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Abstract—Over the past years software architecture has be-
come an important sub-field of software engineering. There has
been substantial advancement in developing new technical ap-
proaches to start handling architectural design as an engineering
discipline. Measurement is an essential part of any engineering
discipline. Quantifying the quality attributes of the software
architecture will reveal good insights about the architecture. It
will also help architects and practioners to choose the best fit of
alternative architectures that meets their needs. This work paves
the way for researchers to start investigating ways to measure
software architecture quality attributes. Measurement of these
qualities is essential for this sub-field of software engineering.
This work explores Stability and Understandability of software
architecture, several metrics that affect them, and literature
review of these qualities.
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I. INTRODUCTION

Software systems are becoming complex, larger, more inte-
grated, and are implemented by the use of several varieties of
technologies. These various technologies need to be managed
and organized to deliver a quality product. Quality attributes
usually assessed and analyzed at the architecture level not at
the code level. It is usually the case that when we decide on a
appropriate architectural choice (i.e. the system will exhibit its
required quality attributes) without the need to wait until the
system is developed and deployed, since software architecture
enables to predict system qualities.

The software architecture field has been inspired by other
engineering domains. This inspiration led the movement to
these well-known concepts such as stakeholders and concerns,
analysis and validation, styles and views, standardization and
reuse, best practices and certification. However, software is
inherently different from all other engineering disciplines.
Rather than delivering a final product, delivery of software
means delivering blueprints for products. Computers can be
seen as fully automatic factories that accept such blueprints
and instantiate them.

In this work, we pave the way for researchers to start
investigating ways to measure software architecture quality.
The remainder of this paper is organized as follows. Section
II introduces and defines software architecture and discusses
its importance. Software metrics are discussed in Section III.
Software architecture measurement is presented in Section
IV. Tow samples of software architecture quality attributes

are discusses is Section V. Section VI presents the software
architecture measurement validation techniques. Conclusions
are presented in Section VII.

II. SOFTWARE ARCHITECTURE

Over the past years software architecture has became
an important sub-field of software engineering. There has
been substantial advancement in developing new technical
approaches to start handling architectural design as an engi-
neering discipline. However, much research is yet to be carried
to achieve that. Moreover, the changing nature of technology
raises a number of challenges for software architecture.

Designing a software structure is the phase that comes im-
mediately after gathering and analyzing the software require-
ments. During this phase the software is constructed in terms
of components and relationships that link these components
with each other [1]. These components and their relationships
will illustrate the architecture for particular software. The
software architecture of a system has many definitions in
the field of software engineering. Software Architecture is
defined in the IEEE standards [2] as “fundamental concepts
or properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design and
evolution”. The authors of the book ’Software Architecture in
Practice’ [1] defined the software architecture as “the set of
structures needed to reason about the system, which comprise
software elements, relations among them, and properties of
both.” Software architecture represents the design decisions
that are hardest to change and determine the overall system
proprieties [3]. Those decisions have to be made before con-
current work on a system can be started. Architecture decisions
will not be at a component level, but they span the overall
system components and determine their interconnections and
constrains. Once all architecture decisions are made, work in
individual components can proceed independently [4].

Software architecture is the name of a particular form of
abstraction, or model, of software systems. It is considered as
abroad abstraction of the system, which contains information
about both functional and non-functional requirements. The
architecture lays the foundation of the shared communication
platform for the various stakeholders. Software architecture
typically bridges between requirements and implementation.
Software architecture embodies the earliest decisions that
shaped the impact on the success/failure of the software
system. Software architecture serves as a reasoning, important
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communication, analysis, and growth tool for software systems
[1].

Several authors came to an agreement that software archi-
tecture is a skeleton produced in the early phase of design.
Documenting the software architecture is useful both as a
means of communication between stakeholders and in provid-
ing an overall picture of the system that is to be developed.
Architecting the software system is a crucial task since it lays
the groundwork for later activities in the software development
process. The architecture plays an important factor in the
software success or failure. Understanding the architecture is
very important for both architects and developers to relate it
to requirements, product, and process.

The software architecture influences greatly the system’s
quality as it can inhibit or enable product’s quality attributes.
The quality of a software system is largely attributed to its
software architecture [5]. Thus, evaluation of this software
architecture should be done on a regular basis. Such repeated
evaluations ensure that the system remains sustainable and
evolvable over a longer period of time [6].

The software architecture can be decomposed into more
granular levels, namely packages, components, and modules.
Package is used to represent a set of classes that might be
hierarchically structured and to perform a series of related
tasks [7]. A package is a group of classes that are related
to each others or perform one higher purpose. Classes in the
same package have special access privilege with respect to
one another and may be designed to work together closely.
Component in the context of object-oriented design is for
organization purposes. Component contains a group of classes
and other components as well. A component provides one or
two similar system functionalities [8]. Module consists of a
large number of classes and sometimes a module is referred
to as a package. It provides information hiding for the module
allowing a software engineer to see it as a black box [9].

The field of software architecture remains reasonably im-
mature. Although it has an engineering foundation for software
architecture, it is not clear yet, there are still several challenges.
As a result, we anticipate major new advancements and devel-
opments in the software architecture field in the future.

A. Importance

The software architecture is very important in the software
development life-cycle. It is considered as the blueprint of
the system where important decisions are documented. It is
a reference for the whole system in design, development,
and maintenance. A poor software architecture may lead to
a deficient software product that does not satisfy its customers
and can not be adaptive to new changes. David Garlan [10]
summarized the importance of software architecture in six
aspects of software development:

1) Understanding: Software architecture can be seen
as mechanism to simplify our ability to understand
complex-large systems by presenting them at a higher
level of abstraction [1]. Furthermore, the architecture
exposes the high-level constraints on system design,
as well as the rationale for making specific architec-
tural choices [11].

2) Reuse: Software architecture supports reuse of com-
ponents and frameworks. Platforms, frameworks,
components, architectural patterns, libraries of plug-
ins, add-ins, apps, and domain-specific software ar-
chitectures are different promoters of reuse.

3) Construction: Software architecture provides a
blueprint for development and implementation by
showing the major components and dependencies
between them. For instance, a layered architecture
documents abstraction boundaries between parts of a
system’s implementation [11].

4) Evolution: Software architecture exposes the dimen-
sions along which a system is expected to evolve.
Software maintainers can easily understand the rami-
fications of changes, and accurately estimate costs of
modifications [12].

5) Analysis: Software architecture can be seen as a way
to analyze the whole system. These analyses can
include satisfaction of quality attributes [1], system
consistency checking [1], conformance to constraints
forced by an architectural style, and domain-specific
analyses for architectures built in specific styles.

6) Management: Software architecture can be seen as a
viable milestone in any industrial software develop-
ment process. Critical evaluation of an architecture
leads to clear understanding of requirements, imple-
mentation plans, and possible risks, which will reduce
the amount of rework required to address problems
later in a systems life-time [1].

B. Quality Attributes

This section summarizes several important quality at-
tributes across the software architecture domain. A quality
attribute (QA) is a measurable feature of a system, which
is utilized to stipulate how well the system satisfies stake-
holders. You can consider a quality attribute as measuring the
goodness of that property. ISO/IEC 9126 [2] classifies quality
attributes of software as functionality, maintainability, usabil-
ity, efficiency, reliability, and portability. These characteristics
are attributes that can describe a software system. These
quality attributes are further derives the sub-characteristics
with more attributes. The quality characteristics are refined
to sub-characteristics and these sub-characteristics are refined
to attributes or measurable properties using several metrics. A
metric is a defined measurement method that assigns a value
to that attribute.

Quality attributes are strongly related to non-functional
requirements of a system. One of the responsibilities of the
software analyst to come up with a complete list of quality
attributes before architecting and designing the system. Qual-
ity attributes commonly include efficiency (time, efficiency,
resource economy), functionality (completeness, security, in-
teroperability), maintainability (expandability, modifiability,
testability), portability (hardware independence, software inde-
pendence, installability, reusability), reliability (error tolerance,
availability), and usability (understandability, user interface,
learnability). Figure 1 shows the quality attributes in ISO/IEC
9126.

When software architects are able to measure and quantify
these quality attributes, they will be able to enumerate feasible
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Fig. 1. Quality Attributes in SQuaRe

architecture design and evaluate all quality attributes. As each
quality attribute is assigned a measure, a total score can
be calculated in order to help the architect which design
alternative to use. When the evaluation process is complete,
the design with high score will be chosen.

III. SOFTWARE METRICS

Measurement is crucial for any science or engineering field.
Organizations strive to come up with meaningful measures that
indicate progress or performance. Measurement in software
engineering is considered a crucial factor to evaluate the
software quality characteristics such as functionality, usability,
reliability, efficiency, maintainability, and portability. In soft-
ware engineering, there is still a lack in that discipline. We
still need to work in consolidating terminology, principles and
methods of software measurement [13]. Software measurement
activities consist of direct and indirect assessments, as well as
predictions [13], [14]. Measurement allows us to understand
the current situation and to come up with clear benchmarks
that are useful to set goals for the future behavior. Software
measurement [15] is not limited only to evaluate a software
product but it will be used to evaluate the software develop-
ment process. Measurement is a crucial activity in all empirical
studies.

Software metrics field is an interesting field in the software
engineering community since more than 30 years. The interest
in metrics by both academician and practitioners is growing
rapidly. Software metrics are defined as [16] “standard of
measurement, used to judge the attributes of something being
measured, such as quality or complexity, in an objective
manner”. Software metrics are measures utilized to evaluate
the process or product quality. These metrics helps project
managers to know what is the progress of software and
evaluate the quality of the various artifacts produced during
development. The software requirements engineers can vali-
date and verify requirements. Software metrics are required to
capture various software attributes at different phases of the
software development [17]. Software metrics are required to
adequately measure various points in the software development

process.

Software metrics constitute the main approach to software
measurement [13], [18], [19]. Software metrics and quality are
major players in measurement of software quality. Measuring
software artifacts should focus on selecting the right metrics
for each software and on how to apply them [13].

IV. SOFTWARE ARCHITECTURE MEASUREMENT

Software architecture measurement suffers from what peo-
ple calls the tyranny of the dominant architectural principle.
The assessments of certain principles are overstressed, other
equally important design principles have been omitted in
architecture measurement processes.

Each quality attribute can be measured using different
characteristics of the software architecture. The characteristics
can be of size, complexity, coupling, cohesion, or others.
Furthermore, each quality attribute can be measured by com-
bining several existing measures. Several quality attributes are
very similar and can complement each other. Several software
metrics can be combined together to measure a certain property
using either composition or aggregation [20]. In composition,
software metrics used to assess a property can be composed
by (1) simple or weighted average of the metrics. This can
be used only when the different metrics have similar range
and semantic; (2) thresholding; (3) interpolating; or (4) a
combination of these methods. In aggregation, several steps
are required. (1) a weighting function is applied to each metric
then (2) average the weighted values of the metrics then (3)
we compute the inverse function of the average.

V. ARCHITECTURE QUALITY ATTRIBUTES

In this section we review several attempts to measure two
quality attributes of the software architecture, namely stability
and understandability.

A. Stability

The primary goal from the architecture evaluation is to
assess and validate the software architecture using system-
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atic methods and procedures [21]. This evaluation is accom-
plished to ensure the examined software architecture satisfy
one or more of quality characteristics. One desired quality
of the software architecture is stability. Stability is one of
the maintainability characteristics of the ISO/IEC SQuaRe
quality standard [2]. According to this standard, stability is
defined as the degree to which the software product can
avoid unexpected effects from modifications of the software
[2]. Architectural stability reduces unnecessary architecture
rework as the software system’s functionality is expanding over
multiple versions, thus reducing implementation costs.

As architectures have a profound effect on the operational
life-time of the software and the quality of the service pro-
vision, architectural stability could be considered a primary
criterion towards achieving the long-livety of the software.
Architectural stability is envisioned as the next step in quality
attributes, combining many inter-related qualities.

Several researchers proposed several metrics to measure
the stability of software architecture. Stability is the ability of
software to remain unchanged while facing new requirements
or changing the environment. The software has to accommo-
date some of these changes and they should not affect the
software stability, while other may harm the software stability.
This section presents an overview of several attempts in the
literature to measure the stability of particular software.

Ahmed et al. [22] proposed a new way to measure the
architectural stability of an object oriented system by using
similarity metrics. These metrics compare pair versions of a
system. First metric is Shallow Semantic Similarity Metric
(SSSM), and the purpose of this metric is to the measure
the semantic similarity between components in a pair of sys-
tems. Second metric is Relationship-Based Similarity Metric
(RBSM) and it is aiming to measure similarity between the
relationships that exist in a pair of systems. A regression line is
generated for the architecture changes with releases from these
similarity values. A higher value indicates a stable architecture.

Ebad et al. [3] continued the work that is proposed in [22]
by developing a new architecture stability metric (ASM) that
measure cross-architecture components communications in
term of inter-package connections (IPC). The idea behind IPC
is when a pair of releases of a software system is compared;
there are three types of changes that may happen (addition,
deletion, and modification). ASM value will be between 0
and 1, where 1 means lowest possible amount of changes
between two releases which means stable software architec-
ture. ASM is validated by a set of mathematical properties
which are: non-negativity, normalization, null value, maximum
value, transitivity, package cohesion impact and change impact.
Moreover, this metric is experimentally validated by using two
open source projects: JHotDraw and abstract windowtoolkit.
Measurements of the ASM are illustrated by lines of code for
original IPCs and deleted IPCs, and added IPCs across releases
in the two previously mentioned projects.

Aversano et al. [23] evaluated the software architecture for
a set of open source software projects. Most of these projects
are selected from sourceforge. Stability is the characteristic that
is examined in order to evaluate the software core architecture.
The evolution of certain software is considered when the
software components are changed during the software releases.

Two metrics are proposed to measure the stability of each re-
lease. These two metrics are Core Design Instability (CDI) and
Core Call Instability (CCI). Both metrics provide a measure
of how much the architecture of a software system changed
passing from a release to another one. CDI metric finds the
change in terms of number of packages and CCI finds the
change in terms of number of the interactions among packages.
Smaller values mean less change which means greater stability.
All these metrics are based on calculating fan-in and self-call
for software packages.

Alshayeb et al. [24] mentioned that none of the existing
measures have included all class aspects such as class rela-
tionships, attributes, and methods. At the first of this study
all properties that affect the class stability are identified; these
properties are class access level, class interface level, inherited
class name, class variable, class variable access- level, method
signature, method access level , method body. Then from these
properties the proposed metric is recognized. The name of the
discovered metric is Class Stability Metric (CSM). Stability
is calculated by counting the number of unchanged properties
between two classes in version i+1 and version i divided by the
maximum possible change value, then summation of all these
properties is divided by the number of the properties which is
eight. This metric is theoretically validated by some properties.
Moreover, this metric is empirically validated through two Java
systems. The result of this empirical study indicates that this
metric is highly negatively correlated with maintenance effort.

Li et al [25] proposed new metrics to measure the stability
for the software design. They highlighted that metrics that are
discovered by Chidambe & Kemerer [26] cant measure all
aspects of Object Oriented. Examples of these aspects are the
change in the class name, class number, and class inheritance
relations. From this imperfection of C&K metrics, authors
proposed these three metrics: System Design Instability (SDI),
Class Implementation Instability (CII), and System implemen-
tation Instability (SII). The main goal that pointed out in this
study is to justify how the information that is gathered from
theses metrics can help project manager to adjust the project
plan. These metrics are experimentally examined against C&K
metrics. They found out that SDI and CII measure Object
Oriented aspects that are different from the aspects that are
measured by C&K metrics.

Abdeen et al. [27] introduced a complementary set of cou-
pling and cohesion metrics that assess packages organization
in large legacy object-oriented software. These metrics are
aiming to measure the modularization for an object-oriented
system. Here are the metrics that are discovered by Abdeen:
Index of Inter-Package Usage (IIPU), Index of Inter-Package
Extending (IIPE), Package Focus (PF), Index of Package
Service Cohesion (IPSC), and Index of Package Changing
Impact (IPCI). These metrics are defined with respect to some
modularity principles that are related to packages. Examples
of these principles are information hiding, changeability and
communality of goal. These metrics are defined with regard to
two different types of object-oriented inter-class dependencies:
method call and inheritance relationships. All metrics that are
discovered in this work are validated against the mathematical
properties that have to be existed in any cohesion or coupling
metric.

Sethi et al. [28] mentioned that none of existing met-
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rics, that are used to assess the modularity and stability
of architecture decomposition, has considered environmental
factors that drive software changes. From this point a suite
of metrics is proposed: decision volatility, design volatility,
impact scope, concern scope, concern overlap and independent
level. Theses metrics consider environmental factors that drive
software changes. Moreover they tried to measure how well
a particular architecture produces independently substitutable
modules. Furthermore, these metrics did not require having
knowledge about the implementation details. In these metrics
design dimensions and environmental conditions are mod-
eled as variables and their relations are modeled as logical
constraints. These metrics are evaluated using eight aspect-
oriented and object-oriented releases of software product-line
architecture.

It has been realized the work that is produced by Chi-
damber and Kemerer [26] has been cited in most of other
studies. They developed a suite of metrics that is used for
measuring a particular object- oriented design. The primary
goal is to develop and validate theoretically and empirically
a set of object-oriented metrics. These metrics are Weighted
Method per Class (WMC), Depth of Inheritance of Tree (DIT),
Number of Children (NOC), Coupling Between Object Class
(CBO), Response for Class (RFC) and Lack of Cohesion of
Metric (LOCM). Each one of this matric is evaluated theoreti-
cally against six properties: noun-coarseness, non-uniqueness,
design details are important, Monotonicity, noun-equivalence
of intersection and intersection increases complexity. Then, the
implementation of these metrics is demonstrated through data
collection from both C++and SMALLTALK implementations.
From the obtained data, it has been shown how each one of
this metric can help project managers and senior designers
to obtain useful information about the entire evolution of a
particular application.

Hassaine et al. [29] proposed a novel approach to inves-
tigate some metrics (code decay indicators) on software, that
serve as symptoms, risk factors, and predictors of decay, in
the context of an evolving architecture. The name of their
approach is ADvISE and it aims for analyzing the evolution
of certain software architecture at various levels (classes,
triplets, and micro-architectures). The first step in observing
architectural decay is to use a diagram matching technique to
identify structural changes among versions of architectures.
The second step is detecting the class renaming by using
structure-based and text-based techniques. The third step is
architecture diagram matching by using a bit vector algorithm
to perform diagram matching between two programs versions
in order to find the common triplets. The fourth step is architec-
ture diagram clustering by applying the incremental clustering
algorithm to find the sets of connected triplets. These sets
will form the stable micro-architecture between two program
versions. The fifth step is architecture evolution by performing
a pairwise matching for programs architectures in order to
identify sets of stable triplets and micro-architecture. The
authors applied their approach on three open-source systems:
JFreeChart, Rhino and Xerces-J to answering the following
research questions: RQ1: What are signs of architectural decay
and how can they be tracked down? The authors studied the
graph of architectures evolution for each system, and then they
showed these indicators to provide useful insights regarding the
signs of software aging. RQ2: Do stable and unstable micro-

architectures have the same risk to be fault prone? The authors
showed stable micro-architectures, which are belonging to the
original design, are significantly less bug-prone than unstable
micro-architectures.

Jazayeri et al. [30] did retrospective analysis to evaluate and
assess the architecture for telecommunication software. Twenty
releases are selected to observe the evolution of this software.
This kind of evaluation helps project managers to predict about
how the future of the architecture will be look like. Metrics
that are used in this work are likely to be the observation of
the some simple measures between a pair of releases while
the software is being evolved. Examples of these metrics are
module size, number of modules changed, number of modules
added, number of modules changed in the same sequence of
release, number of programs in the same version of release.

Abreu and Melo. [31] evaluated the impact of object
oriented design on software quality characteristics such as
defect density, failure density, and normalized rework. There
is a set of metrics for object oriented design MOOD. These
metrics are empirically evaluated against the software quality
characteristics by calculating the correlation coefficients where
the quality characteristics are the dependents variables and
the design metrics are the independent variables. Examples
of these design metrics are 1) method hiding factor (MHF),
attribute hiding factor (AHF), method inheritance factor (MIF),
attribute inheritance factor (AIF), polymorphism factor (POC)
and coupling factor (COF).To quantify the impact of OO
design on software quality, a predictive model is developed.
The results show that the design alternatives may have a strong
influence on resulting quality. For the study validity multiple R,
R square and adjusted R square are calculated for the software
quality characteristics.

Olague et al. [32] utilized entropy to reduce spikes in the
original SDI metric that is produced by Li.et al [25] and
proposed the new SDIe metric. This study highlighted that
the dynamic nature of the agile development process could
obscure an analysis of software stability. Also, this study
notified that the SDIe metric is easier than the SDI metric
to compute the stability for a particular software system. The
reason behind that is SDIe is able to be automated instead of
requiring the close investigation of code by human judgment.
The SDIe metric is calculated using the number classes added,
deleted, changed and unchanged from the previous iteration.
SDIe metric is theoretically investigated and validated using
the Kitchenham criteria [33] and the Zuse requirements [34]
for software measures. Moreover SDIe is empirically tested
over two software projects by comparing SDIe metric with
the original SDI, using SDIe to assess the software evolution,
and comparing SDIe metric to the Chidamber and Kemerer
[26].

Tonu et al. [21] proposed an approach that can helps
developers in evaluating stability for a particular software
architecture. Evaluating the software architecture is based on
analyzing the changes in the softwares aspects form one release
to another. Software aspects can be structural, behavior, or
economical, in this research work the focus is only on the
structural aspects. Growth rate, changes rate, coupling, cohe-
sion are the measures that are applied in this approach to do
retrospective analysis. Then, evolutionsensitive and evolution
critical parts are identified by observing how the subsystems
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are interconnected between each other. This approach is empir-
ically evaluated on two spreadsheet applications by selecting
nine releases for each application, and then the results of the
architecture stability are discussed.

Roden et al. [35] performed empirical study on six different
highly iterative projects with multiple iterations by observing
the system packages. These projects are evaluated using Total
Quality Index (TQI), System Design Instability (SDI) and
System Design Instability using Entropy (SDIe) metrics. TQI is
calculated by summation of quality factors. Each quality factor
is calculated by a weighted formula of quality properties. This
statistical analysis gives a string relation between TQI and SDI.
Because of the similarity between TQI and stability metrics
and since the stability metrics require human participation, the
authors in this work suggest to use TQI instead of SDI.

Yu and Ramawamy [36] reintroduced an approach to repre-
sent and normalize the evolution stability of software modules.
This approach is based on version differences of evolving
software models by measuring the normalized distance of two
versions for a module structure and module source code. For
example by giving two versions Vi and Vj of a software
component in a given release period let say m months, the
component is said to be more stable in this period, if the
measurement structure distance Di, j(source code) or Di, j
(structure) is considered to be small. A case study is applied on
this model by evaluation the evolution of Linux and FreeBSD
applications by selecting two versions.

Raemaekers et al. [37] highlighted backward compatibility
as a very important concern to build an Application Program-
ming Interface (API). API developers have to ensure the public
interfaces are stabile because other systems are depending
on theme. From this point, a way to measure interface and
implementation stability of a library is introduced. Four metrics
are proposed in this study to provide different insights in both
implementation and interface stability. These four metrics are
weighted number of removed methods, the change in metric
values in existing units, the ratio between change in new and
old methods and the percentage of new methods. Smaller value
indicates greater stability. Moreover, they illustrate who these
metrics can be used to help project managers or developers
to make a decision regarding interface libraries by applying
three scenarios. These metrics are theoretically evaluated by
applying theme on the most frequently used Apache common
libraries by selection a set of industrial systems which making
use of Apache libraries. From the architectural perspective, the
drawback of these metrics is the granularity level of the metric;
they are not at package level (coarse-grain) but method level
(fine-grain)

Ratiu et al. [38] started by defining two measurements
that are used to identify which structure is considered a god
class or data class. These measurements are based on object
oriented design metrics and threshold for each metric. First
measurement is used to identify god classes and it is based on
these metrics: Access to Foreign Data (ATFD) and Weighted
Method Count (WMC), Tight Class Cohesion (TCC) ,Number
of Attributes (NOA). While the another measurement is used to
identify data classes and it is based on these metrics: Weight
of a Class (WOC), Number of Methods (NOM) ,Weighted
Method Count (WMC) ,Number of Public Attributes (NOPA)
and Number of Accessory Methods (NOAM). Then, they

proposed two measurements that are applied on the history
of a design structure. One of these measurements is used to
measure the stability of a class (Stab) and another is used
to measure the persistence of a design flaw (Pers). A class is
considered stable with respect to measurement M version i and
number of versions if there is no change in the measurement
M. while a flaw is considered persistence in a class with respect
to measurement M version i and number of versions if this flaw
is exist in all versions of this class. Their approach is applied
on three case studies: two in house projects, and one on a large
open source framework. By observing the data while applying
their approach, they discuss which classes, ether these classes
are god classes or data classes, are considered to be harmless
or harmful classes.

Bansiya et al. [39] introduced a methodology to evaluate
framework architecture characteristics and stability that based
on quantitative assessment on the change in framework ver-
sions using object oriented metrics. This approach consists
of four steps that need to follow in order to calculate the
extent-of-change measure. First step is identifying structure
characteristics that evaluate the architecture of framework.
There are two types of structure characteristics: static and
dynamic. Example of static structure characteristics are number
of classes, number of class hierarchies, number of single and
multiple inheritances, and average depth and width of class
inheritance hierarchies. Examples of dynamic structure charac-
teristics are number of services a class provides, class coupling,
and number of inheritance related classes. Second step is
defining metrics for each one of these structure characteristics.
Third step is collecting the data from the defined metrics by
applying theme on a case study. Finally, for each release the
extent-of-change is calculated by normalizing the values of
these metrics. Once all values are normalized, the aggregate-
change is calculated by summation of these values. Then the
extent-of-change is calculated by taking the difference of the
aggregate change value of a version i with the aggregate
change value of the first version. The extent of change measure
can be used as an indicator to identify the stability for a
particular system structure, low number indicates high stability.

Alenezi and Khellah. [6] highlighted in their work that
most of previous studies have not considered measuring the
system instability at the system architecture level and most of
them are focusing at the package level. From this point, they
introduce a new approach to compute the instability changes
for particular software architecture at a certain release while
observing its evolution. Their approach is based on the instabil-
ity I metric that is introduced by Martin [40] which tells how
a flexible a package is able to change, the ration of the efferent
coupling to the total the coupling for a package. The proposed
approach is to reflect the instability change to evolution by
expressing the aggregate system instability change for certain
release as being composed of the average of two elements: ∆I:
the amount of change in the system stability for all common
packages and ASI: Aggregative System Instability for the
current added packages. They illustrate how an improvement
by just calculating ASI is incorrect and how the incorrectness
would be solved by the proposed approach. This approach is
empirically validated on two open source systems implemented
in Java JEdit and PDFBox by selecting twelve releases.

Table I summarizes the discussed papers with their metrics

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 7, 2016 

555 | P a g e
www.ijacsa.thesai.org 



and granularity level. The literature reveals that the available
architectural stability measures have some limitations. For
instance, the metrics proposed by [39] and the methodology
presented by [41] consider the method/class level which is
fine-grain level. Bansiya work is suitable only when having
cost and economic as his backdrop [39].

B. Understandability

One desired quality of the software architecture is un-
derstandability. Understandability in the context of software
architecture simply means whether system architecture is un-
derstandable to average architects. Understandability is one of
the usability characteristics of the ISO/IEC SQuaRe quality
standard [2]. Understandability refers to the capability that to
what extent users with different backgrounds can understand
the architecture. Understandability is an essential characteristic
of software quality since the difficulty of understanding the
software architecture system inhibits its reuse and mainte-
nance. Understandability is the capability of the software
product to enable the user to understand whether the software
is suitable, and how it can be used for particular tasks and
conditions of use.

Several researchers have explored the relationships between
several metrics and understandability. Table II summarizes
their efforts, goals, and research methodology. Gupta and
Chhabra [7] proposed a package coupling metric and em-
pirically validated it against package understandability. Their
study used one metric and they performed correlation analysis.
They validated the package coupling metric with regard to the
understandability of packages measured by assessing the effort
required to fully understand the packages’ functionalities. They
concluded that there is a strong correlation between package
coupling and the effort required to understand a package.

Elish [42] used several metrics (Size (NC), Coupling
(Ca, Ce), and Stability (I, D)) and conducted a case study
to correlate these metrics with package understandability of
two open source software systems. The results of the study
indicated statistically significant correlation between most of
the metrics and understandability of a package.

Hwa et al. [9] have proposed hierarchical quality model
(consist of 4 levels and 3 links to connect these levels) to assess
the understandability of the modular design of an Object-
Oriented software system. At the level 2 of their proposed
model 6 design properties were identified that affect under-
standability of the modular design of a system. One of these
properties is the coupling and they have found that the coupling
property has a negative influence on understandability and
that means the higher number of coupling the harder is to
understand the system. in their proposed hierarchical quality
model have found that there is a positive influence of the design
size on understandability. The larger the size the harder is to
understand.

Stevanetic and Zdun [8] carried a study to examine the
relationships between the effort required to understand a com-
ponent and component level metrics that describe component’s
size, complexity and coupling. Correlation, collinearity and
multivariate regression analysis were performed. The results of
the analysis show a statistically significant correlation between
the metrics and the effort required to understand a component.

Stevanetic and Zdun [43] found that the architecture at
the abstraction level that is sufficient to adequately map the
systems relevant functionalities to the corresponding architec-
tural components (i.e. , each component in the architecture
corresponds to one systems relevant functionality) significantly
improves the architecturelevel understanding of the software
system, as compared to two other architectures that have a
low and a high number o f elements . This means highly
abstracted system; low in number of elements by merging
systems relevant functionalities into one component would
decrease the understandability of such systems. As well as,
highly detailed systems; high number of elements by scattering
the functionalities into several components would decrease
the understandability of such systems. However, when each
component in the software architecture corresponds to one of
the systems functionalities would significantly improves the
understandability at the architectural level.

Stevanetic et. al [44] have done a controlled experiment
on 75 students of the Software Architecture lecture. The
students were divided into 3 groups and each group had been
given a different architectural representation of the same large
system. The first architectural representation was hierarchical
representation where all components at every abstraction level
in the hierarchy are present. Second architectural represen-
tation concentrates on the lowest level no hierarchy used.
Third architectural representation at concentrate on the highest
level component in th hierarchy by does not use hierarchal
abstraction. The conclusion of the experiment was that by
using the hierarchical architecture would result on a better
understandability at the architecture-level.

VI. SOFTWARE ARCHITECTURE MEASUREMENT
VALIDATION

It is commonly accepted that a software metric should be
validated following two different validations: theoretical and
empirical validations. This will ensure that the metric measures
the attribute that it is supposed to measure and provide evi-
dence on the usefulness of the metric. Many existing software
metrics are criticized from two standpoints, theoretically and
empirically. Several researchers pointed that most software
metrics were developed with no or little theoretical basis [46],
[47]. Furthermore, even though some metrics are theoretically
valid, they lack empirical evaluation [48].

A. Theoretical Validation

Theoretical validation makes sure that a metric is mea-
suring what is supposed to measure. The first requirement
for theoretical validation is that either the analyst has an
intuitive understanding of the concept that is being measured
and/or that the software engineering community has a consen-
sual intuitive understanding of the concept. There are several
frameworks for the theoretical validation of metrics. Some
of them are mainly subjective, while others rely on either
axiomatic or measurement theory foundations. Briand et al.
[49] have discussed the application of measurement theory in
software engineering. The theoretical validation is generally
carried out using measurement frameworks based on property-
based approaches. Property-based approaches [46] allow one
to prove that a measure satisfies properties characterizing a
concept (e.g., size, complexity, coupling). This approach is
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TABLE I. SUMMARY OF THE DISCUSSED PAPERS

Reference Metrics Granularity level

Abdeen et al. [27]
Index of Inter-Package Usage (IIPU), Index of Inter-Package Extending

(IIPE), Package Focus (PF), Index of Package Service Cohesion (IPSC), and
Index of Package Changing Impact (IPCI)

Package, architecture

Olague et al. [32] Software Design Instability using Entropy (SDIe) metric Architecture

Abreu and Melo. [31]
Method Hiding Factor (MHF), Attribute Hiding Factor (AHF), Method

Inheritance Factor (MIF), Attribute Inheritance Factor (AIF), Polymorphism
Factor (POC) and Coupling Factor (COF)

Architecture , classes

Ebad et al. [3] Architecture Stability Metric (ASM) Package, architecture

Ahmed et al. [22] Shallow Semantic Similarity Metric (SSSM),Second metric is
Relationship-Based Similarity Metric (RBSM) Component, architecture

Aversano et al. [23] Core Design Instability (CDI) and Core Call Instability (CCI) Package, architecture

Sethi et al. [28] Decision volatility, design volatility, impact scope, concern scope, concern
overlap and independent level Architecture

Hassaine et al. [29] ADvISE: Architectural Decay In Software Evolution Architecture

Li et al [25] System Design Instability (SDI), Class Implementation Instability (CII), and
System implementation Instability (SII) Architecture , classes

Alshayeb et al. [24] Class Stability Metric (CSM) Class

Chidamber and Kemerer [26]
Weighted Method per Class (WMC), Depth of Inheritance of Tree (DIT),

Number of Children (NOC), Coupling Between Object Class (CBO),
Response for Class (RFC) and Lack of Cohesion of Metric (LOCM)

Class

Jazayeri et al. [30]
Module size, number of modules changed, number of modules added,

number of modules changed in the same sequence of release, number of
programs in the same version of release

Architecture

Tonu et al. [21] Growth rate, changes rate, coupling, cohesion Architecture, classes
Roden et al. [35] Total Quality Index (TQI) Package, architecture

Raemaekers et al. [37]
Weighted number of Removed Methods (WRM), the amount of Change in

Existing Methods (CEM), the Ratio of Change in New to Old methods
(RCNO), and the Percentage of New Methods (PNM)

Library, method

Yu and Ramawamy [36] Distance (source code) or Distance (structure) Component
Ratiu et al. [38] Stability of a class (Stab) and persistence of a design flaw (Pers) Class

Bansiya et al. [39] The extent-of-change measure Architecture
Alenezi and Khellah. [6] Aggregative System Instability Architecture

TABLE II. SUMMARY OF THE DISCUSSED PAPERS

Reference Goal Methodology
Gupta and Chhabra [7] To Propose new metrics for measurement of package level coupling. Theoretical and Empirical

Elish [42]
To explore the relationships between five package-level metric (Size,

Afferent, Efferent, Instability and Distance) and the average effort required to
understand a package in O.O. design.

Empirical

Stevanetic and Zdun [45]
Systematic mapping study on software metrics related to the

understandability concept of such higher-level software structures with regard
to their relations to the system implementation

Systematic Mapping Study

Hwa et al. [9] To propose a hierarchical model to assess understandability of modularization
in large-scale O.O. software. Empirical

Stevanetic and Zdun [8]

To examine the relationships between the efforts required to understand a
component, measured through the time that participant spent on studying a

component and component level metrics that describe components size,
complexity and coupling.

Experimental

Stevanetic and Zdun [43]
To examine the effect of the level of abstraction of the software architecture

representation (3 levels) on the architecture-level understandability of a
software system.

Experimental

Stevanetic et. al [44] To examine the impact of hierarchies on architectural-level software
understandability. Empirical

comprehensive framework which defines the structural prop-
erties of software system mathematically which matches with
the methodology of the proposed metrics in this thesis. The
theory provides an empirical interpretation of the numbers (of
software measures) by the hypothetical empirical relational
system.

Arvanitou el al. [50] used a property-based approach to
theoretically validate their new metric, which measures the
coupling and class proneness to the ripple effect. Khoshkbar-
foroushha et al. [51] theoretically validated their new metric
using a property-based framework. Tripathi and Kushwaha
[52] theoretically validated their package level coupling metric

using a property-based framework. Lenhard et al. [53] theo-
retically validated their new metric that measures installability
of service orchestrations using a property-based approach.
Gupta and Chhabra [7] introduced a coupling metric at the
package level and theoretically validated it through property-
based approach.

B. Empirical Validation

The purpose of empirical validation is to show the use-
fulness of the metric in real application using real data from
software projects. The goal is to show that this new metric has
a concrete value in a real settings. The empirical validation
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of a software metric can be done using different empirical
techniques. These techniques include controlled experiments,
surveys, or case studies. A controlled experiment is a rigorous
and controlled study. A Survey is research performed in
retrospect, when the method has been in use for a certain
period of time. A Case Study is an observational study, and
data are collected for a specific purpose throughout the study.
Experiments provide a high level of control and are useful for
validating software metrics.

Arvanitou el al. [50] compared their new measure, which
measures the coupling and class proneness to the ripple effect
and several coupling metrics empirically to evaluate the use-
fulness of their metric. Khoshkbarforoushha et al. [51] empiri-
cally validated their new metric using an experiment in how the
new metric can predict design-level estimation of the potential
reusability of the BPEL processes. Tripathi and Kushwaha [52]
empirically validated their package level coupling metric by
comparing it to other package level coupling metrics. Lenhard
et al. [53] empirically validated their new metric using BPEL
engines to evaluate their installability and the deployability of
a set of functionally different processes. Gupta and Chhabra
[7] introduced a new coupling metric at the package level and
empirically validated it using package understandability.

VII. CONCLUSION

In this work, we have laid the foundation for researchers
and practitioners to come up with better ways of measuring
the software architecture quality attributes. The definition
and importance of software architecture were discussed. How
to evaluate these measurements were also comprehensively
presented in this work. Stability and Understandability were
given more focus for their importance and effect on software.
Future directions include devising new metrics to measure both
stability and understandability of software architecture.
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[29] S. Hassaine, Y.-G. Guéhéneuc, S. Hamel, and G. Antoniol, “Advise: Ar-
chitectural decay in software evolution,” in 16th European Conference
on Software Maintenance and Reengineering (CSMR). IEEE, 2012,
pp. 267–276.

[30] M. Jazayeri, “On architectural stability and evolution,” in Proceedings
of the 7th Ada-Europe International Conference on Reliable Software
Technologies. Springer-Verlag, 2002, pp. 13–23.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 7, 2016 

558 | P a g e
www.ijacsa.thesai.org 



[31] F. B. E Abreu and W. Melo, “Evaluating the impact of object-oriented
design on software quality,” in Software Metrics Symposium, 1996.,
Proceedings of the 3rd International. IEEE, 1996, pp. 90–99.

[32] H. M. Olague, L. H. Etzkorn, W. Li, and G. Cox, “Assessing design
instability in iterative (agile) object-oriented projects,” Journal of Soft-
ware Maintenance and Evolution: Research and Practice, vol. 18, no. 4,
pp. 237–266, 2006.

[33] B. Kitchenham, S. L. Pfleeger, and N. Fenton, “Towards a framework
for software measurement validation,” IEEE Transactions on Software
Engineering, vol. 21, no. 12, pp. 929–944, 1995.

[34] H. Zuse, A framework of software measurement. Walter de Gruyter,
1998.

[35] P. L. Roden, S. Virani, L. H. Etzkorn, and S. Messimer, “An empirical
study of the relationship of stability metrics and the qmood quality
models over software developed using highly iterative or agile software
processes,” in Seventh IEEE International Working Conference on
Source Code Analysis and Manipulation SCAM 2007. IEEE, 2007,
pp. 171–179.

[36] L. Yu and S. Ramaswamy, “Measuring the evolutionary stability of
software systems: case studies of linux and freebsd,” IET Software,
vol. 3, no. 1, pp. 26–36, 2009.

[37] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software
library stability through historical version analysis,” in 28th IEEE In-
ternational Conference on Software Maintenance (ICSM), 2012. IEEE,
2012, pp. 378–387.

[38] D. Rapu, S. Ducasse, T. Gı̂rba, and R. Marinescu, “Using history
information to improve design flaws detection,” in Proceedings. Eighth
European Conference on Software Maintenance and Reengineering,
2004. IEEE, 2004, pp. 223–232.

[39] J. Bansiya, “Evaluating framework architecture structural stability,”
ACM Computing Surveys (CSUR), vol. 32, no. 1es, p. 18, 2000.

[40] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[41] M. Alshayeb, “The impact of refactoring on class and architecture
stability,” Journal of Research and Practice in Information Technology,
vol. 43, no. 4, p. 269, 2011.

[42] M. O. Elish, “Exploring the relationships between design metrics and
package understandability: A case study,” in IEEE 18th International
Conference on Program Comprehension (ICPC). IEEE, 2010, pp.
144–147.

[43] S. Stevanetic and U. Zdun, “Empirical study on the effect of a software
architecture representation’s abstraction level on the architecture-level
software understanding,” in 14th International Conference on Quality
Software (QSIC), 2014. IEEE, 2014, pp. 359–364.

[44] S. Stevanetic, M. A. Javed, and U. Zdun, “The impact of hierar-
chies on the architecture-level software understandability-a controlled
experiment,” in 24th Australasian Software Engineering Conference
(ASWEC), 2015. IEEE, 2015, pp. 98–107.

[45] S. Stevanetic and U. Zdun, “Software metrics for measuring the under-
standability of architectural structures: a systematic mapping study,” in
Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering. ACM, 2015, p. 21.

[46] L. C. Briand, S. Morasca, and V. R. Basili, “Property-based software en-
gineering measurement,” IEEE Transactions on Software Engineering,
vol. 22, no. 1, pp. 68–86, 1996.

[47] N. Fenton, “Software measurement: A necessary scientific basis,” IEEE
Transactions on Software Engineering, vol. 20, no. 3, pp. 199–206,
1994.

[48] M. Alshayeb and W. Li, “An empirical validation of object-oriented
metrics in two different iterative software processes,” IEEE Transactions
on Software Engineering, vol. 29, no. 11, pp. 1043–1049, 2003.

[49] L. Briand, K. El Emam, and S. Morasca, “On the application of
measurement theory in software engineering,” Empirical Software En-
gineering, vol. 1, no. 1, pp. 61–88, 1996.

[50] E.-M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“Introducing a ripple effect measure: A theoretical and empirical vali-
dation,” in ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). IEEE, 2015, pp. 1–10.

[51] A. Khoshkbarforoushha, P. Jamshidi, M. F. Gholami, L. Wang, and
R. Ranjan, “Metrics for bpel process reusability analysis in a workflow
system,” IEEE Systems Journal, vol. 10, no. 1, pp. 36–45, 2016.

[52] A. Tripathi and D. Kushwaha, “A metric for package level coupling,”
CSI Transactions on ICT, vol. 2, no. 4, pp. 217–233, 2015.

[53] J. Lenhard, S. Harrer, and G. Wirtz, “Measuring the installability of ser-
vice orchestrations using the square method,” in IEEE 6th International
Conference on Service-Oriented Computing and Applications (SOCA).

IEEE, 2013, pp. 118–125.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 7, 2016 

559 | P a g e
www.ijacsa.thesai.org 




