
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

57 | P a g e

www.ijacsa.thesai.org

FPGA Implementation of Parallel Particle Swarm

Optimization Algorithm and Compared with Genetic

Algorithm

BEN AMEUR Mohamed sadek

Laboratory of Microelectronic, university of Monastir,

Monastir, Tunisia

SAKLY Anis

National Engineering School of Monastir,

Monastir, Tunisia

Abstract—In this paper, a digital implementation of Particle

Swarm Optimization algorithm (PSO) is developed for

implementation on Field Programmable Gate Array (FPGA).

PSO is a recent intelligent heuristic search method in which the

mechanism of algorithm is inspired by the swarming of biological

populations. PSO is similar to the Genetic Algorithm (GA). In

fact, both of them use a combination of deterministic and

probabilistic rules. The experimental results of this algorithm are

effective to evaluate the performance of the PSO compared to

GA and other PSO algorithm. New digital solutions are available

to generate a hardware implementation of PSO Algorithms.

Thus, we developed a hardware architecture based on Finite

state machine (FSM) and implemented into FPGA to solve some

dispatch computing problems over other circuits based on swarm

intelligence. Moreover, the inherent parallelism of these new

hardware solutions with a large computational capacity makes

the running time negligible regardless the complexity of the

processing.

Keywords—PSO algorithm; GA; FPGA; Finite state machine;

hardware

I. INTRODUCTION

Over the last decade, several meta-heuristic algorithms are
proposed to solve hard and complex optimization problems.
The effectiveness of this algorithm give satisfaction to solve
the most difficult problems for many algorithms related for
various optimization problems. The proposed architecture is
tested on some benchmarks functions. We have also analyzed
the operators of GAs to describe how the performance of each
one can be enhanced by incorporating some features of the
other. We used standard benchmarks functions to make
comparison between the two algorithms. In fact, PSO
algorithm use the technique [1] that explores all the search
space to fix parameters that minimizes or maximizes a
problem. So, the ability and the simplicity to solve complex
problems make the studies active in this area compared with
many others optimization techniques [2] [3].

This research attempts to present that PSO has a good
effectiveness to find the best global optimal solution as the GA
but with a better computing efficiency (less using of resource
hardware and execution time). The main objective of this paper
is to compare the computational efficiency of our optimized
PSO with GA and other PSO algorithms using a set of
benchmark test problems. The results of this optimization
algorithm could prove to be important for the future study of

PSO. The organization of the paper is described as follow: The
first chapter briefly introduces the general steps performing the
mechanism of PSO. Especially, a brief introduction of pseudo
random number generator [4]. The next section describes the
background functional architecture which performs the GA and
PSO algorithm. In chapter 3, a description of the architecture
used in the hardware implementation of PSO and genetic
algorithm; the second part illustrates the experimental results of
some benchmarks functions applied into the PSO algorithm
and compared with GA and others PSO algorithms. Finally, we
conclude our work and we make some implications and
directions for future studies.

II. PARTICLE SWARM OPTIMIZATION

In Particle Swarm Optimization algorithm we can say that
each « bird » may be a solution through a search space. Birds
are called particles and to explore all the search space, each
particle is evaluated by the fitness function and to manage the
flying of the swarm to the prey, they use velocities module.
Each particle flies around the solution by following the
optimum position of particles [5][6]. All particles are
associated with points in the search space and their positions
are depending on their own solution and of their neighbors.
Some particles come into play randomly in every iteration
through this environment; they look the assessment of
themselves and their neighbors [7]. Then, they follow
successful particles of the given problem. PSO algorithm give
satisfactory results in solving many dispatch problems related
to biology medical, finance, 3d graphics, image processing and
others. [8], but it is hard to choose the setting parameters
because it is too complicated to find the best setting of a
desired application. So, we have to set first, several parameters
of the PSO algorithm: [9] [10]:

 Position and velocity equations of particles

 Number of particles in the search space

 The Gbest fitness achieved.

 Positions of particles having the best solution of all.

 Number of iteration

In the beginning we generate a random population after that
we search for the best solution after each iteration. Then, the
particles update their positions using two best solutions. The
first one is the best solution towards the problem and it is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

58 | P a g e

www.ijacsa.thesai.org

named « lbest ». The other optimal solution is followed by the
PSO algorithm and obtained by any particles from the
population and it is named « Gbest ».

A. The random number generator

Programming PSO algorithms requires the use of random
generator; there are several methods to generate a random
numbers. In fact it is impossible to generate a random number
based on algorithms that‟s why they are called pseudo random
number. The random generators programs are particularly
suitable for implementation and effective. Most pseudo random
algorithms try to produce outputs that are uniformly
distributed. A common class generator uses a linear
congruence. Others are inspired by the Fibonacci sequence by
adding the two previous values. Most popular and fast
algorithms were created in 1948 D. H. Lehmer introduced
linear generators congruentiels and will eventually become
extremely popular.

In our algorithm we used the bloc of the pseudo random
generator [13] at the initial position of particles and in the
velocity vector. We choose the frequently used pseudo-random
generator called the linear congruent of Lehmer:

Fn +1 = (A * Fn + B) mod C (1)
Where: - Fn +1 : is the random number obtained from

the function F

- Fn : is the previous number obtained

- A and B : are multiplicative and additive value,

respectively

- C : the modulo number

B. Position and velocity equations

Velocity equation allows changing the position of a desired
particle and generally, the objective of using PSO algorithm is
to indicate by their positions the distance to the best particle.
So, these equations are updated throughout the race of
iterations using the equations below:

 ()

 (2)

 (t) (3)

xi(t) is the particle position at time t and vi is the velocity of
particle at the instant t(i), w is parameters, c1 and c2 are
constant coefficients, r1 and r2 are random numbers at each
iteration, « Gbest » is the optimal solution found until now and
« lbest » is the best solution found by the particle i. So,
generally the velocity vector allows directing the research
process and reflects the sociability of the particles.

The convergence to the optimum solution can be fixed by a
number of iterations depending on the fitness or when the
variation tends to zero (like sphere function) or when it tends to
the best minimized solution. Here some parameters that comes
into play:

 The number of population.

 The size of the neighborhood.

 The dimension of the search space.

 The values of the coefficients.

 The maximum speed.

Each iteration allows the particles to move as a function of
three components:

 Its current speed

 Its local best solution

 The global best solution in its neighborhood.

TABLE I. EXAMPLE OF SOME SELECTED PARTICLES

P
a

r
ti

cl
e
s

iteration

1 2 3 n

X1 0010011111110010 0010011111110001 0010011111110000 …

X2 0010011111100011 0010011111100011 0010011111100011 …

X3 0010011111000001 0010011111000001 0010011111000001 …

Xn Xn1 Xn2 Xn3 …

In this table we present a sample from the sphere function,
we can easily see that the “lbest” of particle x1 is located in it3
and the “lbest” of particle x2 and x3 are located in it2 but the
“gbest” is x3 and located in it2.

The global minimum for the sphere function is clearly
located at xi = 0, in each iteration we pick the “lbest” and we
save the results into memory in order to compare its value with
the new position of particles in the next iteration.

III. ARCHITECTURE OF GA AND PSO ALGORITHMS

A. GA architecture

To optimize a problem in GA, we have to explore all the
searching state in order to maximize (or minimize) a chosen
function. So, the use of genetic algorithm is suitable for a quick
exploration of an area. The organizational chart that describes
the architecture of GA is shown by the following figure.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

59 | P a g e

www.ijacsa.thesai.org

Fig. 1. Architecture Of The GA

B. PSO architecture

The architecture of our optimized PSO algorithm is
presented in the following figure:

Fig. 2. Internal architecture of the PSO algorithm

For hardware implementation of PSO algorithm, the
architecture is decomposed into five operations that are
performed on each particle: update the position, evaluate the
fitness, update the particle's best position, update the global
best position and update the velocity.

We can demonstrate from the two architectures that the two
algorithms share some common points. In fact the two
algorithms begin with a random population in the search space
and both of them use fitness module to evaluate the generation.

Both of them update the generation and search for an
optimal value using the pseudo random number but the two of
them does not guarantee the success. However, the Particle
Swarm Optimization doesn‟t have crossover and mutation
operators. Indeed, PSO update its particles using the velocity
module.

C. The FSM

In our paper a dynamic parallel PSO is implemented to be
applied into large optimization problem and compared with
GA and others PSO algorithms. The FSM is used to exploit all
type of parallelism to find the optimum solution in a reduced
portion of times. The dynamical process of FSM is represented
in figure 3, in fact every state may have at every time a position
of many possible finite states. Firstly, we must propose a
number of fixed states; every transition may have one or more
around states. In this way, states which have only one state and
have no possible transitions we named the final states.

The algorithm performs the updating of the optimum
fitness number after the evaluations for all the particles. Here,
when we update their positions and velocities we can obtain a
good convergence rates after evaluating each particle. In a
dynamic parallel computing, the main factor of performance is
the communication latency after each transition between states.
The goal of parallel dynamic computing is to produce optimal
results even when we use multiple processors to reduce the
running time. In this architecture we used pair memory
modules to compound the bandwidth and thus, we can
ameliorate the capabilities of our algorithm and we cannot do
this only if we use Dual Channel bloc RAM. In that way we
can access to the data memory in two modes write or read at
the same frequency. There are problems with the dual RAM. In
fact, the reading time of the content of memory is delayed by
one clock comparative to the last reading. The description of
the 8 states is presented in the sequel:

 S0: Initialize parameters, signals and counters of PSO
algorithm and goto S1

 S1: Generate initial population and their velocities
using random generator and goto S2 or S3

 S2: Save positions and velocities value into memory
(RAM)

 S3: Evaluate particles using fitness module and goto S4
or S5

 S4: Save evaluated value into Bloc RAM and goto S6

YES

NO

Fitness Bloc

Module of

selection

Module of

crossover

Module of

mutation
Random

generator

Initialize

Population

(memory)

Fitness

Memory

Optimal

solution

Iteration

Number
°

Initialization

particles & counters

Update

positions and

velocities

Initialize

velocity

 Evaluation

module

Random

generator

Store

velocity

Save

evaluated

particles

Update lbest

and gbest

position

Update

velocities

Update

particles Update

iterations

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

60 | P a g e

www.ijacsa.thesai.org

 S5: Test gbest If fit(i) <Global-best(i) then update
Global-best and if the number of iteration is achieved
then go to final state else go to State S7

 S6: Test lbest If fit(i) < local-best(i) then update local-
best(i) then, go to S2 and return to state S4

 S7: Update particles positions and velocities

 S8: Update the number of iteration if iteration not
achieved then go to state S3 else go to final state (SF)

 SF: Display the optimum solution.

Fig. 3. The finate state machine of the PSO algorithm

Luckily, new advances in processor technology are capable
and available to compute a complex program and use low cost
power beyond clusters of mid-range performance computers.
So, the dynamic process implemented in the particle swarm
optimization could be separated in two states which update
position and velocity of each particle using dynamic process
with the goal to reduce the processing time.

In our paper, the soul of the parallel processing was used to
generate a dynamic PSO algorithm and the aim of using
parallel computing to the PSO algorithm, is to speed up the
algorithm processing using a uniform distribution method to
achieve optimum solutions with a significant execution time.

Figure 3 present the finite state machine of the global control
module; especially, it presents step by step the code of the PSO
in order to keep the algorithm more practical.

D. Benchmark test functions

The Most researchers use a number of population size
between 10 to 50 for the performance comparison between
algorithms, here we fixed the population at 20 chromosome for
the GA and the same for PSO algorithm. To test the PSO and
to compare its performance with other algorithm, we used
some standard benchmark functions which are described as
below:

 Sphere function

 Rosen-brock function

 Rastrigin function

 Zakharov function

Some well-known benchmark functions have been selected
for comparing the two implementations. So, to test and
compare the performance of our proposed PSO algorithm we
used unimodal and multimodal functions. These functions are
described as below:

 ∑
 (4)

 ∑

 (5)

 ∑

 (6)

 ∑

 (7)

 (8)

IV. VALIDATION EXAMPLES

Most researchers use a number of population size between
10 to 50 for the performance comparison of GA and PSO, the
swarm size used for the PSO is the same as the population size
used in GA and is fixed at 20 particles in the PSO swarm and
20 chromosomes in GA population. In the GA all variables of
each individual are represented with binary strings of „0‟ and
„1‟ that are referred to as chromosomes. Like genetic
algorithm, PSO begins with a random population and to
perform its exploration, GA use three operators (crossover,
selection and mutation) to propagate its population from
iteration to another.

A. The sphere function

 ∑

Sphere function is useful to evaluate the characteristics of
our optimization algorithms, such as the robustness and the
convergence velocity. This function has a local minimum and
it is unimodal and continuous. The interval of search space is
between [-1,1]. Figure 4 present the results of simulation using
modelsim of the sphere function.

1

0

2

3

4

5

6

7

SF

8

Initial index counter to

the data particle

structure

Generate initial population of particles

and velocities using pseudo random

module

Save the values of

positions and velocities

Evaluate

function

Save fitness of particles
BRAM3 : 32 bits

If fit (i) < local-best (i)

Then update local-best (i)

Results

If fit(i) <Global-best(i)

Then update Global-best

Update velocities

Update particles positions

Update iteration

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

61 | P a g e

www.ijacsa.thesai.org

Fig. 4. Simulation results of function f1

The detailed results describe that our solution converges to
zero from iteration to another.

Fig. 5. Simulation results of function f2

These particles work together in a parallel dynamic state to
get the best solution of any function. They update position and
velocity even if the algorithm has a lot of particles and this
cannot make a hard impact on the global execution time speed.
Indeed, the number of particles in this algorithm is limited by
the size of embedded features of FPGA. The following tables
present the number of LUT (Look up Table), bloc RAM and all
the resource materials used in this function.

TABLE II. DEVICE UTILIZATION SUMMARY OF PSO

TABLE III. DEVICE UTILIZATION SUMMARY OF GA

In the following figure, we can easily see the difference
between the two algorithms, here the PSO algorithm give
better optimization in the use of hardware resources than the
Genetic Algorithm.

Fig. 6. Comparison of hardware resource between PSO and GA

We implemented the sphere function with two algorithms,
GA and PSO using Spartan 3 from Xilinx, and then we can
realize that the processing time of one iteration of PSO
algorithm gives higher operation speed for optimization
problems rather than genetic algorithm. The following table
describes this.

TABLE IV. PROCESSING TIME OF ONE ITERATION

algorithm pso genetic

Execution of one

Iteration (clock cycle) 1180 9740

B. The rastrigin function

This function is described below:

 ∑

The Rastrigin function contains several local minima. But it
has just one global minimum and it is highly multimodal and

the location of the minima is distributed regular.

0

5

10

15

20

25

30

35

used slices used flip
flops

used 4 luts

GA

PSO

(PSO) Sphere function

logic used available utilisation
slices 225 1920 11%

flip flops 214 3840 5%

4 inputs 354 3840 9%

IOBs 10 173 5%

BRAM 5 12 41%

multiplexers 4 12 33%

GCLKS 3 8 37%

(GA) Sphere function

logic used available utilisation
slices 581 1920 30%

flip flops 600 3840 15%

4 inputs 864 3840 22%

IOBs 23 173 13%

BRAM 2 12 16%

multiplexers 8 12 66%

GCLKS 5 8 62%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

62 | P a g e

www.ijacsa.thesai.org

Fig. 7. Simulation results with modelsim

The synthesis results of the whole system are shown in the
following tables:

TABLE V. DEVICE UTILIZATION SUMMARY OF PSO

TABLE VI. DEVICE UTILIZATION SUMMARY OF GA

We can easily see that GA require a lot of hardware
resource while the PSO algorithm use less number of slice
and flip flop as it shows the following figure.

Fig. 8. a comparison of hardware resource used in the two algorithms

C. Rosenbrock function

The function of rosenbrock is a non-convex benchmark of
two variables which is used to test some mathematical

optimization problems. It was introduced in 1960 by Howard
H. Rosenbrock and it is known by the banana function name.

In this function the global minimum of search algorithms
converge easily. The function is described as follow:

 ∑

 (11)

The global minimum is obtained at point (x, y) = (1, 1), for
which the function is 0. A different coefficient is sometimes
given in the second term, but that doesn‟t have a great affect in
the position of the global minima.

D. Zakharov function

We used another benchmark which is the zakharov function
whose global minimum occurs at x = (0):

 ∑

 (12)

Fig. 9. Comparison between PSO and GA of rosenbrock

Fig. 10. Comparison between PSO and GA of zakharov function

V. EXPERIMENTAL RESULTS

The platform of Spartan-3 FPGA is from Xilinx. The
Spartan3 is one of the best low cost generation of FPGAs and
the board can offers a choice of many platforms which deliver
a unique cost optimization balanced between programmable
logic, connectivity and hardware applications. It creates a
PROM file and this latter can be written to the non volatile
memory of Spartan-3. The platform of Spartan3 board includes
the following elements (Figure 11):

 200k of gate in a 256-ball thin Ball Grid Array package)

0

20

40

60

80

used slices used flip
flops

used 4 luts

GA

PSO

0

10

20

30

40

50

60

used slices used flip
flops

used 4 luts

GA

PSO

0

10

20

30

40

50

60

used slices used flip
flops

used 4 luts

GA

PSO

(PSO) rastrigin function

 logic used available utilisation

slices 307 1920 15%

flip flops 259 3840 6%

4 inputs 547 3840 14%

IOBs 26 173 15%

BRAM 10 12 83%

multiplexers 2 12 16%

GCLKS 3 8 37%

(GA) rastrigin function

logic used available utilisation

slices 1265 1920 65%

flip flops 842 3840 21%

inputs 2231 3840 58%

IOBs 2 173 1%

BRAM 3 12 25%

multiplexers 4 12 33%

GCLKS 8 8 100%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

63 | P a g e

www.ijacsa.thesai.org

 4,320 logic cell and equivalents

 12 x 18K of bit block RAMs (216K bits)

 12 of hardware multipliers (18x18)

 4 Digital extern clock (DCMs)

 A lot of I/O signals and it is up to 173

 Three “40” pin expansion connectors

 PS/2 mouse/keyboard port, VGA port and serial port.

Fig. 11. The Block Diagram of SPARTAN-3

To make a comparison of this algorithm to deliver better
solution in a significant time especially, its robustness and
speed, we have tested it against other meta-heuristic
algorithms, like genetic algorithms and another PSO algorithm.
For GA, we used the basic model with elitism method and a
probability of mutation equal 5%. The simulations have been
carried out using spartran-3 of Xilinx with 50MHz. We have
also fixed the population n = 20 for all simulations. The results
are favorable and proved that Real BAT can be effective for
many problems related to any algorithms used. The experiment
results was carried out at minimum 5 % which allow judging
whether the results of the PSO are acceptable and optimized in
execution time compared to the best results of other
algorithms.

Fig. 12. Display of the number of iteration to achieve the optimal solution

VI. RELATED WORK

Since its invention, many researchers have worked on the
PSO algorithm [11] and how to accelerate its performance to
give a good convergence and to reduce the use of hardware
resource for embedded applications. In this section we will

present some works lean on parallelization algorithms
proposed by other researches. In fact, there are many
interesting improvements using PSO algorithm for several
applications; al.Reynolds [12] suggested a smart technique for
modified PSO algorithm using neural networks. His technique
is based on a deterministic approach while the particles update
their positions to simplify the hardware implementation
because the standard PSO algorithm has been implemented to
use random generators only for the operations of update and to
reduce the hardware resource Upegui and Peña [13] use a
discrete recombination of PSO algorithm called (PSODR),
that‟s allow to decrease the time of computing of the velocity
module. It is clear that these modified PSO algorithm allows
generating competitive results compared to those of the basic
PSO algorithm [14]. Moreover another works on the PSODR
algorithm are proposed by Bratton and Blackwell with
simplified models of the PSODR algorithm are analyzed and
proposed by Blackwell and Bratton [15] with effective results
and promising.

Many researches presented a modified variant of PSO
either to reduce the materials resource or to eliminate explicit
problem related directly on the architecture of PSO. That‟s
why we developed a modified architecture using finite state
machine to program a parallel algorithm that could give
effective results to solve several problems [16]. Thus, we fixed
the representations of the data by 20 particles to bearing several
purpose of applications.

A comparison performance of PSO algorithms on some
processors platforms are represented in the following table. We
choose two different processors platforms, the Xilinx xc3s500
[17] and the Xilinx Micro-Blaze soft processor core for the
Sphere test function.

TABLE VII. COMPARISON OF OTHER PLATFORMS

Plat_

form
Xilinx xc3S500 Xilinx microblaze Spartran xc3S200

Averag

e nb.

Iter.
(st.dev)

Average

.Exe.

time (s)
(st.dev)

Average
.nb. iter.

(st.dev)

Average

.Exe.

time(s)(
st.dev)

Average.

nb.

iter.(st.d
ev)

Averag

e.Exe.

time(s)
(st.dev)

Spher

e

functi

on

338

(30.9)

0.28

(0.03)

382

(27.0)

10.4

(0.65)

420

(88.9)

0,024

(0.001)

The random number generator plays a big role in the
implementation of the two algorithms. That‟s why we can
obtain some difference in the number of iterations even we use
the same equation of random generator and the same initial
seed used for the three tests. In order to evaluate the
performance of our proposed PSO algorithm, we consider and
compare two implementations of the PSO process: the first one
is our algorithm and the second use the processor Xilinx
MicroBlaze [18].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

64 | P a g e

www.ijacsa.thesai.org

TABLE VIII. DEVICE UTILIZATION SUMMARY OF THE PSO ALGORITHM ON

SPARTAN XC3S200 AND XC3S500

Tested

function

(sphere)

Number of

slices

Block

BRAM

MULT18x18s

Other PSO

algorithm

[18]

Xilinx

xc3s500

1523

(32.7%)

7

(35%)

8

(40%)

proposed

algorithm

Xilinx

xc3s200

225

(11%)

5

(41%)

3

(37%)

VII. CONCLUSION

In this work, we developped a hardware implementation on
FPGA of a Particle Swarm Optimization algorithm. The
effectiveness of our PSO algorithm has been tested on several
benchmark functions for many degrees of parallelism. This
architecture exploits all the parallelism to allow updating the
particle positions and velocities to get a good performance of
the fitness function using a finite state machine and
implemented as hardware on Xilinx spartran 3 (xc3s200). In
this algorithm we used a FSM to exploit all the parallelisms
that make the program converge very quickly. The FSM allow
updating the positions and velocities of particles and after that
we can take independently the result of the better optimized
fitness from the position of particles. In this paper the
simulation results demonstrate that all the states and modules
can be executed at the same time and the execution time can be
reduced a lot.

The proposed PSO algorithm proves that it has a favorable
convergence speed compared to the other meta-heuristic
algorithms and the complexity of the algorithm depends on the
size of design space, it means the number of allocated particles
and the complexity of the problem. So, the PSO‟s robustness is
attached to its enhanced ability to achieve a satisfaction
between two requirements, the numbers of used memory and
the processing time of algorithm to solve complex problems.

REFERENCES

[1] P.K. Tripathi, S. Bandyopadhyay, K.S. Pal, Multi-objective particle
swarm optimization with time variant inertia and acceleration
coefficients, Information Sciences 177 (22) (2007) 5033–5049.

[2] A.S. Mohais, R. Mohais, C. Ward, Earthquake classifying neural
networks trained with dynamic neighborhood PSOs, in: Proceedings of
the 9th Annual Conference on Genetic and, Evolutionary Computation
(GECCO‟07), pp. 110–117.

[3] G.S. Tewolde, D.M. Hanna, R.E. Haskell, and Multi-swarm parallel
PSO: hardware implementation, in: Proceedings of the 2009 IEEE
Symposium on Swarm (2009).

[4] D.H. Lehmer, Mathematical methods in large-scale computing units,
Ann. Computing Lab. Harvard Univ. 141-146, 1951.

[5] R.M. Calazan, N. Nedjah, L.M. Mourelle, Parallel coprocessor for
PSO, International Journal of High Performance Systems
Architecture (4) (2011) 233–240.

[6] EDA Industry Working Groups, VHDL – Very High Speed
Integrated Circuits Hardware Description Language, September 201

[7] N. Nedjah, L.S. Coelho, L.M. Mourelle, Multi-Objective Swarm
Intelligent Systems – Theory & Experiences, vol. 261, Springer, Berlin,
(2010).

[8] A. Ratnaweera, S.K. Halgamuge, H.C. Watson, Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration
coefficients, IEEE Transaction on System, Man and Cybernetics 8 (3)
(2004) 240–255.

[9] Hardware/software co-design for particle swarm optimization algorithm
Shih-An Li, Chen-Chien Hsu b, Ching-Chang Wong, Chia-Jun Yu,
Information Sciences 181, Elsevier (2011) 4582–4596

[10] A hardware accelerator for Particle Swarm Optimization, Rogério M.
Calazan, Nadia Nedjah, Luiza M. Mourelle, Applied Soft Computing,
Elsevier (2013)

[11] A hardware accelerator for Particle Swarm Optimization Rogério M.
Calazan, Nadia Nedjah,Luiza M. Mourelle Applied Soft Computing xxx
(2013).

[12] P.D. Reynolds, R.W. Duren, M.L. Trumbo, R.J. Marks, II, FPGA
Implementation of Particle swarm optimization for inversion of large
neural networks, in: Proceedings 2005 IEEE Swarm Intelligence
Symposium (2005).

[13] J. Peña, A. Upegui, A population-oriented architecture for particle
swarms, in: Second NASA/ESA Conference on Adaptive Hardware and
Systems, (AHS 2007), pp. 563–570.

[14] J. Peña, A. Upegui, E. Sanchez, Particle swarm optimization with
discrete recombination: an online optimizer for evolvable hardware, in:
First NASA/ESA Conference on Adaptive Hardware and Systems,
(AHS 2006), pp. 163–170.

[15] D. Bratton, T. Blackwell, Understanding particle swarms through
simplification: a study of recombinant PSO, in: Proceedings of the 9th
1013 Annual Conference on Genetic and, Evolutionary Computation
(GECCO‟07), pp. 2621–2627.

[16] Y. Maeda, N. Matsushita, Simultaneous perturbation particle swarm
1035optimization using FPGA, in: Proceedings of International Joint
Conference 1036 on Neural Networks (IJCNN 2007), pp. 2695–2700.

[17] G.S. Tewolde, D.M. Hanna, R.E. Haskell, Multi-swarm parallel PSO:
hardware 1054 implementation, in: Proceedings of the 2009 IEEE
Symposium on Swarm Intelligence (SIS09), Nashville, TN, pp. 60–66.

[18] A modular and efficient hardware architecture for particle swarm,
optimization algorithm Girma S. Tewolde Q1, Darrin M. Hanna,
Richard E. Haskell Microprocessors and Microsystems xxx, Elsevier
(2012).

