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Abstract—Electroencephalography is a measure of brain 

activity by wave analysis; it consist number of electrodes. Finding 

most non-dominant electrode positions in Eye state classification 

is important task for classification. The proposed work is 

identifying which electrodes are less responsible for classification. 

This is a feature selection step required for optimal EEG channel 

selection. Feature selection is a mechanism for subset selection of 

input features, in this work input features are EEG Electrodes. 

Most Non Dominant (MND), gives irrelevant input electrodes in 

eye state classification and thus it, reduces computation cost. 

MND set creation completed using different stages. Stages 

includes, first extreme value removal from electroencephalogram 

(EEG) corpus for data cleaning purpose. Then next step is 

attribute selection, this is a preprocessing step because it is 

completed before classification step. MND set gives electrodes 

they are less responsible for classification and if any EEG 

electrode corpus wants to remove feature present in this set, then 

time and space required to build the classification model is (20%) 

less than as compare to all electrodes for the same, and accuracy 

of classification not very much affected. The proposed article uses 

different attribute evaluation algorithm with Ranker Search 

Method. 

Keywords—Electroencephalography (EEG); Most Non 

Dominant (MND); Ranker algorithm; classification; EEG 

I. INTRODUCTION 

The MND feature subset selection is a part of corpus 
preprocessing, and it is useful for classification model building 
as a supervised learning .Classification is one of the task 
performed by data mining tools and applicable in different area 
of biomedical electrical devices such as EEG, 
ECG(Electrocardiograms), EMG(Electromyography), 
EOG(Electrooculography), Actigraph devices etc. These 
devices are popular devices for recognizing of different types 
of disease like Sleep Apnea diagnosis[1] using ECG, driving 
drowsing using EEG[2],EEG and electromyography (EMG) 
enable communication for people with severe disabilities 
[20],muscles activity using EOG[3],and military operation 
using EEG[21] etc. These are the motivational points for 
proposed work because the article finds those positions 
electrode they are less responsible for classification then the 
removal of those electrodes minimize the size of devices. The 
present work is performed with EEG electrode data having 16 
electrodes and 14892 instances [4,5]. This uses the instance 
based classifier (K*), because based on statistic of data and 
nature of data spread over the corpus found it is best among 

other classifier the result of this present in literature [6, 7], 
[28], [33], [38]. Method selects either one electrode, two 
electrode or three electrodes based on how much search space 
the corpus wants to reduce. Its outcome generated from 
different attribute selection search with attribute evaluation 
techniques [8], [37]. Here it is 11 different combination of 
search with evaluation techniques. Then generating rules using 
Apriori algorithm [9], it gives frequent electrodes which are 
placed in ranked as a last four sequences, it also depends how 
many last feature ranked matrix the corpus wants to create. 
Here it is 11*4 , where 11 are a Row value and 4 is a column 
value. Ranker Search with different attribute evaluation 
algorithms shown in Figure [1].Rankers Algorithm is an 
algorithm useful for ranking of attributes by their individual 
evaluation [10]. Here three attribute evaluation methods are 
defined. 

1) Info Gain Attribute evaluation: Evaluate the worth of 

an attribute by measuring the gain ratio with respect to the 

class. 

2) Classifier Attribute Evaluation: Evaluate the work of 

n attribute by using a user specified classifier. 

3) OneR Attribute Evaluation: Evaluate the work of an 

attribute by using the oneR classifier. 

II. ASSOCIATION RULE MINING 

Association Rule Mining is used here for obtaining 
frequent set they are correlated with each other using support 
and confidence parameters [11- 13]. 

Support is define as how frequently a specific item set 
occur in the data base (the percentage of transactions that 
contain all of the items in the item set, here the set of items are 
electrodes present in corpus and the transaction is the different  
method used for evaluation). 

Confidence is the probability that items in RHS (Right 
Hand Side) will occur given that the items in LHS (left hand 
side) occurs. It Computed as 

Confidence (LHS) =>Support (LHS U RHS)/ Support 
(LHS) Electrode1 => Electrode2 [0.588, 0.88] 

If Electrode1 is selected in MND set, then Electrode2 also 
selected in MND set if it will satisfies minimum support and 
minimum confidence value. Left hand side electrode as 
Antecedent and Right hand side electrode [RHS] as consequent 
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frequency. .

Fig. 1. Flowchart of Proposed Work 

III. ELECTROENCEPHALOGRAPHY (EEG) 

EEG is useful for measuring brain activity. During the test 
very little electricity is passed between the electrodes and skin. 
EEG usually takes 30-60 minutes. The technician will put a 
sticky gel adhesive on 16 to 25 electrodes at various spots on 
our scalp [14]. There are various spatial resolution of EEG 
systems like 10/20, 10/10, 10/5 systems as relative had surface 
based positioning system. The international 10/20 system a 
standard system for electrode positioning with 21 electrodes 
extended to higher density electrode such as 10/10 and 10/5 
systems allowing more than 300 electrode positions [15]. 

Here the proposed methodology is used in 10/20 system 
with 16 electrodes (AF3, F7, F3, AF3, F7, F3, FC5, T7, P7, 
O1, O2, P8, T8, FC6, F4, F8, and AF4). 

 
Fig. 2. EEG positioned electrodes 10/20 

TABLE I. SEARCH METHOD USED WITH DIFFERENT ATTRIBUTE     

EVALUATORS 

IV. EEG CORPUS 

The Corpus consists of 14980 instances with 15 features 
each (14 features representing the values of Electrodes and 
one as eye state (Boolean Variable)).Statistical Evaluation 
finds extreme values  present in the corpus, here  thirty eight  
instances (186, 899, 10387, 10674, 10675, 10676, 10677, 

10678, 10679, 10680, 10681, 10682, 10683, 10684, 10685, 
10686, 10687, 10688, 10689, 10690, 10691, 10692, 10693, 
10694, 10695, 10696, 10697, 10698, 10699, 10700, 10701, 
10702, 10704, 10707, 10708, 10709, 11510 and 13180) 
declared as extreme values  in this, removal of it makes new 
corpus and it is having 14942  instances  . The stored corpus 
as ordered to able to analyze temporal dependency 
8220(55.01%) instances of the corpus corresponds to the eye 
open and 6722(44.99%) instances to the eye closed.  EEG eye 
state dataset was donated by Rosler and Suendermann from 
Baden-Wuerttemberg Cooperative State University (DHBW), 
Stuttgart, Germany [4]. The output of the corpus “1” indicates 

SEARCH METHOD + ATTRIBUTE 

EVALUATOR 
TRANSACTION 

Ranker + InfoGainAttributeEval T1 

Ranker + ChiSquaredAttributeEval T2 

Ranker + ClassifierAttributeEval T3 

Ranker + CorrelationAttributeEval T4 

Ranker + CVAttributeEval T5 

Ranker + FilteredAttributeEval T6 

Ranker + GainRatioAttributeEval T7 

Ranker + OneRAttributeEval T8 

Ranker + ReliefFAttributeEval T9 

Ranker + SignificanceAttributeEval T10 

Ranker + SymmetricalUncertAttributeEval T11 
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the eye-closed and “0” indicates the eye-open state. 

V. EXTREME VALUE REMOVAL 

The extreme value removal is a part of data cleaning step 
for data mining. The procedure for applying the extreme value 
theorem is to first establish that the function is continuous on 
the closed interval [16]. The next step is to determine the 
critical points in the given interval and evaluate the function at 
these critical points and at the end points of the interval. If the 
function f(x) is continuous on closed interval [a, b] then f(x) 
has both a maximum and a minimum on [a, b] [17]. In 
proposed method inter-quartile range [IQR] is used for 
extreme value calculations. IQR is major of variability based 
on dividing the dataset into quartiles [18]. 

VI. FEATURE SUBSET SELECTION 

Feature Subset Selection is a task of data mining 
tool[25,26] ,it selects optimal feature subset for classifying the 
dataset but the literature shows the subset of optimal feature 
may or may not be optimal[19],[22-24]. The proposed work is 
searching Most Non Dominant features (MND) from the 
feature set. This performed by ranker algorithm and with 
different search methods. The outcome of this step is ranks of 
electrodes placed in scalp. Proposed work used different 11 
algorithms for obtaining the ranks of electrodes (most to least 
dominant). 

TABLE II. TRANSACTION IN MATRICES WITH FOUR LAST DOMINANT    

ATTRIBUTES 

Transaction L4 L3 L2 L1 

T1 O2 F7 FC5 F3 

T2 O2 F7 FC5 F3 

T3 FC6 O2 FC5 F7 

T4 P7 O1 FC5 T7 

T5 F7 AF4 F8 AF3 

T6 O2 F7 FC5 F3 

T7 F7 FC5 O2 F3 

T8 FC6 O2 FC5 F7 

T9 F3 F4 O2 P8 

T10 P8 O2 F3 F7 

T11 F7 FC5 O2 F3 

VII. CLASSIFICATION 

Classification is the task of data mining and it is a 
supervised learning. To classify EEG signals, various 
classification techniques present in literature [34-38]. The 
instances present in corpus for eye state recognition using 
EEG, these instances are classified in to two different classes, 
zero is for eye opened state and one is for eye closed state. 
The instance based classifier is a type of lazy classifier [27], 
and proposed method uses K* is a type of instance base 
classifier, after extreme value removal and attribute selection. 
The literature shows there are various statistical measures are 
used for analysis of classification outcomes generated from 
classification process [29-32]. 

VIII. PROPOSED METHODOLOGY FOR MND SET 

The proposed methodology is use full for finding non-
dominant feature from feature set. If "n" number of features 
are used for classification of eye state recognition then the 

space and time requirement is very high but if using less no of 
features obtained from proposed method then this will save 
time and space requirement. MND set electrodes are always a 
most non-dominant electrodes they are less responsible for 
classification accuracy. The flowchart shows in figure [1], and 
described steps shows, how to get MND from feature subset 
results generated from previous step. 

 
Fig. 3. Rule Generated from Apriori Algorithm 
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Fig. 4. Lattice occurs by Association Rule Mining 

Algorithm 1: Most Non Dominant (MND) Feature Set    

Generation Algorithm 

Input: D, I , T , C, MSupport. 

 

//D =  Set of Electrodes. 

// I =  Total Instances 

//T =  Transactions  

//C =  Corpus 

// L=  Class label {0, 1} 

//MSupport=Minimum Support 

   

Output: MND set 

 

Segment(C); // call this for creating a training, testing and 

validation set creation. 

For i=1 To 11 do 

    For j=1 To 4 do 

 T[R] [C] =LRS(C); 

// Call function for last 4 values from different feature ranker 

search with evaluation techniques 

//Transaction Matrix insertion for Item Set (Electrode) placed 

last 4 positions. 

 

MND=Apriori(T,Msupport); 

//Calling Apriori for frequent set generation for  

 

End 

 

Function Definition for Segment Creation from Corpus  

Segment(C) 

{ 

T= 60/100 *(C);     //Training Set Creation 

R= C-T;                  

Te = 50/100*(R);   //Testing Set Creation 

R= R-Te; 

V= R;                    //Validation Set Creation 

Return (T, Te, V) 

} 

 
Fig. 5. Confusion Matrix on Removal of F7, FC5, O2 

Function Definition for Last Ranked Set (LRS) 

 

LRS(C) 

{ 

 

For i=1 To 11 do  

For j=1 To 4 do 

 

Ran[j] =Ranker (i); //Last 4 ranked value search and stored in 

array 

End //for End 

 

Return (Ran[j]); 

 

End 

} 

 

Function Apriori Algorithm for Frequent Set Mining 

 

 

Apriori (T, mSupport) 

{ 

//T is the database and mSupport is the minimum support  

F1= {frequent items};  

 

For (k= 2; F k-1! =∅; k++)  

{  

Ck= candidates generated from Fk-1  

//Cartesian product Fk-1 x  Fk-1 and eliminating any k-1 size 

item set that is not frequent  
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For each transaction do {  

//increment the count of all candidates in Fk that are 

contained in T 

 

Fk = candidates in Ck with minimum Support} 

 

} end for inner for Return ⋃kLk ; } 

IX. RESULT AND ANALYSIS 

This study used Ranker Search with Attribute Evaluation 
technique for MND set creation shown in table[1], then for 
rule generated using association rule mining this task 
performed by using Apriori algorithm ,all the generated rules 
are shown in figure[3],and the lattice shown in figure 
[4],shows how many frequent set to be considered for rule 
generation , the rules which is having minimum support and 
confidence is highlighted in figure[3],this gives frequent items 
(Electrode) set ,here it is {FC5,O2,F7}. This set declared as 
MND set, removing of this electrodes from EEG corpus 
sufficiently decrease the space and time requirement to built 
the classification model. The accuracy towards the 
classification changed very less and this analysis outcome 
shown in table [3], figure[6]. The Confusion matrix shown in 
figure [5] and ROC curve shown in figure [7], evaluate the 
classifier performance here the classifier is Instance based 
classifier (K*), the classification accuracy is computed and it 
is mapped in table [3]. 

 

Fig. 6. Time duration with Removal of Different Attributes 

 
 

Fig. 7. ROC Curve removal on removal of F7, FC5, O2 (a) Threshold Value 

as 0 (b) Threshold value as 1 

X. CONCLUSION 

This is the first study to investigate the characteristics of 
Most Non Dominant feature from feature space they are less 
responsible to build the classification model, the MND set 
always gives concept which feature removal sufficiently 
reduce space and time requirement to build the classification 
model. This result is tested with EEG corpus to investigate eye 
state, either it is closed or open. Approximate 20% of time is 
saved by removal of these three most dominant features as 
compare to all attributes considered for classification. 
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TABLE III. RESULT ANALYSIS AFTER REMOVAL OF ATTRIBUTES FROM FEATURE SET FROM EEG DATA SET 
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