
 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

454 | P a g e

www.ijacsa.thesai.org

Analyzing Data Reusability of Raytrace Application

in Splash2 Benchmark

Hao Do-Duc
1,2

, Vinh Ngo-Quang
3

1
Division of Computational Mathematics and Engineering (CME), Institute for Computational Science (INCOS), Ton Duc

Thang University, Ho Chi Minh City, Vietnam
2
Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam

3
IC Design Research and Education Center, Vietnam National University, Ho Chi Minh City, Vietnam

Abstract—1When designing a chip multiprocessors, we use

Splash2 to estimate its performance. This benchmark contains

eleven applications. The performance when running them is

similar, except Raytrace. We analyse it to clarity why the

performance is not good. We discover, in theory, Raytrace never

reuses data. This leads the fact that the performance is not good

due to the low hit ratio in data cache.

Keywords—Chip multiprocessors; benchmark; ray tracing;

reflection; intensity; ray-Tree

I. INTRODUCTION

When designing Chip Multi-Processors (CMP), we always
use one or many benchmarks to evaluate our products. One of
the most used benchmark is Splash2 [1]. It contains many
applications such as: FFT (Fast Fourier Transform) [2],
Cholesky factorization [3], Barnes (N-Body problem) [4], etc.
They are the most popular classical problems in parallel
computing, the main applied field of CMP. Each of these
problems requires its unique kind of data and the way to solve
it. The complexity problems in real life, in general, are the
combination of some basic problems, which are included in
Splash2. If a CMP solves the basic problem well, it will solve
the real problem well too.

Many CMPs are regularly used to process computer
graphics. For this, Splash2 provides three relevant applications
namely Radiosity, Raytrace, and Volrend. In many
experiments, however, the performance when running Raytrace
is not good while the others are better. This inspires us to study
and analyze Raytrace application and explain why the CMP do
not solve it well.

Our paper is organized as follows. It begins with the
introduction of CMP benchmark and questions why the perfor-
mance of CMP when running Raytrace is not good. Section II
presents clearly about Raytrace applications. This section
begins with the rendering problem in computer graphics and
analyzes the ray tracing method after that. Section III shows us
how to use parallel computing to do ray tracing method. The
experiments are presented in section IV. We run Raytrace in
many CMPs to evaluate the performance, and then, we show its
performance in comparison with other applications. The final
section is the conclusion. It is presented in section V.

1
This work was supported by Vietnam National University

- Ho Chi Minh city grant number C2015-40-01.

II. RENDERING IN COMPUTER GRAPHICS

We are living in a 3-Dimension (3D) space, but our eyes
only observe 2-Dimension (2D) of the world. How we impress
the real world by observation? That is based on our hobbies;
we can change the view points to get more information about
the locations of many objects. So that, we can image exactly
where an object is. But we can not change our viewpoint when
using a monitor such as a computer monitor. From a 2D image
in the monitor, how can we identify the location of any object?
That is up to the way we present the image in the monitor. How
we present a 2D image, which helps us to impress the location
of each object, is called rendering.

A. What is rendering?

Rendering is the way to present a 2D image, which helps us
to image about its 3D sense or the location of each object. An
object in 3D space is identified by three information: height,
width, and depth. 2D image presents the height and the width,
and the rendering problem presents the depth of the object.
There are two main types of rendering: local illumination and
global illumination. Both of them use the intensity, which is
from the light, to present the deep of each object. But they use
the lights in different ways. The local illumination is very
simple. We only use the light coming directly from a light
source for the image. That means we do not use others kind of
light such as light reflected from a mirror to present the object.
Its advantage is simple in both idea and coding, but it is not
really a good method. Global illumination is more complexity
and efficient than local illumination. We consider all of the
lights while presenting an object: directed light, reflected light
and shadow light. From these lights, we can create many
effects such as reflection, shadows. This approach is the main
method for this problem in modern graphics.

B. Raytrace method

Global illumination contains many methods such as ray

casting, ray tracing, etc. They use many kinds of light to

present an object. Ray tracing is popularly used in both

industry and personal applications. Its idea is simple: tracing a

path from a point of view through each pixel in a virtual screen,

then calculating the light intensity and the color of the object

which is visible through it[5]. First, we need to define the main

problem: we have a set of light sources and a set of objects, and

their location in 3D space. We want

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

455 | P a g e

www.ijacsa.thesai.org

to compute the intensity and colors of each pixel, which is used
to present the 3D space including the mentioned light sources
and objects, on the screen. Figure 1 shows us an illustration for
ray tracing

Fig. 1. Identifying the value for every pixel using ray tracing. (Source:

ICE RWTH Aachen University)

We want to compute the value at the pixel in the
intersection point between the line, that connects our eye and
the object, and the screen. Besides, the connecting line contains
not only the directed light but also the reflected light from the
other surfaces. This leads us that we can observe both the scene
in the viewport and the scene which is reflected by the objects
in the viewport. Imaging, from our eye, a ray is released. It
meets a surface and is reflected. In the real world, almost every
object do not have a pure smooth surface, so the reflected
rays are spread or diffuse like the illustration in figure 2.

Fig. 2. When a ray meets a non-pure smooth surface, we receive the spread or

diffuse reflection. (Source:MIT Open-CourseWare)

The corollary of spreading or diffusing reflection is that the
reflected rays will meet many objects, and that process will
repeat. But there is an important note: the power of a light ray
is reduced after each reflecting point. In other words, we can
say there are many rays from many objects have the
contribution to the value of a pixel, the less reflecting time, the
more contribution. When considering the ray from our point of
view to a pixel on the monitor, we need to compute a group of
rays reflecting between many objects. If we choose a sequence
of objects and identify the reflecting ray between them, we will
receive a ray path. The destination of a ray path is often the
light source. An object can also be a destination when a ray
reflects many times and ends up at that object. Fig.3 shows us a
ray path as an example. From the view point to the bulb-light
source, the path connects three other objects. Figure 4 shows us
a ray-tree [6] or a group of ray paths when extending the
contribution to one pixel.

Fig. 3. One ray path in Ray tracing process

Fig. 4. The ray-tree when extending all of the contribution to one pixel from

all objects

The color and intensity of one pixel are decided by one
specific point of one specific object, and the value of that
specific point is decided by many other points from many other
objects. This loop is stopped when the number of reflections is
large enough or, in other words, the contribution of a point or
an object to the value of the pixel is small enough. We can use
a hierarchical tree to illustrate this.

III. USING PARALLEL COMPUTING TO SOLVE THE

RENDERING PROBLEM BY RAY TRACING METHOD

We presented the Ray tracing method in section II.
Raytrace is the parallel version of that method. Our expected
output is the color and intensity of all pixels on the screen.
These value of one pixel are computed based on the pixel’s
ray-tree. In parallel method, multiple processor cores can

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

456 | P a g e

www.ijacsa.thesai.org

compute the value of multiple pixels simultaneously [6].
Because of our purpose, we analyze the property of the input
data for Raytrace applications. The data is a set of light sources
and objects. While calculating the value of a pixel through its
ray-tree, an object can contribute different values for the
computing process at different time because of the reflection.
So we can consider their contributions are from different
objects. On the other hand, if one object exists in two ray-trees
or two pixels, its contributing values are neither the same
because the view angles from two different pixels to the same
object are different. Thus, we reach a conclusion that all nodes
serving ray tracing process are not reused. This means that each
node from each ray-tree is used just one time during their life.
So, in theory, we can not reuse any node or any data for our
computation.

IV. PERFORMANCE OF CMP WHEN RUNNING RAYTRACE

APPLICATION

This section presents two experiments focus on L1-Data
cache. In the first experiment, we run a CMP using Raytrace
and three other random selected applications as the workload.
We will show the performance of CMP for each application in
comparison with the others. In the second experiment, we show
the performance of different CMP configurations when running
Raytrace. This demonstrates that the negative properties of
Raytrace are caused by theory, and they can not be solved by
changing CMP. In this section, we use hit ratio in L1-Data
cache as the measurement for estimating CMP’s performance.
This information is an important parameter of a CMP.

A. Experiment 1

We use three random applications in Splash2 to compare
with Raytrace. The results are shown in figure 5. As we can
see, in 4 cores the hit Ratios at L1-Data cache of Raytrace are
significantly lower in comparison with the others. Its hit ratios
are high, over 70%, because of the technique of coding. Three
others have more positive properties, so the data is reused
efficiently, and the hit ratio is nearly 99%, obviously higher
than Raytrace.

Fig. 5. Hit Ratio in L1-Data cache of CMP when running four applications

B. Experiment 2

We run Raytrace in 4 CMPs to estimate the average per-
formance of reusing data. Our CMPs contain four processor
cores. The sizes of L1-Data cache for the four CMPs are 4 KB,
16 KB, 64 KB and 256 KB, respectively. The results are
presented in figure 6. When the cache size is too large, total 1
MB for L1-Data cache, the hit ratio is not high, just over 80%.
With this result, we infer that the L1 data cache hit ratio or the
performance of CMP can not be improved by increasing L1
cache size. We need to change the method or approach instead
of changing CMP.

Fig. 6. Hit Ratio in L1-Data cache of 4 CMPs when running Raytrace

V. CONCLUSION

Our analysis proves that Ray tracing is a good method for
the effects used in applications, but it is not well-fit for parallel
computing hardware. Because the data is not reused, and each
node is used just one time. This led the hit ratio in L1-Data
cache is too low, and the performance is not good. We need a
new parallel algorithm for this problem instead of increasing
L1 cache size of the CMP.

REFERENCES

[1] Steven Cameron Woo et al. ”The SPLASH-2 Programs: Characterization
and Methodological Considerations”. 22nd Annual International Sympo-
sium on Computer Architecture. 1995

[2] Somasundaram Meiyappan. ”Implementation and performance evaluation
of parallel FFT algorithms”. Technical report. 14 pp

[3] Rothberg and Gupta. ”An efficient block-oriented approach to parallel
sparse Cholesky factorization”. ACM. 1993

[4] Jaswinder Pal Singh, John L. Hennessy and Anoop
Gupta. ”Implications of Hierarchical N-body Methods for Multiprocessor
Architecture”. ACM Transactions on Computer Systems. Pages 141-202.
1995

[5] Sid Delmar Leach. ”3D Rendering”. 224 pp. 2011.

[6] J. P. Singh et al. ”Parallel Visualization Algorithms: Performance and
Architectural Implications”. 45-55. Journal of Computer. 1994

