Xavier Blanc, Marie-Pierre Gervais, and Prawee Sriplakich. Model bus:
Towards the interoperability of modelling tools. In MDAFA, pages 17–
32, 2004.

[3] Andreas Demuth, Markus Riedl-Ehrenleitner, Roberto E Lopez-
Herrejon, and Alexander Egyed. Co-evolution of metamodels and
models through consistent change propagation. Journal of Systems and
Software, 111:281–297, 2016.

[4] Eclipse.org. Emf compare, (2008).
http://wiki.eclipse.org/index.php/EMF.

[5] J. Estublier, H. Verjus, and P. Y. Cunin. Modelling and managing
software federations. volume 26, pages 299–300, New York, NY, USA,
2001. ACM.

[6] Jacky Estublier, Herv Verjus, and Pierre yves Cunin. Designing and
building software federations. In 1st Conference on Component Based
Software Engineering. (CBSE, 2001.

[7] Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin. Man-
aging model adaptation by precise detection of metamodel changes.
In ECMDA-FA ’09: Proceedings of the 5th European Conference on
Model Driven Architecture - Foundations and Applications, pages 34–
49, Berlin, Heidelberg, 2009. Springer-Verlag.

[8] Kelly Garcés, Juan M Vara, Frédéric Jouault, and Esperanza Marcos.
Adapting transformations to metamodel changes via external transfor-
mation composition. Software & Systems Modeling, 13(2):789–806,
2014.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

596 | P a g e
www.ijacsa.thesai.org 



[9] Jokin Garcı́a, Oscar Diaz, and Maider Azanza. Model transformation
co-evolution: A semi-automatic approach. Software Language Engi-
neering, 7745:144–163, 2013.

[10] Joachim Höler, Hajo Eichler, and Michael Soden. Coevolution of
models, metamodels and transformations. Wissenschaft & Technik
Verlag, June 2005.

[11] Ludovico Iovino, Alfonso Pierantonio, and Ivano Malavolta. On the
impact significance of metamodel evolution in mde. Journal of Object
Technology, 11(3):3–1, 2012.

[12] Angelika Kusel, Juergen Etzlstorfer, Elisabeth Kapsammer, Werner
Retschitzegger, Johannes Schoenboeck, Wieland Schwinger, and
Manuel Wimmer. Systematic co-evolution of ocl expressions. 11th
APCCM, 27:30, 2015.

[13] Tuyet Le-anh, Jorge Villalobos, and Jacky Estublier. Multi-level
composition for software federations. 2003.

[14] Florian Mantz, Gabriele Taentzer, Yngve Lamo, and Uwe Wolter. Co-
evolving meta-models and their instance models: A formal approach
based on graph transformation. Science of Computer Programming,
104:2–43, 2015.

[15] Bart Meyers, Manuel Wimmer, Antonio Cicchetti, and Jonathan Sprin-
kle. A generic in-place transformation-based approach to structured
model co-evolution. Electronic Communications of the EASST, 42,
2012.

[16] Richard F Paige, Nicholas Matragkas, and Louis M Rose. Evolving
models in model-driven engineering: State-of-the-art and future chal-
lenges. Journal of Systems and Software, 111:272–280, 2016.

[17] J Schonbock, Juergen Etzlstorfer, Elisabeth Kapsammer, Angelika
Kusel, Werner Retschitzegger, and Wieland Schwinger. Model-driven
co-evolution for agile development. In System Sciences (HICSS), 2015
48th Hawaii International Conference on, pages 5094–5103. IEEE,
2015.

[18] Prawee Sriplakich, Xavier Blanc, and Marie-Pierre Gervais. Supporting
collaborative development in an open mda environment. In ICSM ’06:
Proceedings of the 22nd IEEE International Conference on Software
Maintenance, pages 244–253, Washington, DC, USA, 2006. IEEE
Computer Society.

[19] Gabriele Taentzer, Florian Mantz, and Yngve Lamo. Graph Transfor-
mations: 6th International Conference, ICGT 2012, Bremen, Germany,
September 24-29, 2012. Proceedings, chapter Co-transformation of
Graphs and Type Graphs with Application to Model Co-evolution, pages
326–340. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[20] Dennis Wagelaar, Ludovico Iovino, Davide Di Ruscio, and Alfonso
Pierantonio. Theory and Practice of Model Transformations: 5th Inter-
national Conference, ICMT 2012, Prague, Czech Republic, May 28-29,
2012. Proceedings, chapter Translational Semantics of a Co-evolution
Specific Language with the EMF Transformation Virtual Machine,
pages 192–207. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[21] Ingrid Chieh Yu and Henning Berg. A framework for metamodel com-
position and adaptation with conformance-preserving model migration.
In Model-Driven Engineering and Software Development, pages 133–
154. Springer, 2015.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

597 | P a g e
www.ijacsa.thesai.org 


