
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

254 | P a g e

www.ijacsa.thesai.org

A Study of Resilient Architecture for Critical

Software-Intensive System-of-Systems (Sisos)

Nadeem Akhtar

Department of Computer Science &

IT

The Islamia Univ. of Bahawalpur,

Pakistan

Malik Muhammad Saad Missen

Department of Computer Science &

IT

The Islamia Univ. of Bahawalpur,

Pakistan

Nadeem Salamat

Department of Basic Science and

Humanities

Khawaja Fareed Univ. of

Engineering and Technology, RYK,

Pakistan

Amnah Firdous

Department of Computer Science

COMSATS Institute of Information Technology, Pakistan

Mujtaba Husnain

Department of Computer Science & IT

The Islamia Univ. of Bahawalpur, Pakistan

Abstract—The role of critical system-of-systems have become

considerably software-intensive. A critical system-of-system has

to satisfy correctness properties of liveness and safety. As critical

system-of-systems have to operate in open environments in which

they interact and collaborate with other systems, satisfy action of

the requirements through traditional offline top-down

engineering no longer suffice. Most of the critical software-

intensive system-of-systems have no fixed boundaries and

services provided by other systems will come and go in

unpredictable ways; in these systems assuring correctness is a

challenging issue. These systems need to tolerate faults in the face

of change; they need a resilient architecture. An approach has

been proposed for the analysis, design, formal specification and

verification of critical Software-intensive System-of-Systems.

Keywords—Resilient architecture; Critical systems; System-of-

System (SoS); Software-intensive SoS (SiSoS); Emergent behavior;

Correctness; Safety

I. INTRODUCTION

Most of the critical Software-intensive System-of-Systems
(SiSoS) have no fixed boundaries (i.e. they have open
environment); and services provided by other systems come
and go in unpredictable ways. In such system-of-systems
assuring correctness by construction is not possible. Such
system-of-systems need to tolerate faults in the face of
change; in short they need to be resilient.

Nowadays, software systems are performing critical tasks,
thus more and more software systems are becoming critical.
Defects in a critical system can cause human life loss, and can
also have a dramatic impact on the environment. The
functions performed by these systems have become
considerably software-intensive. The software of critical
systems has to satisfy correctness properties of liveness and
safety.

Fig. 1. Study domain

As critical systems increasingly have to operate in open
environments in which they interact and collaborate with other

systems, satisfaction of the requirements through traditional
offline top-down engineering no longer suffice

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

255 | P a g e

www.ijacsa.thesai.org

A. Software-Intensive System-of-Systems (SiSoS)

A system is a collection of elements that work together and
produce results that cannot be obtained by the elements
operating individually. An individual element of a system may
itself be large and complex, and comprised of sub-elements
acting in concert with one another.

A System-of-System (SoS) integrates independently useful
systems into a larger system, delivering new unique functions
to users that emerge from the combination of the individual
parts. Examples are intelligent traffic systems, integrated
surveillance systems, and networked smart homes.
Engineering SoS and guaranteeing runtime qualities (i.e.
performance, reliability etc.) is complex due to a variety of
uncertainties. Examples of such uncertainties are systems that
attach and detach at will, dynamically changing availability of
resources, and faults and intrusions that are difficult to
predict.

SoS are formed by the integration of autonomous and
heterogeneous systems. The SoS were first applied in the
analysis and design of military systems of the American
Department of Defense. [3]

SoS is used as a method to reach goals or provide unique
capabilities for the collaborative work between existing
systems. [4][5]

The first definitions and taxonomies for SoS were
introduced by Maier [4] in 1990’s in which three SoS basic
types (virtual, collaborative, and directed) are proposed. He
also specified the five characteristics (operational
independence, managerial independence, evolutionary
development, emergent behavior and geographic distribution)
of SoS. Based on this characterization, Maier identifies a set
of guiding design principles for SoS:

 Stable intermediate forms: The individual systems or
subsets of systems of a SoS should be capable of
operating and fulfilling useful purposes, before full
deployment and during operation.

 Policy triage: SoS design team should carefully choose
what to control; over-control will fail for lack of
authority, under-control will eliminate the integrated
nature of the SoS.

 Leverage at the interfaces: The architecture of SoS is
essentially defined by its interfaces, which are the
primary points at which designers can exert control.

 Ensuring collaboration: Mechanisms should be
exploited that create joint utility, which is known to be
a basis for consistent behavior.

[6] refers to SoS or Federations Of Systems (FOS) or
Federated Systems Of Systems (F-SOS) as systems that
possess characteristics of complex adaptive systems. [7]
focuses on the nature of the composition to define the
distinguishing characteristics of SoS, including autonomy,
connectivity, diversity and emergence. [8] stresses scale and
complexity as central properties of ultra-large scale systems,
phrased by the slogan “scale changes everything”. [9]
describes SoS as a combined arrangement of managerially

independent and geographically distributed elements (i.e.
already fulfilling some purposes) put together to work and
provide a functionality that is not possible otherwise.

Energy systems, healthcare systems, logistic systems, and
transportations systems can be designed and developed based
on SoS concept. [10]

SoS are complex and large-scale systems and are software-
dependent, therefore they become Software-Intensive SoS
(SiSoS). [11]

SoS facilitates development of complex systems. It is a
composition of systems in which its constituents are
themselves systems. These constituent systems are separately
discovered, selected and composed at run-time or design-time
to form a more complex system to fulfill a specific mission. It
is an integration of autonomous systems that are
geographically distributed and support continuous evolution.
These systems are functionally and managerially independent.
These systems on integration, share their resources and
services to serve a larger, complex and unique functionality
that is not possible to achieve otherwise.

SoS is a larger system that performs a function not
performable by one of the constituent systems alone, thus it
creates emergent behavior. Constituent systems fulfill their
own objectives. If they are disassembled from the
encompassing SoS they continue to operate to fulfill their own
objectives and tasks. They are managed for their own
objectives rather than the objectives of the whole SoS.
Intrinsic characteristics of SoS are: (1) Operational
independence of systems: If the SoS is disassembled into its
component systems these systems must be able to usefully
operate independently; (2) Managerial independence of
systems: The component systems are separately acquired and
integrated but maintain a continuing operational existence
independent of the SoS; (3) Geographical distribution of
systems: (4) Evolutionary development of SoS: (5) Emergent
behavior of SoS: In addition, characteristics of Open-World
SoS are the unpredictable environment and unpredictable
constituents.

ISO/IEC/IEEE 42010 International Standard [1] defines a
software-intensive system as any system in which software
influences the design, implementation, deployment, and
evolution of the system as a whole to encompass individual
applications, subsystems, systems-of-systems, product lines,
product families, whole enterprises and other aggregations of
interest.

Self-adaptation enables a software system to reason about
itself and adapt autonomously to achieve particular quality
objectives in the face of uncertainties and change. Central to
the realization of self-adaptation are feedback loops that
monitor and adapt managed parts of a system when needed.
Studies conducted in the field of self-adaptation have
primarily focused on centralized and hierarchical control in
self-adaptation, which is not applicable to systems that are
inherently decentralized. Realizing self-adaptation in a SoS
where no single entity has the knowledge and authority to
supervise and adapt the constituent parts raises fundamental
engineering challenges. [2]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

256 | P a g e

www.ijacsa.thesai.org

In Software-intensive SoS, software essentially influences
the analysis, design, architecture, implementation,
deployment, and evolution of the system in itself. Software is
essential to enable the behavior of these systems. It
encompasses single systems and aggregations of interest, i.e.
Systems-of-systems. Software-intensive system-of-systems
constituents are themselves systems

B. Formal methods

Formal methods have a mathematical foundation. They
provide a formal foundation in requirement specification,
architecture definition, implementation, testing, maintenance
and evolution of large-scale software. In industrial projects,
multiple levels of formal methods are applied at different
stages of software development life cycle depending upon the
degree of criticality of the software project. The major
emphasis is on the application of formal methods at the earlier
stage of software development life cycle (i.e. specification and
design).

At software design level formal methods are used to refine
data using state machines, abstraction functions and
simulation proofs while at implementation level code
verification may be done by theorem proving or inductive
assertions. The major emphasis will be the application of
formal methods at the earlier stage of software specification
and design. A number of researchers have conducted research
surveys for the industrial use of formal methods. Formal
methods are useful in the development and certification of
critical systems. [12]

C. Correctness properties

Correctness properties play important role in system
verification. Correctness properties of safety and liveness
complement each other. Safety alone or liveness alone is not
sufficient to ensure system correctness. The safety property is
an invariant which asserts that “something bad never happen”,
that an acceptable state of affairs is maintained. For example
consider a power reactor generating electricity; the reactor
temperature should never exceed 100 degrees Centigrade to
assure safe and efficient working. The property which assures
that a power reactor temperature would never exceed 100
degrees Centigrade is a safety property.

[13] have defined safety property S = {a1, a2 … an} as “a
deterministic process that asserts that any trace including
actions in the alphabet of S, is accepted by S”. ERROR
conditions are like exceptions which state what is not required.
In complex systems, safety properties are specified by directly
stating what is required.

The liveness property asserts that “something good
happens”. It describes the states of a system that an agent must
bring about given certain conditions. One of the most
significant methods to ensure correctness of large-scale
system is to use formal methods.

II. MOTIVATION

The functions performed by a critical system have become
considerably software-intensive. A critical system has to
satisfy specific quality attributes like liveness and safety. As a
critical system has to operate in open environment in which it

interact and elaborate with other systems, satisfaction of the
requirements through traditional offline top-down engineering
no longer suffice. Guaranteeing correctness by construction is
not possible for large-scale critical systems in which
boundaries are no longer fixed and services provided by other
systems will come and go in unpredictable ways. Such
systems need to tolerate faults in the face of change; in short
they need to be resilient. Building and managing resilient
large-scale critical systems call for a fundamental shift in
engineering vision in which satisfaction of requirements has to
be realized via online collaboration among autonomous
components.

III. MATERIAL AND METHODS

A. Objectives

The major objective of resilient architecture for software
intensive system-of-systems is to develop efficient and robust
approach for building resilient large-scale critical system-of-
systems. Resilient Architecture is centered on four pillars:

1) Self-adaptation as a technique to achieve resilience:

As large-scale critical system-of-systems are long-lived

systems, they have to be prepared for openness. In an open

environment, the context of the system can change at any

time, availability of resources may change, services may

evolve, services may disappear or new services may become

available. To enable a system to deal with these dynamics it

must be self-adaptive. A self-adaptive system is goal-oriented,

it is aware of its context and reasons upon it, it coordinates

with other systems in its environment and adapts itself with

changing operating conditions.

2) Executable language for architecture: Designing and

realizing self-adaptive large-scale critical systems requires

suitable models at appropriate levels of abstraction. This calls

for an innovative description and executable language for

architecture which seamlessly integrates multi-view modeling

with runtime model evolution. Support for multi-view

modeling is crucial for two reasons. On the one hand, it

enables the specification of different perspectives on the

system and its environment according to the interests of the

variety of system stakeholders. On the other hand, it enables

the specification of the appropriate models of critical systems

that are needed for automatic adaptation. Support for runtime

model evolution is crucial to enable model adaptation to

changes in the environment, possibly in unpredicted ways.

3) Formal foundation: Since large-scale critical systems

have a number of mandatory requirements, a sound formal

foundation is a prerequisite for the engineering approach.

Assuring the qualities requires a rigorous specification of

semantics of models and a formal understanding to enable

automatic verification of model adaptations. For example,

guaranteeing a safe adaptation in a decentralized system

requires safety along the path of subsequent local adaptations,

which demands formally founded methods and techniques.

4) Runtime execution platform: Automatic adaptation and

evolution of critical systems requires a suitable runtime

execution platform. Key aspects of this platform are automatic

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

257 | P a g e

www.ijacsa.thesai.org

and decentralized discovery of components services in large-

scale open systems, goal-oriented decision making and

coordination for adaptation, verification of fragments of the

specification assuring the required qualities under adaptation,

and automatic execution of system adaptation, based on the

connection of the runtime models with the underlying

implementation. A key quality aspect of the platform is

scalability. In particular, the platform should support the

realization of the applications’ quality of service requirements

in large-scale distributed settings.

B. Scope of Study

1) Security is not considered as a primary concern for the

analysis and design of the resilient architecture for critical

Software-intensive System-of-Systems (SiSoS).

2) Semantic interoperability (i.e. information exchange

among systems) should be unambiguously defined.

Fig. 2. The four phases of resilient architecture for critical Software-intensive System-of-Systems (SiSoS)

3) The degree of automation depends on the context from

human designed to human-in-the-loop to fully automatic.

4) The scope of automatic verification depends on the

support present in the formal method or language chosen.

C. Formal verification and Architecture definition

The formal foundation for specifying and verifying
behavior-oriented software architecture developed in the
European ArchWare [11] project offers a sound basis upon
which the envisioned next generation description and
executable language for architecture can be built. In addition,
the lessons learned in ArchWare [11] with defining and
designing architectural languages and supporting tools are
highly valuable for Resilient Architectures.

The proposed approach has four major phases of
requirement specification, requirement verification,
architecture specification, and system implementation.

The architecture of an Information Management System
has been specified, verified, and designed to validate the
approach. The first phase is of requirement specification. The
requirements are specified in First-Order Predicate Logic.
There is a satisfaction relation between requirement
specification and requirement verification.

Requirements are modeled and verified by Coloured Petri-
Nets. The structural architecture is specified by using UML
Component and Class diagrams, the behavioral architecture is
modeled and verified by Coloured-Petri Nets. This
architecture is refined into object-oriented implementation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

258 | P a g e

www.ijacsa.thesai.org

Fig. 3. The four phases of resilient architecture for critical Software-intensive System-of-Systems (SiSoS)

There is a satisfaction relation between system
implementation and requirement verification. The system is
implemented by using object-oriented implementation. The
implementation satisfies the verification specifications.

IV. RESULTS AND DISCUSSION

The expertise acquired during the proposition of
decentralized control for autonomous robotic transport agents
[14][15] proved to be valuable for the design of resilient
architecture for SiSoS. In this research project, multi-agent
system architecture is formally verified and developed to
endow an automatic transportation system with advanced self-
managing capabilities. Although this control system has fixed
boundaries, the knowledge and expertise acquired from
decentralizing control in this complex domain provides a
substantial basis upon which resilient architecture can be built
on.

As a result of this work, a resilient architecture for SiSoS
has been proposed. The proposed approach is centered on
formal verification of correctness properties. This approach is
based on a combination of formal methods and techniques. By
following this approach a resilient architecture for Software-
intensive System-of-Systems can be specified, formally
verified and implemented. As our previous expertise and
experience is on decentralized control of autonomous robotic
transport agents [14][15], our future goal is to use resilient
architecture for Software-intensive System-of-Systems.

REFERENCES

[1] ISO/IEC/IEEE 42010:2011(E), “ISO/IEC/IEEE International Standard
for Systems and Software Engineering – Architectural description,”
2011.

[2] Danny Weyns and Jesper Andersson. “On the challenges of self-
adaptation in systems of systems”. In Proceedings of the First
International Workshop on Software Engineering for Systems-of-
Systems (SESoS '13), Paris Avgeriou, 2013, Carlos E. Cuesta, José
Carlos Maldonado, Elisa Y. Nakagawa, Khalil Drira, and Andrea

Zisman (Eds.). ACM, New York, NY, USA, 47-51, 2013.
DOI=http://dx.doi.org/10.1145/2489850.2489860

[3] Office of the Deputy Under Secretary of Defense for Acquisition and
Technology, Systems and Software Engineering, System engineering
guide for systems of systems, ODUSD (A&T), 2008, version 1.0.

[4] M. W. Maier, “Architecting principles for systems-of-systems,” Systems
Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[5] D. Firesmith, “Profiling systems using the defining characteristics of
systems of systems (SoS),” Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, USA, Tech. Rep. TN-001, 2010.

[6] A. P. Sage and C. D. Cuppan. “On the systems engineering and
management of systems of systems andfederations of systems”.
Information Knowledge Systems Management, 2(4):325-345, Dec. 2001.

[7] J. Boardman and B. Sauser. “System of systems-the meaning of of”. In
International Conference on Systemof Systems Engineering. IEEE, 2006.

[8] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger, T.
Longsta_, R. Kazman, M. Klein, D. Schmidt, K. Sullivan, and K.
Wallnau. “Ultra-Large-Scale Systems - the software challenge of the
future”. Technical report, SEI, Carnegie Mellon, 2006.

[9] B. Blanchard and W. Fabrycky, Systems Engineering and Analysis, 3rd
Edition. Prentice Hall, pp. 2, 1998.

[10] D. A. DeLaurentis and W. A. Crossley, “A taxonomy-based perspective
for systems of systems design methods,” In Proceedings of the 2005
IEEE International Conference on Systems, Man and Cybernetics, vol.
1. USA: IEEE, 2005, pp. 86–91.

[11] F. Oquendo, B. Warboys, R. Morrison, R. Dindeleux, F. Gallo, H.
Garavel, C. Occhipinti, "ArchWare: Architecting Evolvable Software,"
Proc. 1st European Workshop Software Architecture (EWSA 2004),
LNCS 3047, Springer-Verlag, 2004, pp. 257-277.

[12] J. Woodcock, P. G. Larsen, J. Bicarregui and J. Fitzgerald, “Formal
Methods and Experience”, ACM Computing Surveys, Vol 16, No. 4,
Article 19, October 2009.

[13] J. Magee, and J. Kramer, Concurrency: State Models and Java
Programs. John Wiley and Sons, 2nd edition, 2006.

[14] N. Akhtar, “Contribution to the formal specification and verification of
multi-agent robotic systems”. PhD thesis, Ecole Doctorale, Laboratory
VALORIA, University of South Brittany, 2010.

[15] N. Akhtar, Y. L. Guyadec, and F. Oquendo, “FORMAL
SPECIFICATION AND VERIFICATION OF MULTI-AGENT
ROBOTICS SOFTWARE SYSTEMS: A Case Study”. Proceedings of
the International Conference on Agents and Artificial Intelligence
(ICAART 09). Porto, Portugal, January 19-21. INSTICC Press, 2009.

