
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

358 | P a g e

www.ijacsa.thesai.org

Indirect Substitution Method in Combinable Services

by Eliminating Incompatible Services

Forough Hematian Chahardah Cheriki

Department of Computer Engineering

Yazd Branch, Islamic Azad University

Yazd, Iran

Sima Emadi*

Department of Computer Engineering

Yazd Branch, Islamic Azad University

Yazd, Iran

Abstract—Service-oriented architecture is a style in

information systems architecture with the aim of achieving loose

coupling in communication between software components and

services. Service, here means software implementation, is a well-

defined business function that can be used and be called in

various processes or software. An organization can choose and

composite the Web services that fulfill its intended quality of

service. As the number of available Web services increases,

choosing the best services to composite is challenging and is the

most important problem of service composition. In addition, due

to the utilization of systems in dynamic environments, service

characteristics and users’ needs are constantly faced with

changes which lead to deterioration of service, unavailability and

quality loss of services. One of the ways to deal with this

challenge is substitution of a Web service with another service,

which is done at the runtime and dynamically. Substitution is

both direct and indirect. Though there are many related works in

the field of direct substitution, still no work is done for explaining

substitution based on the indirect method, and works were

conducted only on direct substitution. In this method, there are

many problems such as the incompatibility of important services

in composition. To solve the problems in this method and other

challenges in this paper, considering a subset of inputs and

outputs, qualitative parameters and service composition,

simultaneous and dynamic service composition and use of the

fitness function of genetic algorithm to compare the compositions

are done. In addition, in substitution, a table which contains the

best possible substitutes with dynamic updates through multi-

threading techniques is provided. The results obtained by the

analysis and evaluation of the proposed method, indicates the

establishment of compatibility between the services, and finding

the best possible substitute to reduce substitution time.

Keywords—component; indirect substitution; SLA; service

composition; quality of service

I. INTRODUCTION

Through the discovery and development of Web services,
an organization can choose and composite the Web services
that satisfy its business needs and service quality. At the same
as the number of available Web services increases, choosing
the best services becomes more challenging for the given
practice. Service quality plays an important role in the selection
and composition of services. During the composition of
services in a workflow or application to complete the process
until the final result, services should be compatible in regard to
the given the inputs, outputs and functions. The main problem
of service composition is that the values of service quality may
change from initial estimates during the implementation. The

service may be unavailable or unreliable or may not offer other
suitable solution. Thus, services should be evaluated
dynamically to complete the program. Changes in the values of
service quality may lead to failure of the expected adoption of
the program for maintaining certain cases such as costs and
response time. Two main issues of which adverse events
require -the need for re-selection of service and services
reprogramming include: extra time for selection process and
lack of service composition compatibility with other service
quality constraints [1]. In this paper, a method for composition
of Web services that perform re-selection and prevent the
deviation from the constraints of service quality, after
reprogramming through the definition and evaluation of a
potential substitution is proposed. In the proposed method re-
selection and substitution are done only when it is needed. To
help re-selection and substitution, services will be filtered
based on their importance, because only the services that
provide optimal solutions are considered in planning processes
[1].

Substitution means the alternation of one component
instead of another component; so that during the movement,
the same component output be produced and meet the same
needs with the replaced output component. Substitution means
compatibility of Web service with the client requests and better
setting than other competing Web services [1]. Substitution is
both direct and indirect, till now there are many related works
in the field of direct substitution. The main problem and error
method in a direct substitution is that the compatibility between
services in substitution process is ignored due to the lack of
regulation of services in the substitution process. In addition,
one cannot benefit the substitution services composition in this
method and there is no possibility of automatic substitution. To
solve this problem and to create compatibility between the
services in substitution, indirect substitution method is used in
regard to SLA violations. Every service includes its specific
quality of service (QoS). In substitution process, one is trying
to prevent the failure of qualitative constraints; However by
maximizing the qualitative characteristics which should be
augmented such as reliability and by minimizing the qualitative
characteristics that should be reduced such as cost, maintaining
the upper and lower limits to the maximum extent of assumed
constraints and maintaining compatibility between available
services, substitutability becomes possible. Finding compatible
Web services to be replaced with a Web service after being
selected is essential in each of the following events [2]:

 Web service should be eliminated during the runtime.

* Corresponding author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

359 | P a g e

www.ijacsa.thesai.org

 Better service need to be available through a new Web
service.

 A new version of the selected Web service should be
available.

Substitution of Web services is possible only by fulfilling
the following two conditions [2]:

 Web services should have the same functionality.

 They should be able to obtain their respective
interfaces. The services must be compatible with each
other for substitution.

The second section of this paper describes the concepts and
terminology related to substitution and service composition. In
the third section, the proposed method is described. In the
fourth section, results of evaluation are discussed. Then in the
fifth section a review of the earlier works is presented. Finally,
the result of the research is provided in the sixth section.

II. CONCEPTS AND DEFINITIONS

A. direct and indirect substitutions

The direct substitutes are feasible because they can replace
the failing service without further adjustment to the plan.
Logically, it is very easy to compute the number of direct
substitutes. [1].

In a direct substitution, the violated service can be replaced
regardless of a subset of the inputs and outputs with exactly
equal the input and output of a service, and without creating a
service composition to achieve equal functionality.

Indirect substitutes are feasible service instances that can
replace the failing service after adjustments with other service
replacements are made to the resulting plan. [1].

B. Service quality traits

Quality of service is a subset of non-functional traits, which
is different from various perspectives [2, 3, and 4].

In general, a non-functional trait divides into types of
quantitative and qualitative traits [5]. A qualitative trait of the
proposed method is defined here:

1) Response Time
The time it takes in which a service performs its task. This

time is long as from the time of user’s request to the time in
which the answer is received, which is obtained in accordance
with existing equations in Table 1 [5].

2) Service Reliability
If the service continue to work correctly and consistently in

the specified period and under certain conditions. Despite the
availability, reliability is defined in terms of time interval
rather than time instant, and is obtained by the equations in
Table 1.

3) Availability
The content and timeliness that service is immediately

available for the operation and performance of its functions.
Availability is related to system failure. The availability is
obtained by existing equations in Table 1 [5, 6].

4) Cost
The cost for using Web services is obtained by the

equations in table 1 [7].

TABLE I. QUALITATIVE PARAMETERS OF SERVICE AND THEIR

CALCULATIONS

Qualitative

parameters
formula

Response

time

Response time = Execution time+ Network time

Response time= process time+ Transfer Time+

Latency Time

Reliability Reliability=1- Probability of Failure

Availability
Availability=Uptime / (Up time +Down time)
Availability =MTBF1 / (MTBF+MTTR2)

Cost
Total Cost = Service execution Cost+ (Network

transportation/Transaction) Cost

5) SLA rules
It is a legal document format based on XML language,

which consists of the three parties of the contract, guarantee
terms and service terms; Figure (1) [8].

Fig. 1. SLA format [8]

Agreement contexts consist of general information such as
parties and life cycle of the agreement. This information
includes the address and profile of service producer, consumer,
etc. The service terms consists of two parts: service reference
and service properties. In service reference, an availability
URL to the services is determined, and in service properties,
information on quality parameters and indices is determined.
Service terms are a key element of the SLA. The Guarantee
terms consists of the quality objectives and financial
agreements [8].

Main SLA requirements include [8]:

 SLA format should be a clear definition of a service, so
that the consumer should understand the service
functions

 Provide a level of service efficiency.

 Methods of monitoring service parameters and
regulatory reporting format must be defined.

 Penalties when services are not met.

1 Mean Time Between Failure
2 Mean Time to Repair

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

360 | P a g e

www.ijacsa.thesai.org

C. static service compositions

Static service composition is created at design time and
software system architecture. Adopted components will be
selected, connected, and finally compiled and deployed. This
case is suitable if serviced components rarely be changed or do
not change in general.

D. Dynamic service composition

Service environment is a dynamic and very flexible
environment. The new service will be available every day, and
number of service providers will be growing. Ideally service
processes must be able to accommodate to environmental
changes and customer requirements with minimal user
intervention.

E. Composite service

Composite service is created by composition of multiple
services. Existing services in composite service might be
implemented in different locations and in various fields. But
they should interact with one another to achieve a goal. Service
composition is referred to process of services development
ranging from conventional services and compositing services.

III. DESCRIBING THE PROPOSED METHOD

In [1], an approach is proposed in which due to the use of
qualitative parameters in genetic algorithms and the techniques
based on the total weight in the objective function of the
algorithm, the potential diversion of restrictions during the
program implementation has decreased, that leads to finding
the best possible solution in accordance with qualitative traits
of user's request. However, the method has limitations and the
problems. This method is directly focused on replacing static
service composition that limits the turnover in the composition
and lack of focus on service composition which leads to
service incompatibility. Thus, service incompatibility and
composition limitations are among the most important
problems in this approach. Another limitation of this method is
lack of automatic service substitution, and as a result time
consuming substitution process.

In this paper, indirect substitution is used to solve problems
and mentioned limits as well as substitution optimization. In
the proposed method substitution process dynamically
improved by enjoying the [1] algorithm. The ability to build
composite services, incompatibility problems of substitution
and composition have been solved. In addition, in the proposed
method, a solution for automatic substitution and reduction of
process time is provided.

The proposed method consists of three main steps.

1) Preprocessing

 Selecting from the database.

 Receiving the requested qualitative parameters

 Receiving the requested weight of qualitative
parameters

 Receiving the incoming and outgoing requests

2) Service composition

 Logical composition step

 Creating qualitative model

 Physical composition step

 services filtering

 Composition algorithm step

 Creating a service composition

 Creating the composition

 Finding the best composition

 Genetic Algorithm

 fitness function of the proposed model Reprogramming

3) Reprogramming

 Service Substitution

 Updating the substitution table

A. pre-processing phase

Pre-processing is all operations that must be performed
before service composition, so that composition process be
done according to the requests and qualitative parameters of
user’s requests along with maintaining the limits and SLA
rules.

 The first step: selection of database repository

In this step, according to user requests, demand-services are
called from UDDI database. These services include all similar
requested services or services that are similar in the input or
output.

 The Second Step: Receiving the requested qualitative
parameters

In this step, a value must also be considered for each
qualitative parameters of availability, response time, reliability,
cost and substitution. These parameters’ input values range
between zero to one, and is determined by the user’s request.

 The third step: Receiving the requested weight of
qualitative parameters

Considering the fact that in this study, composition
operations are carried out on the basis of the users' requested
weight of qualitative parameters, in this step the user enters the
requested weight of each qualitative parameter.

 The fourth step: Receiving the incoming and outgoing
requests

In this step, the user request his desired input and output
with respect to the functionality of services.

In [1] service composition is performed statically and
through the genetic algorithm. It involves different stages and
steps. To improve and solve the concerning problems in the
proposed model, the process is modified and composition is
done dynamically.

B. Service composition phase

1) Logical composition step

 Creating qualitative model

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

361 | P a g e

www.ijacsa.thesai.org

2) Physical composition step

 Services filtering

3) Composition algorithm step

 Creating a service composition and compatibility

 Fitness function

1) The first step: Logical composition
The first step to obtain the optimal composition of Web

services is creating a suitable model to describe qualitative
characteristics. This model must be agreed by the client and
service provider. The qualitative model can be circular,
parallel, serial or probable. To calculate the qualitative model,
based on the type of limits and qualitative model, the pattern of
aggregation functions in Table (2) can be used. Sequential
method is used in this proposed method.

TABLE II. AGGREGATION FUNCTIONS FOR CALCULATION OF SERVICE

QUALITATIVE PARAMETERS [1]

Attribut
e

Dimension

Type

Const

raint

Type

Aggregation function

Seque

ntial

Invoca

tion

Probabilistic

Invocation

Stru

ctur

ed

Cycl

es

Parall

el

Invoca

tion

Cost Decreasing Upper ∑

∑

K*c

ost

(s)
∑

Respons
e Time

Decreasing Upper ∑

∑

K*R

Tim

e(s)

MAX(S

0..SP)

Availabi

lity
Increasing Lower ∏

∏

Avai

l(s)k
∏

Reliabili
ty

Increasing

Lower ∏

∏

Rel(

s)k
∏

In this step of the proposed model, unlike [1], in order to
improve the composition method, the values of input and
output are received from the user in the pre-processing. Then,
based on these values, only those services which include the
requested input and output or a subset of users’ request would
be called. In fact, at this stage of the proposed model, filtering
operation is performed on the service call on the basis of
functionality. And in any composition, searchable input and
output are specified by user which leads to the method’s
dynamic trait. The called services will be elected as a
candidate. This stage which leads to selection of services is
called logical composition. This set of services in form of a set
of workflows as candidate services move to the next step
which is the physical composition. For example, suppose the
user requested service S with input and output of (A, B.C, D).
As a result, services with a subset of the input and output such
as S1 (A, B.J, K) and S2 (A, H.C, D) and S3 (A.F) etc. will be
called.

2) The second step: physical composition
At this stage, workflows are filtered based on user’s

requested qualitative parameters. Then to perform service
composition they will be entered to the composition algorithm.
In the given example, called services will be filtered qualitative
characteristics entered by the user. In this case, it is assumed
that the user requests the values of qualitative parameters in
Table (3).

TABLE III. EXAMPLE OF REQUESTING USER’S QUALITATIVE

PARAMETERS

availability 82.0

reliability 82.0

Response time 82.0

cost 82.0

substitution 8200

However, if called service S1 has qualitative characteristics
less than requested characteristics. The service will not be
considered as a candidate for this composition. In fact, called
services are filtered based on qualitative parameters.

C. Filtering substitutable services

Unlike [1], in the proposed model, a filtering operation
based on qualitative parameters and weights is done
dynamically before calculating the quality of services on the
basis of CIFs in Table 1. As a result, the quality of service is
calculated only for services that include qualitative parameters
and weights; therefore additional and unnecessary calculations
will be avoided. This filter is rarely applied in linear form due
to its complexity. The qualitative model for every workflow is
calculated by existing equations in Table (1), and thus quality
of service for each workflow can be obtained.

After the pre-processing filter and reduction of candidate
services we enter into algorithm phase. As mentioned in the
previous section, unlike [1], composition operation is done
dynamically based on the received input and output in the pre-
processing phase as well as during the construction of
composite service. After creating different service plans, the
fitness function of genetic algorithm is used to compare and
select the best composition with the highest fitness. For
example, suppose you have a service consists of two inputs and
outputs. In this method, based on the input and output received
in preprocessing phase, three lists will be created and called
services will be entered according to the inputs and output as
shown in Table (4).

TABLE IV. AVAILABLE LISTS IN THE PROPOSED METHOD

Services in which their inputs
are a subset of user’s requested

inputs

Input LISTØ

Service in which their outputs
are a subset of user’s requested

outputs

Out put LIST1

Proper composition occurs

through inputs and outputs and
a subset

Creating service composition LIST2

Various scenarios intended for creating List2 and service
composition are as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

362 | P a g e

www.ijacsa.thesai.org

 The first scenario

According to equation (1), if the inputs of selected service
in List2, are the subsets of the outputs in listØ service and if its
outputs are a subset of inputs in list1 service, the condition of
service composition, which is the accessibility to user’s
requested functionality, will be established and the
compatibility will not be violated. Thus, the service in list2 will
be considered for composition with services in listØ and list1
and it will be removed from list2. As a result composition
process will be successfully performed, and the resulting
service plan will be displayed in the output. The first scenario
is given in example (1).

 The second scenario

As mentioned in Equation 2, if one of the conditions in the
first scenario is violated; for example if inputs of the selected
service are equal to ListØ outputs but its outputs is not a subset
of List1, it results to incompatibility. Thus selected service in
list2, becomes the basis among the services based on input and
output to create service composition on the next survey. In
other words, a service in which its outputs are a subset of the
inputs in list2 service and its inputs are a subset of outputs in
the mentioned service, will be sought for, and service
composition will be formed. This cycles continues till the
service composition condition is established, and service
composition that includes a subset of the input and output
according to user’s request be made. Thus in the second
scenario, creating a service composition with compatibility is
done. For a better understanding, the proposed algorithm is
expressed in example (1).

The user requested service S with the inputs of A, B and
outputs of C, D. According to the proposed solution, three list
is created. In the listØ S1 and in list1 service S2 are called. As
the example shows, the two first rows, compatibility and
service composition without creating a service composition is
established like the first scenario. In the third row, S9 violated
the terms of compatibility, therefore, among the set of
candidate services, service S10 in which its inputs are a subset
of the outputs in service S9 and its outputs are a subset of the
inputs in service S8, are called. This cycles continues till
compatibility condition is fulfilled. In this example, through the
service composition of S9 and S10, composition problems are
solved and compatibility can be achieved. Therefore, by
implementation of S8, S10, S9, and S7 compatible composition
is created through composite service.

Equation (1) of the first scenario:

{

Composite Services in list &list2 & list 3 Equation (2) of
the second scenario:

{

 Research in data Service input & output ĉ list2 then
composite Services listØ & list1&list2

TABLE V. SERVICE COMPOSITION ALGORITHM

Output List 2 List 1 List ᴓ
User’s

request

S1,S3,S2
S3(J,K.A,H
)

S2(A,H.C,
D)

S1(A,B.J,
K)

S(A,B.C,

D)

S4,S6.S5
S6(B.C,H.
T)

S5(H.D) S4(B.C)
S(A,B.C,

D)

First

scenari

o

S7,S9,S10,S8
S9(F.K)

S10(K.C)
S8(C.D) S7(B.F)

S(A,B.C,
D)

Second
scenari

o

This algorithm is carried out dynamically and constantly by
using multi-threaded technique. After composition and creating
different service plans, the fitness function of genetic algorithm
is used to compare and select the best composition with the
highest fitness. In addition, by entering the compositions into
fitness function of the algorithm, SLA rules and violations will
be investigated; as the qualitative parameters will be
determined by entered weights by the user and calculation of
qualitative model according to the table (2), and in case of
violations, they will be outdated.

D. Fitness function

In the proposed model, after composition process, fitness
function according to equation (3) is used to compare the
compositions and presenting the best composition.

Given the importance of qualitative parameters in this
method, a fitness function using the total weight which
transfers multi objective problem to a single objective problem
is used. As previously mentioned, the weights are selected
based on the user's preferences and needs. Just as shown in
equation (3), the composition from the previous steps is called
wj; and w1, w2, w 3, w4 and w5 weights are provided by the
user. In accordance with the calculation contract of qualitative
model in table (1), the availability of all the services in the Wj
composition are multiplied. Thus, the compositions’ rate of
availability will be obtained. Equation (4) shows the
calculation of the qualitative parameters rating for each
composition. Reliability and substitution composition are
calculated in the same way. As Table 1 shows calculation
contract for qualitative model, addition is used for rating the
cost parameters and response time of composition. This means
that cost of services composition are added together and the
result is the rating of Wj composition cost. Similarly, the
calculated response time will be entered to fitness function of
the. In this function, as the reduction of cost parameters and
response time are superior standard of composition, these
parameters are placed in the denominator of fraction. Finally,
the composition with best fitness will be selected and displayed
in the output.

Equation (3) of fitness function [1]:

Fitness= w1*Availability (wj) +w2*Reliability (wj) +w3*replacebility (wj)

W4*Cost (wj) + w5*Response Time(wj)

Equation (4) rating qualitative parameters of composition

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

363 | P a g e

www.ijacsa.thesai.org

{

 ∏

 ∏

 ∏

n= Number of Service

{

 ∑

 ∑

E. Substitution phase

This phase involves the following operations.

 reprogramming

 Updating the substitution table

Substitution operation is performed in reprogramming step.
If the service is faced with failure due to SLA violations, or if
the user requests a service substitution, service substitution
operation is performed. In [1], by any failure or service
violation, reprogramming will be considered and if it is
reasonable, reprogramming phase for substitution begins.
Therefore, in case of the need for substitution, algorithm for
each service for each violated service will be performed, which
increases the substitution time.

First, three questions in relation to the reprogramming
arises: when do we need to perform reprogramming? Where to
begin reprogramming? How to perform reprogramming? To
answer the first question, events which require reprogramming
have been studied. Lack of service availability, breakdown in
proper service response within a time period as well change of
qualitative QoS before the implementation and due to the
election of paths in substitution or changes in the number
loops, the real qualitative values of the program are different
from the estimated values.

In case of failure or services unavailability, the algorithm
must be re-run to find service substitution, and seek to have
service optimization. There are two reasons for this
optimization. First, it can find better qualitative values. Second,
it can produce a more acceptable substitution program [1].

In the proposed method to reduce the need of re-
programming, the algorithm investigates the substitutable
service before and after the implementation of the program. In
this case, if the obtained service be replaced in the previous
implementation, there would be no need for additional re-
programming and extra process time. On the other hand, in
case of a limited response time, if the time limit be diverted by
the re-optimization, then the algorithm will use the best
substitute in the previous implementation. Normally, when
there is substitute, in most cases, substitution is suitable.

In the proposed model, according to the dynamically of
service composition method, with any changes in qualitative
parameters the best possible composition will be calculated
during the composition. Therefore, in the first phase of re-
programming, with the very changes in the qualitative
parameter which is considered as SLA violations here, or a
user’s requests and failure, the program automatically runs the
algorithm in the proposed model described in proposed
composition model. The results can include various services
and service plans along with the fitness number. Each are
stored in a table. These results are dynamically updated in a
specified interval. And if there is a need for reprograming and
if the numeric is less that fitness value of Service plan in the
table substitution will be done automatically with minimal time
without running genetic algorithm and in regard to regulations
of SLA.

The substitution process in the proposed model is done
indirectly. Unlike [1] which is focused only on services with
equal input and output and uses direct substitution, in this
method, service composition in which its inputs are a subset of
inputs and outputs of user’s requests will be created. As a
result, the possibility of substitution is available, leading to
compatibility maintenance and enhancing the range of
substitute services. In addition, in the event of service failures
due to compatibility maintenance and if necessary, service plan
can be replaced; while in [1] there is only the possibility of
replacing the service.

The proposed method enjoys a higher speed compared to
[1]. And composition time is significantly reduced. To achieve
this all processes are running in the background. As mentioned
in composition method phase, multi-threading techniques is
used in the proposed algorithm. To implement service
composition and construction of the composite service, a
thread and to update the substitution table another parallel
thread is considered.

IV. THE RESULTS OF EVALUATION

Services data sets are produced by the program and to test
the method, different numbers of services are used. Since the in
proposed method, dynamic and indirect service composition
and service substitution is done. Memory consumption is
higher than static service composition method and direct
substitution; which is considered normal. In addition, due to
the dynamic composition, time taken to find the best
composition in the algorithm increases, but this increase is seen
only in the first survey. The proposed method will be evaluated
from four aspects of composition time, re-programming time,
memory usage and rate of failure.

A. service composition time

In this study, an increase in the number of services in the
proposed algorithm due to the dynamic composition,
composition time increase in providing a suitable initial
composition; while in a direct composition algorithm,
composition time decreases due to static composition. The
results are shown in Table 6 and Fig. 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

364 | P a g e

www.ijacsa.thesai.org

TABLE VI. THE RESULTS OF COMPOSITION TIME EVALUATION

Fig. 2. The results of composition time evaluation

The results of composition time evaluation

B. memory usage

In the proposed model, the number of services is increased
due to the dynamic approach. As a result, the amount of
memory usage is increased compared to the direct substitution.
The results of the evaluation in accordance with the memory
usage are shown in Table 7 and Fig 3

TABLE VII. THE RESULTS OF MEMORY USAGE EVALUATION

Fig. 3. The results of Memory Usage evaluation

C. evaluation of reprogramming time (service substitution)

In the proposed model, due to use of updating technique,
implementing the best solution in parallel in the background,
time of reprogramming will be close to zero, and can be
ignored. Also, due to using a linked list in the calculations
instead of arrays, the time is reduced compared to direct
substitution algorithm. The results are shown in Table 8 Fig. 4.

TABLE VIII. EVALUATION OF REPROGRAMMING TIME (SERVICE

SUBSTITUTION)

Count
Direct

Replacement

Time1:

Indirect

Replacement:

Time2

5000 0.005 0.00021

50000 0.0051 0.00026

100000 0.0052 0.00042

150000 0.0061 0.00046

200000 0.0063 0.00051

250000 0.0072 0.00053

300000 0.0074 0.00059

Fig. 4. Evaluation of reprogramming time (service substitution)

D. evaluation of failure rate

In the proposed method, failure rate is close to zero due to
using updating technique in the table of the best solution. Since
in re-programming, we always have the best answer in the
table and there is no need for calculation. Although direct
algorithm in [1], since computing must be performed in the
reprogramming, to find best composition for the user, it is
likely that there is no possibility of reprogramming and the
algorithm may fail. In testing cases, the proposed algorithm
had no failure. However, in cases where users demand high
quality service and low cost and low response time, the

Count

Static

composition

Time1

Dynamic composition

Time2

5000 0. 76 0.007

50000 0.77 0.45

100000 0.78 1.54

150000 0.78 3.68

200000 0.79 6.96

250000 0.76 10.43

300000 0.8 15.49

Count

Static composition

Memory1

Dynamic

composition

Memory 2

5000 34.6 34.4

50000 50.1 56.6

100000 66.8 79.2

150000 68.3 89.7

200000 78.2 108.6

250000 89.6 123.2

300000 101.1 141.9

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

365 | P a g e

www.ijacsa.thesai.org

proposed algorithm is likely to fail. In case the user requests
according to the table (8), the proposed algorithm is likely to
fail after one or two times of reprogramming.

TABLE IX. EVALUATION OF FAILURE RATE

availability 82.

reliability 82.

Response time 820

cost 820

substitution 8200

However, due to the fact that in simulation, a service which
becomes unavailable, will be outdated from the algorithm, but
this rarely happens in real space. In the direct method [1],
despite adopting substitution, the failure rate is high since the
user’s requested service was not along with so high qualitative
weights users.

V. RELATED WORKS IN THE FIELD OF SERVICE

SUBSTITUTION

In this section, different methods of Web services
substitution are introduced.

Helal AL et al. used the concept of substitution for service
composition. The way it works is as follows: by selecting a
qualitative model of services and identifying the cumulative
function and calculating qualitative model of each service, a set
of service examples is considered as a candidate and by
measuring the substitutability of each candidate service by
using the filtering technique and nearest neighbor algorithm in
this technique, candidates set is improved, and then by using
genetic algorithm and its fitness function through total weight,
services substitution and reprogramming will be done. The
advantage is that one can make the best choice for service
composition. In this study direct substitution is focused, i.e. the
service will be replaced without any adjustments. This method
is useless in case of incompatibility between the services. Thus,
the defects of this study is lack of focus on indirect substitution
and compatibility [1].

Yu et al. have used an approach based on graph theory. In
general, the main idea behind this theory is to show a service as
a node. Links indicate the relationship between the services.
The costs are qualitative characteristics (cost and delay). The
advantages of this method are optimum runtime and memory
usage, respectively. One of the weakness in this methods is the
lack of scalability [9].

Sheng et al. used a method based on backward theory for
service composition. The main idea of this approach is that
services are selected step by step. To choose a service at each
step, the selection algorithm moves one step backward and
checks the selected services to ensure the best service is
selected. If the selected service is approved, it will be called.
The advantages of this method is fault tolerance. Thus by
deterioration of a service, another efficient service will be
replaced. The disadvantages of this method is increased
processing time [10].

Zhang et al. presented a heuristic algorithm based on taboo
search for dynamic service substitution. They used the graph of
candidate service; and by using simulation, they evaluated the
efficacy and performance. Simulation results show that the

proposed algorithm is very good in the substitution in large-
scale space. The advantages of this method is it ensures service
availability and uninterrupted process and its weaknesses is
focusing only on substitution algorithm [11].

Wu et al. presented a cluster-based approach for service
substitution. Concepts of logical service, real service, and the
cluster service and the relationship between these services had
been studied. The proposed method consists of two steps:
Finding the expired real service dependent to the logical
service and choosing a real service from the service cluster for
substitution of violated service.

In this method, compatible services are put in a cluster and
can be replaced by another. The advantage of this method is
increased speed and reliability of service composition.
However, if none of the cluster services are available, user’s
requests remain unanswered, which is as a drawback in the
method [12].

Li et al. presented Web Service Composition based on QoS
with Chaos Particle Swarm Optimization. In this study, based
on desired qualitative parameters, services are selected, then
selected services are entered into the algorithm and finally
provides the best composition. Increased speed of service
selection and service compositions is one of the advantages of
this method. The drawback of this method is lack of attention
to parallelism and inconsistent data [13].

Alrafai et al. provided an approach for using Skyline
service for Web service composition based on QoS; in which
integration of Web-based service composition were evaluated
dynamically and without defect. The advantages of this method
is division as Skyline calculations can be provided in parallel in
groups without changing the final result. This is done by using
Pad Skyline algorithmic framework for parallel processing of
Skyline request in divided groups. The optimization technique
within the group and multi-dimensional filtering for each group
is performed. In particular, Skyline local points along with the
request as the filtered points to help identifying services in the
areas of poor quality on any site are sent through Skyline
service. Another advantage of this method is reduction in the
response time to user requests and increased speed of Web
service composition. The method is affordable and effective for
specified service composition. The drawback of this method is
lack of investigation in limited and a structured environment.
[14].

Lu et al. have provided Web Service Composition Based on
Integrated Substitution and Adaptation. They showed that
substitution and adaptation complementary are and believe that
the integration of adaptation and substitution provides the
design of highest flexibility and performance over time for
substitution and running the service. In this study, web service
composition is based on adaptation and using substitution.
They studied substitution at two static and dynamic levels and
proposed a dynamic substitution approach. The advantages of
this research is service composition without passing through
the adaptation and by considering the substitution and
automatic service composition with increased workflow
functionality for the composition, as well as more flexibility in
the composition. The drawbacks may be a lack of focus on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

366 | P a g e

www.ijacsa.thesai.org

timing constraints in the system and describing similarities
based on non-functional parameters [15].

Kuang et al. are focused on the challenge of substitution
through behavioral analysis of services. They achieved this by
Security Operation Center approach and a formal definition of
behavior in Web services. In this study, a formal definition for
service composition by means of complex behavior π and
calculus formulas as well as conception of behavioral
substitution of services through simulations by using formulas
and tools has been evaluated. Simulations showed that
behavioral substitution of services can be improved based on
behavioral analysis of services through using formulas and
mathematical calculations. The drawbacks of this research is
lack of focus on providing the tool for automated substitution
and lack of compatibility with different conditions dynamically
[16].

VI. CONCLUSION

In the proposed method, incompatibility problems in
composition and substitution of services are figured out by
considering qualitative parameters, requested inputs and
outputs of user and SLA rules by techniques of creating linear
list, fitness function table by total weight and update table of
the best alternatives with parallel multi-threading approach.
The algorithm efficiency in reprogramming and substitution of
the service significantly increased. In this method, as a process
is active in algorithm’s background and substitution is done
dynamically and at the same time it needs to run in parallel
environments. In this model, due to dynamic composition and
creating composite services based on a subset of the input and
output as well as an updated table with the best alternatives, the
memory usage increases to some extent compared to direct
substitution and static composition. Therefore, studying and
improving the memory usage may be a future research.

REFERENCES

[1] H. Al-Helal and R. Gamble, ‘‘Introducing Replaceability into Web
Service Composition’’, IEEE TRANSACTIONS ON SERVICES
COMPUTING, VOL. 7, NO. 2, PP.198-209 ,2014.

[2] V. Andrikopoulos, S. Benbernou, and M. Papazoglou, "On the Evolution
of Services", IEEE Transactions on Software Engineering, Vol.33, No.
3, PP. 609-628, 2012.

[3] R. Iordache and F. Moldoveanu," QoS-Aware Web Service Semantic
Selection Based on Preferences", 24th DAAAM International
Symposium on Intelligent Manufacturing and Automation, vol. 69, pp.
1152–1161 ,2013.

[4] K. Saeedi, L. Zhao, P. R. Falcone Sampaio," Extending BPMN for
Supporting CustomerFacing Service Quality Requirements", IEEE
International Conference on Web Services (ICWS), PP. 616 - 623 ,2010

[5] DZG.Garcia, MBF.de Toledo,"Achieving autonomic web service
integration:a quality of service policy based approach", Journal of
International Transactions on Systems science and applications, vol.3,
pp. 41-63, 2010.

[6] S. Bosse, M. Splieth,M. Turowski,” Multi-Objective Optimization of IT
Service Availability and Costs”, Magdeburg Research and Competence
Cluster for Very Large Business Applications, Faculty of Computer
Science, Otto von Guericke University Magdeburg
Germany,vol.147,pp.142-155,2016.

[7] A.Eleyan, L.Zhao, "Extending WSDL and UDDI with Quality Service
Selection Criteria", In: Proceedings of the 3rd International Symposium
on Web Services,pp.1-10, 2010.

[8] M. Alhamad, T. Dillon, E. Chang, “Conceptual SLA Framework for
Cloud Computing”, 4th IEEE International Conference on Digital
Ecosystems and Technologies,pp. 606 – 610,2010.

[9] H.Q.Yu, S.Reiff-Marganiec,"Web Service Composition Methods:A
Survey”,Information Sciences,Vol280,PP.218-238,2014.

[10] Q.Z.Sheng,X.Qiao,A.V.Vasilakos,"Selection of QoS Support on
Artificial Immune Network Classifier for Dynamic Web Service
Composition",International Conference on Computational Intelligence
and Security,PP.643-646,2014.

[11] C .Zhang ,H .Chen and J .Du , ”A Tabu Search Approach for Dynamic
Service Substitition in SOA Applications ” , Services Computing
Conference (APSCC), 2011 IEEE Asia-Pacific ,INSPEC Accession , PP.
284 – 289,2011 .

[12] L .Wu , Y .Zhang and Z .Di, “ A Service-cluster Based Approach to
Service Substitution of Web Service Composition “ , IEEE 16th
International Conference on Computer Supported Cooperative Work in
Design (CSCWD), , PP. 564 - 568 ,2012.

[13] W.Li,H.Yanxiang, "Web ServiceComposition based on Qos with Chaos
Particle Swarm Optimization", 6th International Conference on wireless
Communications Networking and Mobile Computing,PP.1-4,2010.

[14] J. Wu, L. Chen, T. Liang," Selecting Dynamic Skyline Services for
QoS-based Service Composition", Applied Mathematics & Information
ciences An International Journal.,vol. 8,PP. 2579-2588, 2014.

[15] L.Chen,R.Chow,”Web Service Composition Based On Integrated
Substitution and Adaptation”, IEEE International Conference on
Information Reuse and Integration,pp. 34 – 39,2008.

[16] L.Kuang, Y.Xia, SH.Deng ,J.Wu,”Analyzing Behavioral Substitution Of
Web Services Based On π-Calculus”, IEEE International Conference on
Web Services International College Wales Swansea, pp. 441 – 448,2010

