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Abstract—The role of critical system-of-systems have become 

considerably software-intensive. A critical system-of-system has 

to satisfy correctness properties of liveness and safety. As critical 

system-of-systems have to operate in open environments in which 

they interact and collaborate with other systems, satisfy action of 

the requirements through traditional offline top-down 

engineering no longer suffice. Most of the critical software-

intensive system-of-systems have no fixed boundaries and 

services provided by other systems will come and go in 

unpredictable ways; in these systems assuring correctness is a 

challenging issue. These systems need to tolerate faults in the face 

of change; they need a resilient architecture. An approach has 

been proposed for the analysis, design, formal specification and 

verification of critical Software-intensive System-of-Systems. 
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I. INTRODUCTION 

Most of the critical Software-intensive System-of-Systems 
(SiSoS) have no fixed boundaries (i.e. they have open 
environment); and services provided by other systems come 
and go in unpredictable ways. In such system-of-systems 
assuring correctness by construction is not possible. Such 
system-of-systems need to tolerate faults in the face of 
change; in short they need to be resilient. 

Nowadays, software systems are performing critical tasks, 
thus more and more software systems are becoming critical.  
Defects in a critical system can cause human life loss, and can 
also have a dramatic impact on the environment. The 
functions performed by these systems have become 
considerably software-intensive. The software of critical 
systems has to satisfy correctness properties of liveness and 
safety.

 
Fig. 1. Study domain 

As critical systems increasingly have to operate in open 
environments in which they interact and collaborate with other 

systems, satisfaction of the requirements through traditional 
offline top-down engineering no longer suffice 
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A. Software-Intensive System-of-Systems (SiSoS) 

A system is a collection of elements that work together and 
produce results that cannot be obtained by the elements 
operating individually. An individual element of a system may 
itself be large and complex, and comprised of sub-elements 
acting in concert with one another. 

A System-of-System (SoS) integrates independently useful 
systems into a larger system, delivering new unique functions 
to users that emerge from the combination of the individual 
parts. Examples are intelligent traffic systems, integrated 
surveillance systems, and networked smart homes. 
Engineering SoS and guaranteeing runtime qualities (i.e. 
performance, reliability etc.) is complex due to a variety of 
uncertainties. Examples of such uncertainties are systems that 
attach and detach at will, dynamically changing availability of 
resources, and faults and intrusions that are difficult to 
predict. 

SoS are formed by the integration of autonomous and 
heterogeneous systems. The SoS were first applied in the 
analysis and design of military systems of the American 
Department of Defense. [3] 

SoS is used as a method to reach goals or provide unique 
capabilities for the collaborative work between existing 
systems. [4][5] 

The first definitions and taxonomies for SoS were 
introduced by Maier [4] in 1990’s in which three SoS basic 
types (virtual, collaborative, and directed) are proposed. He 
also specified the five characteristics (operational 
independence, managerial independence, evolutionary 
development, emergent behavior and geographic distribution) 
of SoS. Based on this characterization, Maier identifies a set 
of guiding design principles for SoS: 

 Stable intermediate forms: The individual systems or 
subsets of systems of a SoS should be capable of 
operating and fulfilling useful purposes, before full 
deployment and during operation. 

 Policy triage: SoS design team should carefully choose 
what to control; over-control will fail for lack of 
authority, under-control will eliminate the integrated 
nature of the SoS. 

 Leverage at the interfaces: The architecture of SoS is 
essentially defined by its interfaces, which are the 
primary points at which designers can exert control. 

 Ensuring collaboration: Mechanisms should be 
exploited that create joint utility, which is known to be 
a basis for consistent behavior. 

[6] refers to SoS or Federations Of Systems (FOS) or 
Federated Systems Of Systems (F-SOS) as systems that 
possess characteristics of complex adaptive systems. [7] 
focuses on the nature of the composition to define the 
distinguishing characteristics of SoS, including autonomy, 
connectivity, diversity and emergence. [8] stresses scale and 
complexity as central properties of ultra-large scale systems, 
phrased by the slogan “scale changes everything”. [9] 
describes SoS as a combined arrangement of managerially 

independent and geographically distributed elements (i.e. 
already fulfilling some purposes) put together to work and 
provide a functionality that is not possible otherwise. 

Energy systems, healthcare systems, logistic systems, and 
transportations systems can be designed and developed based 
on SoS concept. [10] 

SoS are complex and large-scale systems and are software-
dependent, therefore they become Software-Intensive SoS 
(SiSoS). [11] 

SoS facilitates development of complex systems. It is a 
composition of systems in which its constituents are 
themselves systems. These constituent systems are separately 
discovered, selected and composed at run-time or design-time 
to form a more complex system to fulfill a specific mission. It 
is an integration of autonomous systems that are 
geographically distributed and support continuous evolution. 
These systems are functionally and managerially independent. 
These systems on integration, share their resources and 
services to serve a larger, complex and unique functionality 
that is not possible to achieve otherwise. 

SoS is a larger system that performs a function not 
performable by one of the constituent systems alone, thus it 
creates emergent behavior. Constituent systems fulfill their 
own objectives. If they are disassembled from the 
encompassing SoS they continue to operate to fulfill their own 
objectives and tasks. They are managed for their own 
objectives rather than the objectives of the whole SoS. 
Intrinsic characteristics of SoS are: (1) Operational 
independence of systems: If the SoS is disassembled into its 
component systems these systems must be able to usefully 
operate independently; (2) Managerial independence of 
systems: The component systems are separately acquired and 
integrated but maintain a continuing operational existence 
independent of the SoS; (3) Geographical distribution of 
systems: (4) Evolutionary development of SoS: (5) Emergent 
behavior of SoS: In addition, characteristics of Open-World 
SoS are the unpredictable environment and unpredictable 
constituents. 

ISO/IEC/IEEE 42010 International Standard [1] defines a 
software-intensive system as any system in which software 
influences the design, implementation, deployment, and 
evolution of the system as a whole to encompass individual 
applications, subsystems, systems-of-systems, product lines, 
product families, whole enterprises and other aggregations of 
interest. 

Self-adaptation enables a software system to reason about 
itself and adapt autonomously to achieve particular quality 
objectives in the face of uncertainties and change. Central to 
the realization of self-adaptation are feedback loops that 
monitor and adapt managed parts of a system when needed. 
Studies conducted in the field of self-adaptation have 
primarily focused on centralized and hierarchical control in 
self-adaptation, which is not applicable to systems that are 
inherently decentralized. Realizing self-adaptation in a SoS 
where no single entity has the knowledge and authority to 
supervise and adapt the constituent parts raises fundamental 
engineering challenges. [2] 
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In Software-intensive SoS, software essentially influences 
the analysis, design, architecture, implementation, 
deployment, and evolution of the system in itself. Software is 
essential to enable the behavior of these systems. It 
encompasses single systems and aggregations of interest, i.e. 
Systems-of-systems. Software-intensive system-of-systems 
constituents are themselves systems 

B. Formal methods 

Formal methods have a mathematical foundation. They 
provide a formal foundation in requirement specification, 
architecture definition, implementation, testing, maintenance 
and evolution of large-scale software. In industrial projects, 
multiple levels of formal methods are applied at different 
stages of software development life cycle depending upon the 
degree of criticality of the software project. The major 
emphasis is on the application of formal methods at the earlier 
stage of software development life cycle (i.e. specification and 
design). 

At software design level formal methods are used to refine 
data using state machines, abstraction functions and 
simulation proofs while at implementation level code 
verification may be done by theorem proving or inductive 
assertions. The major emphasis will be the application of 
formal methods at the earlier stage of software specification 
and design. A number of researchers have conducted research 
surveys for the industrial use of formal methods. Formal 
methods are useful in the development and certification of 
critical systems. [12] 

C. Correctness properties 

Correctness properties play important role in system 
verification. Correctness properties of safety and liveness 
complement each other. Safety alone or liveness alone is not 
sufficient to ensure system correctness. The safety property is 
an invariant which asserts that “something bad never happen”, 
that an acceptable state of affairs is maintained. For example 
consider a power reactor generating electricity; the reactor 
temperature should never exceed 100 degrees Centigrade to 
assure safe and efficient working. The property which assures 
that a power reactor temperature would never exceed 100 
degrees Centigrade is a safety property. 

[13] have defined safety property S = {a1, a2 … an} as “a 
deterministic process that asserts that any trace including 
actions in the alphabet of S, is accepted by S”. ERROR 
conditions are like exceptions which state what is not required. 
In complex systems, safety properties are specified by directly 
stating what is required. 

The liveness property asserts that “something good 
happens”. It describes the states of a system that an agent must 
bring about given certain conditions. One of the most 
significant methods to ensure correctness of large-scale 
system is to use formal methods. 

II. MOTIVATION 

The functions performed by a critical system have become 
considerably software-intensive. A critical system has to 
satisfy specific quality attributes like liveness and safety. As a 
critical system has to operate in open environment in which it 

interact and elaborate with other systems, satisfaction of the 
requirements through traditional offline top-down engineering 
no longer suffice. Guaranteeing correctness by construction is 
not possible for large-scale critical systems in which 
boundaries are no longer fixed and services provided by other 
systems will come and go in unpredictable ways. Such 
systems need to tolerate faults in the face of change; in short 
they need to be resilient. Building and managing resilient 
large-scale critical systems call for a fundamental shift in 
engineering vision in which satisfaction of requirements has to 
be realized via online collaboration among autonomous 
components. 

III. MATERIAL AND METHODS 

A. Objectives 

The major objective of resilient architecture for software 
intensive system-of-systems is to develop efficient and robust 
approach for building resilient large-scale critical system-of-
systems. Resilient Architecture is centered on four pillars: 

1) Self-adaptation as a technique to achieve resilience: 

As large-scale critical system-of-systems are long-lived 

systems, they have to be prepared for openness. In an open 

environment, the context of the system can change at any 

time, availability of resources may change, services may 

evolve, services may disappear or new services may become 

available. To enable a system to deal with these dynamics it 

must be self-adaptive. A self-adaptive system is goal-oriented, 

it is aware of its context and reasons upon it, it coordinates 

with other systems in its environment and adapts itself with 

changing operating conditions. 

2) Executable language for architecture: Designing and 

realizing self-adaptive large-scale critical systems requires 

suitable models at appropriate levels of abstraction. This calls 

for an innovative description and executable language for 

architecture which seamlessly integrates multi-view modeling 

with runtime model evolution. Support for multi-view 

modeling is crucial for two reasons. On the one hand, it 

enables the specification of different perspectives on the 

system and its environment according to the interests of the 

variety of system stakeholders. On the other hand, it enables 

the specification of the appropriate models of critical systems 

that are needed for automatic adaptation. Support for runtime 

model evolution is crucial to enable model adaptation to 

changes in the environment, possibly in unpredicted ways. 

3) Formal foundation: Since large-scale critical systems 

have a number of mandatory requirements, a sound formal 

foundation is a prerequisite for the engineering approach. 

Assuring the qualities requires a rigorous specification of 

semantics of models and a formal understanding to enable 

automatic verification of model adaptations. For example, 

guaranteeing a safe adaptation in a decentralized system 

requires safety along the path of subsequent local adaptations, 

which demands formally founded methods and techniques. 

4) Runtime execution platform: Automatic adaptation and 

evolution of critical systems requires a suitable runtime 

execution platform. Key aspects of this platform are automatic 
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and decentralized discovery of components services in large-

scale open systems, goal-oriented decision making and 

coordination for adaptation, verification of fragments of the 

specification assuring the required qualities under adaptation, 

and automatic execution of system adaptation, based on the 

connection of the runtime models with the underlying 

implementation. A key quality aspect of the platform is 

scalability. In particular, the platform should support the 

realization of the applications’ quality of service requirements 

in large-scale distributed settings. 

B. Scope of Study 

1) Security is not considered as a primary concern for the 

analysis and design of the resilient architecture for critical 

Software-intensive System-of-Systems (SiSoS). 

2) Semantic interoperability (i.e. information exchange 

among systems) should be unambiguously defined. 

 

Fig. 2. The four phases of resilient architecture for critical Software-intensive System-of-Systems (SiSoS) 

3) The degree of automation depends on the context from 

human designed to human-in-the-loop to fully automatic. 

4) The scope of automatic verification depends on the 

support present in the formal method or language chosen. 

C. Formal verification and Architecture definition 

The formal foundation for specifying and verifying 
behavior-oriented software architecture developed in the 
European ArchWare [11] project offers a sound basis upon 
which the envisioned next generation description and 
executable language for architecture can be built. In addition, 
the lessons learned in ArchWare [11] with defining and 
designing architectural languages and supporting tools are 
highly valuable for Resilient Architectures. 

The proposed approach has four major phases of 
requirement specification, requirement verification, 
architecture specification, and system implementation. 

The architecture of an Information Management System 
has been specified, verified, and designed to validate the 
approach. The first phase is of requirement specification. The 
requirements are specified in First-Order Predicate Logic. 
There is a satisfaction relation between requirement 
specification and requirement verification. 

Requirements are modeled and verified by Coloured Petri-
Nets. The structural architecture is specified by using UML 
Component and Class diagrams, the behavioral architecture is 
modeled and verified by Coloured-Petri Nets. This 
architecture is refined into object-oriented implementation. 
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Fig. 3. The four phases of resilient architecture for critical Software-intensive System-of-Systems (SiSoS) 

There is a satisfaction relation between system 
implementation and requirement verification. The system is 
implemented by using object-oriented implementation. The 
implementation satisfies the verification specifications. 

IV. RESULTS AND DISCUSSION 

The expertise acquired during the proposition of 
decentralized control for autonomous robotic transport agents 
[14][15] proved to be valuable for the design of resilient 
architecture for SiSoS. In this research project, multi-agent 
system architecture is formally verified and developed to 
endow an automatic transportation system with advanced self-
managing capabilities. Although this control system has fixed 
boundaries, the knowledge and expertise acquired from 
decentralizing control in this complex domain provides a 
substantial basis upon which resilient architecture can be built 
on. 

As a result of this work, a resilient architecture for SiSoS 
has been proposed. The proposed approach is centered on 
formal verification of correctness properties. This approach is 
based on a combination of formal methods and techniques. By 
following this approach a resilient architecture for Software-
intensive System-of-Systems can be specified, formally 
verified and implemented. As our previous expertise and 
experience is on decentralized control of autonomous robotic 
transport agents [14][15], our future goal is to use resilient 
architecture for Software-intensive System-of-Systems. 
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