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Abstract—Predictive schemes are current standards of video
coding. Unfortunately they do not apply well for lightweight
devices such as mobile phones. The high encoding complexity
is the bottleneck of the Quality of Experience (QoE) of a video
conversation between mobile phones. A considerable amount of
research has been conducted towards tackling that bottleneck.
Most of the schemes use the so-called Wyner-Ziv Video Coding
Paradigm, with results still not comparable to those of predictive
coding. This paper shows a novel approach for Wyner-Ziv video
compression. It is based on the Reinforcement Learning and
Hadamard Transform. Our Scheme shows very promising results.

Keywords—Wyner-Ziv; video coding; rate distortion; Hadamard
transform; Deep learning; Expectation Maximization

I. INTRODUCTION

Video compression schemes such as MPEG4 and H.264 [1]
are the current state-of-art, where correlation between or
among frames are exploited at the encoder side. Such schemes
usually achieve high compression with a fairly low complexity
at the very expense of a high complexity encoder. Compression
schemes like MPEG4 or H.264 are suitable for scenarios where
the encoder has enough power computation, like video-on-
demand servers.

Mobile phones are today the de facto device for com-
munication. People want to do more and more with their
mobile phone. They want to be able to have a real-time video
communication experience comparable to that of computers.
Unfortunately, current video compression technologies [1]
barely permit it: encoder complexity is the bottleneck. Either
comparable frame rate can not be achieved or conversation
cannot last long because of battery is scarce. In either case
quality of experience will be dropped.

The video community is aware of that issue as a great deal
of research has been conducted since the emergence of camera-
based mobile devices. The common insight toward tackle the
issue is the so-called Wyner-Ziv Video Coding (WZVC) or
Distributed video coding.

WZVC is the consequence of information-theoretic bounds
established in the 1970s. First by Slepian and Wolf for dis-
tributed lossless coding [2], and then Wyner and Ziv for lossy
coding with decoder side information [3].

Let {(Xk, Yk)}∞k=1 be a sequence of independent drawing
of a pair of dependent variables (X,Y ) taking values in the
finite sets X and Y, respectively. The decoder has access to the
side information Y . Illustration is shown in figure 1. Wyner

and Ziv suggest that whether or not the side information Y
is available at the encoder, X can be compressed - to Z and
decoded to X̂ - at a rate RX|Y (D) where D = E[d(X, X̂)] is
an acceptable distortion.

In WZCV, unlike that of predictive coding paradigms (i.e.
H.264), individual frames are encoded separately but decoded
conditionally. According to [3], the compression effectiveness
of WZVC schemes should be comparable to that of predictive
coding. A typical WZVC setup is shown in figure 2 where
both terminals are lightweight modern mobile phone capable
of decoding MPEG4 frames for example. The corresponding
Wyner-Ziv decoder is thought to be powerful computer capable
of exploiting statistics between frames and output MPEG4
streams in real-time, using much more complex algorithms.

Most of the conducted studies in the area of WZCV
have been using binary codes. Major contributions come
from Standford University [4] and UC Berkeley [5]. Both
methods followed a common pattern; those methods were first
developed to perform in pixel domain and later in transform
domain (namely Discrete Cosine Transform). Those methods
suffered from three major drawbacks:

• The overhead of working in binary domain - since
DCT pixels or alternatively transform coefficients have
to be converted back and forth from and to bit planes
during decoding process.

• Rate control - All the pixels values, alternatively
transform coefficients need to be converted to binary
with the same amount of bits, making the rate control
difficult.

• The decoding algorithms used - either generative or
discriminative - were somewhat too simplistic and did
not work well in practice.

We propose a new practical compression scheme, based on
Hadamard transform and reinforcement learning. In contrast to
previous works, our method deals with non-binary codes. The
encoding is relatively of low complexity with an inherent rate
control. We also show that our algorithm outperforms that of
the state of art [4] and [5] and really is comparable to predictive
coding schemes.

II. LOW COMPLEXITY VIDEO ENCODING

The encoding challenge is to implement an encoder with
lower encoding complexity than that of predictive video coding
methods [1] and still achieve comparable codec effectiveness.
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Fig. 1. Source coding with side information available at the decoder

Fig. 2. Wyner-Ziv setup of video compression

A. Problem setup

Let Y and X be two consecutive video frames. X is to
be encoded without the knowledge of Y . The challenge is to
compress X at the bit rate R bit/pixel, where R = H(Y |X) =.
H(Y |X) is the entropy or the amount of information (in
bits) needed to represent the frame X conditioned on that
of Y . Usually, Y and X are highly correlated after motion
compensation [6], H(X|Y ) < H(X). In practice the challenge
is to encode X at a rate even lower than Rε < H(Y |X) -
leading to lossy compression - and still achieve reconstruction
with satisfying fidelity, as suggested by Ziv et al [3].

B. The encoder

Let Z∗ be the compressed frame or Wyner-Ziv frame
from X . In our case, compression with compression ratio
n : m is achieved simply projecting the row version of
frame X ∈ R1×n onto the n : th first dimensions of the
orthogonal Hadamard vector basis G ∈ Rn×m, where
m < n. Z∗ = X × G. The final stream is Z = [Z∗ σ2]
where σ2 is the variance between the current frame X and the
previous frame X−1. Its given by

σ2 =
N∑
n=0

X[n]−X−1[n− 1] (1)

C. The Hadamard Transform

The Hadamard transform is an orthogonal transform that
has been used in numerous image coding applications [7], [8].
The transform matrix of dimension 2k for k ∈ N is given by
the following recursive formula

H(2k) =

[
H(2k − 1) H(2k − 1)
H(2k − 1) −H(2k − 1)

]
and

H(2) =

[
1 1
1 −1

]
III. DECODING

A. Problem setup

The aim here is to reconstruct the encoded frame Z to X .
At time t, the decoder has knowledge of the incoming Wyner-
Ziv frame Z and previously decoded frame Y .

To be able to reconstruct X , Z has somehow to contain
enough information about Z, possibly together with Y ; that is
the case in predictive coding schemes, where Z carries infor-
mation about Y , usually motion vectors (pixel configuration
for that matter) and Huffman or Arithmetic coded residuals
of the motion-compensated frames [1]. Since we do not really
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know the real pixel setup X we will be left to ”guessing” it out
of the pixel space Λ. Mathematically, the problem could be
formulated as follow: at a time t, the decoder observing Z and
Y , aims to find the ”best” pixel configuration X̂ . . The term
”best” used here actually points out that X is unobserved.
This formation leaves us to a Maximum Likelihood problem

X̂ ← arg max
Λ

P (X̂, Z, Y ) (2)

B. Maximum Likelihood

Decoding X by simply estimating doing X = Z ×G−1 is
obviously not optimal, but it may be worth mentioning why at
this point of the study. As X grows in size, pixels in it decrease
in term of correlation. Consequently, the coefficients in Z
won’t explain X well. Estimating X become thus equivalent
to solving an under-determined system of equations - fewer
equations than unknowns.

To find the ”best” estimate of X we have to model
an optimal Maximum Likelihood Estimator (MLE). That is,
designing the Maximum Likelihood estimator to ”capture” as
much decoding information in Y and Z as possible, that is
capable of estimating the following joint quantity

MLE(X̂) = P (X̂, Z, Y ; Θ) (3)

where Θ is the generative model. Hidden Markov Mode
(HMM)l [9] and Reinforcement Learning models (such as Q-
Learnining) [10] are two good candidates for such problem.
But modelling such MLE problem could be rather complex if
applying either HMM or Q-learning due to the dimensionality
of the tuples. Fortunately Q-learning has a variant, using
function approximators and experience replay [11], that has
shown to deal well with high dimensions.

C. Q-learning

Q-learning is a deep learning technique. Generally spoken,
the learning model tries to learn the optimal so-called action-
selection policy. We are given an agent, states S and a set of
actions per state A. At a time t, the agent receives a reward
rt by executing an action at being in state st. The goal of
the agent is to maximize its total reward by learning optimal
action for each state; that is the cumulative discounted long-
term reward Q(a, s), starting from the current state. During
learning process, the Q(a, s) value is updated as follow

Qt+1(at, st)← Qt(at, st)+ (4)

α

[
rt+1 + λ arg max

a
Qt(st+1, a)−Q(st, at)

]
(5)

Due to high dimensionality equation (4) cannot be applied
directly to our ML problem. Instead we use a variant called
Q-learning with experience replay [11].

Q-learning with experience replay, the agent’s state-action
pair is stored in a data set and re-sampled, with respect to some
significance criteria, in some later episodes in conjunction with
other selected, usually randomly, data set of state-action pairs.

Our Q-learning scheme is endorsing the same intuition and
motivation albeit somewhat different in design; The following
setup is adopted

• the output of our Q-learning scheme - Q-values - is
two dimensional, as opposed to other schemes [11]
outputting one-dimensional.

• An episode ends at either n iterations or p dB of
PSNR. Whichever comes first. For example n = 20
or p = 45.

• The reward is delayed, i.e. until episode ends

Each column of the Q-values corresponds to the probability
distributions - that are assumed to be Gaussian - over the co-
located pixels candidates of X; at every position X[i] in X ,
we consider b2σc pixel candidates

Xj [i], −σ ≤ j ≤ σ, j ∈ Z

Each pixel candidate Xj [i] has an initial probability

P 0
ij =

1

σ
√

2π
e−(j)2/2σ2

Our Q-learning design is illustrated in figure 3.

D. Maximum Likelihood through Experience Replay

Recall that the idea behind this whole Q-learning business
is to fit a likelihood function. We aim to find out how to capture
information out of the previously reconstructed frame, an
encoded stream (that is syndrome and mean-squared error) so
as decoding is as effective as possible. A Maximum Likelihood
function does permit us to estimate the (degree of) truthfulness
of a pixel combination - possibly with some measure of
confidence of interval.

Even though likelihood could be measured for every pixel
configuration of X in Λ estimating the best configuration
still remains intractable as X is of high dimension. We use
Expectation-Maximization (EM) [9] to estimate the Maxi-
mum Likelihood. In our setup, the E-step correspond to the
estimation of the Q-values, while the M-step choose the pixel
combination that maximizes their probabilities:

1) E-step: In the E-step the derived Q-values at each
iteration are used to perform a probability update of the side
information as follow

P t+1
ij (xij) =

qijP
t
ij

I∑
i=0

qij

where i is the ith side information and j is the jth distribution
from the ith side information

2) M-step: The best pixel combination with respect to
recent probability distribution update is selected according to

x̂i ← arg maxPij(xij)

The Learning process is depicted in figure 4
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Fig. 3. Setup for Neural Network based Q-learning

IV. EXPERIMENT RESULTS AND DISCUSSION

As mentioned in section III-C, the size of the Function
Approximator’s output is related the variance information.
Thus a side information can in theory be up to n = 256 pixel
away from its counterpart. This means that the size of our Q-
values is M ×N × 256, where M is the frame height and N
is the width. That is, for grayscale QCIF video sequences with
M = 144 and N = 176, as used in our experiments, the size
of our Q-values will be 144 × 176 × 256 = 6 488 064. That
means the Q-values alone require a more than 50 Gigabytes of
RAM memory! As were running the experiment on a personal
computer with 8 GB (4 × 2GB) of RAM, we figured that
only around 1024 × 20 Q-values could fit at a time. We
performed therefore a ”cherry-picking” procedure for the sake
of assessing the effectiveness of our novel algorithm.

Recall that we aim to decode a frame X given its side
information Y . To fit the likelihood function, a set of QCIF
video sequences were used as training samples. X and Y
were divided in blocks and paired up x1, x2, x3, ..., xK and

y1, y2, y3, ..., yK respectively. The pair (xi,yi) was selected as
a training sample if their variance was less than 100. That
means pixels in xi is are at most 10 intensities away from
pixels in yi. The length of the block were chosen to 1024
as the width of the Hadamard matrix has to be a power of
2. Recall that the encoder sends zi and the decoder only has
access to yi and zi and tries to estimate xi. Thus [xizi] will
be the input to our Function Approximator.

During training phase, we used minibatches of size 1000,
while adopting a constant ε − greedy algorithm of 0.1. The
input was scaled between -1 and 1 prior entering the Function
Approximator. We used 5 hidden layers - with tanh activation
function - with 200 nodes per layer. Figures 5 and 6 show the
learning ability in terms of rate distortion of the Function Ap-
proximator though iterations/episodes. We notice the increase
of the PSNR at each episode.

The same ”cherry-picking” procedure was used for testing
purpose, since we were computationally limited. We tested the
algorithm on QCIF video frames for the sequences Salesman
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Variance information

σ2 = 20 σ2 = 50 σ2 = 100 σ2 = 150 σ2 = 200

Compression
ratio

1024:3 38,60 32,60 31,88 29,82 24,73

1024:10 43,85 37,47 36,50 33,81 29,26

1024:20 62,66 54,92 45,13 40,12 34,64

TABLE I. TABLE SHOWING THE RATE DISTORTION PERFORMANCE
FOR SALESMAN VIDEO SEQUENCE

Variance information

σ2 = 20 σ2 = 50 σ2 = 100 σ2 = 150 σ2 = 200

Compression
ratio

1024:3 38,60 32,60 31,88 29,82 24,73

1024:10 43,85 37,47 36,50 33,81 29,26

1024:20 62,66 54,92 45,13 40,12 34,64

TABLE II. TABLE SHOWING THE RATE DISTORTION PERFORMANCE
FOR HALL VIDEO SEQUENCE

and Hall Monitor. Frames blocks with variance information
ranging from around 10 to around 200 were selected. The
rate distortion performances are given in tables I and II for
the Salesman and Hall video sequences. It is important to
notice that even though the Function Approximator is trained
on variance information less than 100, we tested our algorithm
on variance greater than 100. The reconstruction quality is
still good to very good for compression ration 1024:10 and
1024:20, respectively. Compression ratio 1024:3 was also to
assess the compression limit. The idea was to check if we could
still achieve reasonable distortion by minimizing the number
of bits to send.

For each frame block, the encoder generates 3 syndrome
coefficients (3 integers = 3 bits) and 1 variance information
(1 double =1 bits), 25 blocks and 12 fps. A full frame has
25 blocks. Arguably, compression ration 1024:3, 1024:10 and
1024:20 could thus be comparable to 33, 100 and 200 kbps
respectively. This insight shows the high potential of our
scheme for low complexity, low bitrate and low distortion
video coding.

V. CONCLUSION

We have presented a new and practical Video compression
scheme based on the Wyner-Ziv framework [3]. The novelty in
our scheme lies mostly in the integration of Q-learning in the
decoding process. The Wyner-Ziv coding problem has been
subject to a great deal of research for at least the past 15
years. The mainstream of in Wyner-Ziv Video Coding has been
based on binary codes [4], [12], [13]. Our algorithm is the first
really dealing with non-binary codes. A second advantage is
its inherent scalability. Previous schemes, such as punctured
codes [12] have used different methods for rate control. Non-
binary codes have he advantage of reducing the computation
complexity at the both at the encoded and decoder, since
calculations do not have to be performed at a bit level as in [14]
for example.

We also showed that the Wyner-Ziv problem - at least in our
case - can be solved using Q-learning algorithm as Likelihood
Estimator with a inherent embedding of the EM framework.

However, due our computational limitation, we assessed the
algorithm in a ”cherry-picking” manner. The results shown are
very good. We arguably showed that our Video Coding scheme
was that of low complexity, low bitrate and low distortion

Low complexity, low bitrate and low distortion is spe-
cially meaningful for lightweight devices such as surveillance
cameras, mobile phones or probably GoogleTM Watches or
GoogleTM Glasses in the near future when provided with
cameras.

Our encoding scheme is of a very low complexity com-
pared to that of motion estimation based video encoders. The
bulk of computation is shifted from the encoder to decoder.
The decoder is thought to be powerful server station. This is
of a great advantage, especially on lightweight devices, such
as mobile phones.
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Fig. 4. Learning process of our video codec
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Fig. 5. Average Learning ability of our Function Approximator through episodes: Compression ratio 1024:3
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Fig. 6. Average Learning ability of our Function Approximator through episodes: Compression ratio 1024:5
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