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Abstract—In this paper, a digital implementation of Particle 

Swarm Optimization algorithm (PSO) is developed for 

implementation on Field Programmable Gate Array (FPGA). 

PSO is a recent intelligent heuristic search method in which the 

mechanism of algorithm is inspired by the swarming of biological 

populations. PSO is similar to the Genetic Algorithm (GA). In 

fact, both of them use a combination of deterministic and 

probabilistic rules. The experimental results of this algorithm are 

effective to evaluate the performance of the PSO compared to 

GA and other PSO algorithm. New digital solutions are available 

to generate a hardware implementation of PSO Algorithms. 

Thus, we developed a hardware architecture based on Finite 

state machine (FSM) and implemented into FPGA to solve some 

dispatch computing problems over other circuits based on swarm 

intelligence. Moreover, the inherent parallelism of these new 

hardware solutions with a large computational capacity makes 

the running time negligible regardless the complexity of the 

processing. 
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I. INTRODUCTION 

Over the last decade, several meta-heuristic algorithms are 
proposed to solve hard and complex optimization problems. 
The effectiveness of this algorithm give satisfaction to solve 
the most difficult problems for many algorithms related for 
various optimization problems. The proposed architecture is 
tested on some benchmarks functions. We have also analyzed 
the operators of GAs to describe how the performance of each 
one can be enhanced by incorporating some features of the 
other. We used standard benchmarks functions to make 
comparison between the two algorithms. In fact, PSO 
algorithm use the technique [1] that explores all the search 
space to fix parameters that minimizes or maximizes a 
problem. So, the ability and the simplicity to solve complex 
problems make the studies active in this area compared with 
many others optimization techniques [2] [3]. 

This research attempts to present that PSO has a good 
effectiveness to find the best global optimal solution as the GA 
but with a better computing efficiency (less using of resource 
hardware and execution time). The main objective of this paper 
is to compare the computational efficiency of our optimized 
PSO with GA and other PSO algorithms using a set of 
benchmark test problems. The results of this optimization 
algorithm could prove to be important for the future study of 

PSO. The organization of the paper is described as follow: The 
first chapter briefly introduces the general steps performing the 
mechanism of PSO. Especially, a brief introduction of pseudo 
random number generator [4]. The next section describes the 
background functional architecture which performs the GA and 
PSO algorithm. In chapter 3, a description of the architecture 
used in the hardware implementation of PSO and genetic 
algorithm; the second part illustrates the experimental results of 
some benchmarks functions applied into the PSO algorithm 
and compared with GA and others PSO algorithms. Finally, we 
conclude our work and we make some implications and 
directions for future studies. 

II. PARTICLE SWARM OPTIMIZATION 

In Particle Swarm Optimization algorithm we can say that 
each « bird » may be a solution through a search space. Birds 
are called particles and to explore all the search space, each 
particle is evaluated by the fitness function and to manage the 
flying of the swarm to the prey, they use velocities module. 
Each particle flies around the solution by following the 
optimum position of particles [5][6]. All particles are 
associated with points in the search space and their positions 
are depending on their own solution and of their neighbors. 
Some particles come into play randomly in every iteration 
through this environment; they look the assessment of 
themselves and their neighbors [7]. Then, they follow 
successful particles of the given problem. PSO algorithm give 
satisfactory results in solving many dispatch problems related 
to biology medical, finance, 3d graphics, image processing and 
others. [8], but it is hard to choose the setting parameters 
because it is too complicated to find the best setting of a 
desired application. So, we have to set first, several parameters 
of the PSO algorithm: [9] [10]: 

 Position and velocity equations of particles 

 Number of particles in the search space 

 The Gbest fitness achieved. 

 Positions of particles having the best solution of all. 

 Number of iteration 

In the beginning we generate a random population after that 
we search for the best solution after each iteration. Then, the 
particles update their positions using two best solutions. The 
first one is the best solution towards the problem and it is 
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named « lbest ». The other optimal solution is followed by the 
PSO algorithm and obtained by any particles from the 
population and it is named « Gbest ». 

A. The random number generator 

Programming PSO algorithms requires the use of random 
generator; there are several methods to generate a random 
numbers. In fact it is impossible to generate a random number 
based on algorithms that‟s why they are called pseudo random 
number. The random generators programs are particularly 
suitable for implementation and effective. Most pseudo random 
algorithms try to produce outputs that are uniformly 
distributed. A common class generator uses a linear 
congruence. Others are inspired by the Fibonacci sequence by 
adding the two previous values. Most popular and fast 
algorithms were created in 1948 D. H. Lehmer introduced 
linear generators congruentiels and will eventually become 
extremely popular. 

In our algorithm we used the bloc of the pseudo random 
generator [13] at the initial position of particles and in the 
velocity vector. We choose the frequently used pseudo-random 
generator called the linear congruent of Lehmer: 

Fn +1 = (A * Fn + B) mod C                                                      (1) 
Where:    -     Fn +1 : is the random number obtained from 

the function F 

- Fn : is the previous number obtained 

- A and B : are multiplicative and additive value, 

respectively 

- C : the  modulo number 

B. Position and velocity equations 

Velocity equation allows changing the position of a desired 
particle and generally, the objective of using PSO algorithm is 
to indicate by their positions the distance to the best particle. 
So, these equations are updated throughout the race of 
iterations using the equations below: 

                  (            )             

    (2)

               (t)                                                                     (3) 

xi(t) is the particle position at time t and vi is the velocity of 
particle at the instant t(i), w is parameters, c1 and c2 are 
constant coefficients, r1 and r2 are random numbers at each 
iteration, « Gbest » is the optimal solution found until now and 
« lbest » is the best solution found by the particle i. So, 
generally the velocity vector allows directing the research 
process and reflects the sociability of the particles. 

The convergence to the optimum solution can be fixed by a 
number of iterations depending on the fitness or when the 
variation tends to zero (like sphere function) or when it tends to 
the best minimized solution. Here some parameters that comes 
into play: 

 The number of population. 

 The size of the neighborhood. 

 The dimension of the search space. 

 The values of the coefficients. 

 The maximum speed. 

Each iteration allows the particles to move as a function of 
three components: 

 Its current speed 

 Its local best solution 

 The global best solution in its neighborhood. 

TABLE I.  EXAMPLE OF SOME SELECTED PARTICLES 

 

P
a

r
ti

cl
e
s 

iteration 

1 2 3 n 

X1 0010011111110010 0010011111110001 0010011111110000 … 

X2 0010011111100011 0010011111100011 0010011111100011 … 

X3 0010011111000001 0010011111000001 0010011111000001 … 

Xn Xn1 Xn2 Xn3 … 

In this table we present a sample from the sphere function, 
we can easily see that the “lbest” of particle x1 is located in it3 
and the “lbest” of particle x2 and x3 are located in it2 but the 
“gbest” is x3 and located in it2. 

The global minimum for the sphere function is clearly 
located at xi = 0, in each iteration we pick the “lbest” and we 
save the results into memory in order to compare its value with 
the new position of particles in the next iteration. 

III. ARCHITECTURE OF GA AND PSO ALGORITHMS 

A. GA architecture 

To optimize a problem in GA, we have to explore all the 
searching state in order to maximize (or minimize) a chosen 
function. So, the use of genetic algorithm is suitable for a quick 
exploration of an area. The organizational chart that describes 
the architecture of GA is shown by the following figure. 
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Fig. 1. Architecture Of The GA 

B. PSO  architecture 

The architecture of our optimized PSO algorithm is 
presented in the following figure: 



Fig. 2. Internal architecture of the PSO algorithm 

For hardware implementation of PSO algorithm, the 
architecture is decomposed into five operations that are 
performed on each particle: update the position, evaluate the 
fitness, update the particle's best position, update the global 
best position and update the velocity. 

We can demonstrate from the two architectures that the two 
algorithms share some common points. In fact the two 
algorithms begin with a random population in the search space 
and both of them use fitness module to evaluate the generation. 

Both of them update the generation and search for an 
optimal value using the pseudo random number but the two of 
them does not guarantee the success. However, the Particle 
Swarm Optimization doesn‟t have crossover and mutation 
operators. Indeed, PSO update its particles using the velocity 
module. 

C. The FSM 

In our paper a dynamic parallel PSO is implemented to be 
applied into large optimization problem and compared with 
GA and others PSO algorithms. The FSM is used to exploit all 
type of parallelism to find the optimum solution in a reduced 
portion of times. The dynamical process of FSM is represented 
in figure 3, in fact every state may have at every time a position 
of many possible finite states. Firstly, we must propose a 
number of fixed states; every transition may have one or more 
around states. In this way, states which have only one state and 
have no possible transitions we named the final states. 

The algorithm performs the updating of the optimum 
fitness number after the evaluations for all the particles. Here, 
when we update their positions and velocities we can obtain a 
good convergence rates after evaluating each particle. In a 
dynamic parallel computing, the main factor of performance is 
the communication latency after each transition between states. 
The goal of parallel dynamic computing is to produce optimal 
results even when we use multiple processors to reduce the 
running time. In this architecture we used pair memory 
modules to compound the bandwidth and thus, we can 
ameliorate the capabilities of our algorithm and we cannot do 
this only if we use Dual Channel bloc RAM. In that way we 
can access to the data memory in two modes write or read at 
the same frequency. There are problems with the dual RAM. In 
fact, the reading time of the content of memory is delayed by 
one clock comparative to the last reading. The description of 
the 8 states is presented in the sequel: 

 S0: Initialize parameters, signals and counters of PSO 
algorithm and goto S1 

 S1: Generate initial population and their velocities 
using random generator and goto S2 or S3 

 S2: Save positions and velocities value into memory 
(RAM) 

 S3: Evaluate particles using fitness module and goto S4 
or S5 

 S4: Save evaluated value into Bloc RAM and goto S6 

YES 

NO 

Fitness Bloc 

Module of 

selection 
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 S5: Test gbest If fit(i) <Global-best(i) then update 
Global-best and if the number of iteration is achieved 
then go to final state else go to State S7 

 S6: Test lbest If fit(i) < local-best(i) then update local-
best(i) then, go to S2 and return to state S4 

 S7: Update particles positions and velocities 

 S8: Update the number of iteration if iteration not 
achieved then go to state S3 else go to final state (SF) 

 SF: Display the optimum solution. 

 

Fig. 3. The finate state machine of the PSO algorithm 

Luckily, new advances in processor technology are capable 
and available to compute a complex program and use low cost 
power beyond clusters of mid-range performance computers. 
So, the dynamic process implemented in the particle swarm 
optimization could be separated in two states which update 
position and velocity of each particle using dynamic process 
with the goal to reduce the processing time. 

In our paper, the soul of the parallel processing was used to 
generate a dynamic PSO algorithm and the aim of using 
parallel computing to the PSO algorithm, is to speed up the 
algorithm processing using a uniform distribution method to 
achieve optimum solutions with a significant execution time. 

Figure 3 present the finite state machine of the global control 
module; especially, it presents step by step the code of the PSO 
in order to keep the algorithm more practical. 

D. Benchmark test functions 

The Most researchers use a number of population size 
between 10 to 50 for the performance comparison between 
algorithms, here we fixed the population at 20 chromosome for 
the GA and the same for PSO algorithm. To test the PSO and 
to compare its performance with other algorithm, we used 
some standard benchmark functions which are described as 
below: 

 Sphere function 

 Rosen-brock function 

 Rastrigin function 

 Zakharov function 

Some well-known benchmark functions have been selected 
for comparing the two implementations. So, to test and 
compare the performance of our proposed PSO algorithm we 
used unimodal and multimodal functions. These functions are 
described as below: 

      ∑    
                                                                                  (4) 

        ∑      
      

     
                                                       (5) 

        ∑      
           

           
                        (6) 

          ∑   
      

 
                                         (7) 

        
            

           
                                       (8) 

IV. VALIDATION EXAMPLES 

Most researchers use a number of population size between 
10 to 50 for the performance comparison of GA and PSO, the 
swarm size used for the PSO is the same as the population size 
used in GA and is fixed at 20 particles in the PSO swarm and 
20 chromosomes in GA population. In the GA all variables of 
each individual are represented with binary strings of „0‟ and 
„1‟ that are referred to as chromosomes. Like genetic 
algorithm, PSO begins with a random population and to 
perform its exploration, GA use three operators (crossover, 
selection and mutation) to propagate its population from 
iteration to another. 

A. The sphere function 

                                       ∑   

 

   

                                                   

Sphere function is useful to evaluate the characteristics of 
our optimization algorithms, such as the robustness and the 
convergence velocity. This function has a local minimum and 
it is unimodal and continuous. The interval of search space is 
between [-1,1]. Figure 4 present the results of simulation using 
modelsim of the sphere function. 
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Fig. 4. Simulation results of function f1 

The detailed results describe that our solution converges to 
zero from iteration to another. 

 
Fig. 5. Simulation results of function f2 

These particles work together in a parallel dynamic state to 
get the best solution of any function. They update position and 
velocity even if the algorithm has a lot of particles and this 
cannot make a hard impact on the global execution time speed. 
Indeed, the number of particles in this algorithm is limited by 
the size of embedded features of FPGA. The following tables 
present the number of LUT (Look up Table), bloc RAM and all 
the resource materials used in this function. 

TABLE II.  DEVICE UTILIZATION SUMMARY OF PSO 

TABLE III.  DEVICE UTILIZATION SUMMARY OF GA 

In the following figure, we can easily see the difference 
between the two algorithms, here the PSO algorithm give 
better optimization in the use of hardware resources than the 
Genetic Algorithm. 

 

Fig. 6. Comparison of hardware resource between PSO and GA 

We implemented the sphere function with two algorithms, 
GA and PSO using Spartan 3 from Xilinx, and then we can 
realize that the processing time of one iteration of PSO 
algorithm gives higher operation speed for optimization 
problems rather than genetic algorithm. The following table 
describes this. 

TABLE IV.  PROCESSING TIME OF ONE ITERATION 

algorithm pso genetic 

Execution of one 

Iteration (clock cycle) 1180 9740 

B. The rastrigin  function 

This function is described below: 

          ∑ 

 

   

   
 

 

                                            

The Rastrigin function contains several local minima. But it 
has just one global minimum and it is highly multimodal and 

the location of the minima is distributed regular. 
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used slices used flip
flops

used 4 luts

GA
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( PSO) Sphere function 

logic used available utilisation 
slices 225 1920 11% 

flip flops 214 3840 5% 

4 inputs 354 3840 9% 

IOBs 10 173 5% 

BRAM 5 12 41% 

multiplexers 4 12 33% 

GCLKS 3 8 37% 

( GA) Sphere function 

logic used available utilisation 
slices 581 1920 30% 

flip flops 600 3840 15% 

4 inputs 864 3840 22% 

IOBs 23 173 13% 

BRAM 2 12 16% 

multiplexers 8 12 66% 

GCLKS 5 8 62% 
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Fig. 7. Simulation results with modelsim 

The synthesis results of the whole system are shown in the 
following tables: 

TABLE V.  DEVICE UTILIZATION SUMMARY OF PSO 

TABLE VI.  DEVICE UTILIZATION SUMMARY OF GA 

We can easily see that GA require a lot of hardware 
resource while the PSO algorithm use   less number of slice 
and flip flop as it shows the following figure. 

 
Fig. 8. a comparison of hardware resource used in the two algorithms 

C. Rosenbrock  function 

The function of rosenbrock is a non-convex benchmark of 
two variables which is used to test some mathematical 

optimization problems. It was introduced in 1960 by Howard 
H. Rosenbrock and it is known by the banana function name. 

In this function the global minimum of search algorithms 
converge easily. The function is described as follow: 

        ∑          
           

      
     

         (11) 

The global minimum is obtained at point (x, y) = (1, 1), for 
which the function is 0. A different coefficient is sometimes 
given in the second term, but that doesn‟t have a great affect in 
the position of the global minima. 

D. Zakharov  function 

We used another benchmark which is the zakharov function 
whose global minimum occurs at x = (0): 

      ∑   
 

   
  

            
           

              (12) 

 
Fig. 9. Comparison between PSO and GA of rosenbrock 

 
Fig. 10. Comparison between PSO and GA of zakharov function 

V. EXPERIMENTAL RESULTS 

The platform of Spartan-3 FPGA is from Xilinx. The 
Spartan3 is one of the best low cost generation of FPGAs and 
the board can offers a choice of many platforms which deliver 
a unique cost optimization balanced between programmable 
logic, connectivity and hardware applications. It creates a 
PROM file and this latter can be written to the non volatile 
memory of Spartan-3. The platform of Spartan3 board includes 
the following elements (Figure 11): 

 200k of gate in a 256-ball thin Ball Grid Array package) 
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  logic used available utilisation 

slices 307 1920 15% 

flip flops 259 3840 6% 

4 inputs 547 3840 14% 

IOBs 26 173 15% 

BRAM 10 12 83% 

multiplexers 2 12 16% 

GCLKS 3 8 37% 

(GA) rastrigin function 

logic used available utilisation 

slices 1265 1920 65% 

flip flops 842 3840 21% 

inputs 2231 3840 58% 

IOBs 2 173 1% 

BRAM 3 12 25% 

multiplexers 4 12 33% 

GCLKS 8 8 100% 
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  4,320 logic cell and equivalents 

 12 x 18K of bit block RAMs (216K bits) 

 12 of  hardware multipliers (18x18) 

 4 Digital extern clock  (DCMs) 

 A lot of I/O signals and it is up to 173 

  Three “40” pin expansion connectors 

 PS/2 mouse/keyboard port, VGA port and serial port. 

 

Fig. 11. The Block Diagram of SPARTAN-3 

To make a comparison of this algorithm to deliver better 
solution in a significant time especially, its robustness and 
speed, we have tested it against other meta-heuristic 
algorithms, like genetic algorithms and another PSO algorithm. 
For GA, we used the basic model with elitism method and a 
probability of mutation equal 5%. The simulations have been 
carried out using spartran-3 of Xilinx with 50MHz. We have 
also fixed the population n = 20 for all simulations. The results 
are favorable and proved that Real BAT can be effective for 
many problems related to any algorithms used. The experiment 
results was carried out at minimum 5 % which allow judging 
whether the results of the PSO are acceptable and optimized in 
execution time compared to the best results of other 
algorithms. 

 

Fig. 12. Display of the number of iteration to achieve the optimal solution 

VI. RELATED WORK 

Since its invention, many researchers have worked on the 
PSO algorithm [11] and how to accelerate its performance to 
give a good convergence and to reduce the use of hardware 
resource for embedded applications. In this section we will 

present some works lean on parallelization algorithms 
proposed by other researches. In fact, there are many 
interesting improvements using PSO algorithm for several 
applications; al.Reynolds [12] suggested a smart technique for 
modified PSO algorithm using neural networks. His technique 
is based on a deterministic approach while the particles update 
their positions to simplify the hardware implementation 
because the standard PSO algorithm has been implemented to 
use random generators only for the operations of update and to 
reduce the hardware resource Upegui and Peña [13] use a 
discrete recombination of PSO algorithm called (PSODR), 
that‟s allow to decrease the time of computing of the velocity 
module. It is clear that these modified PSO algorithm allows 
generating competitive results compared to those of the basic 
PSO algorithm [14]. Moreover another works on the PSODR 
algorithm are proposed by Bratton and Blackwell with 
simplified models of the PSODR algorithm are analyzed and 
proposed by Blackwell and Bratton [15] with effective results 
and promising. 

Many researches presented a modified variant of PSO 
either to reduce the materials resource or to eliminate explicit 
problem related directly on the architecture of PSO. That‟s 
why we developed a modified architecture using finite state 
machine to program a parallel algorithm that could give 
effective results to solve several problems [16]. Thus, we fixed 
the representations of the data by 20 particles to bearing several 
purpose of applications. 

A comparison performance of PSO algorithms on some 
processors platforms are represented in the following table. We 
choose two different processors platforms, the Xilinx xc3s500 
[17] and the Xilinx Micro-Blaze soft processor core for the 
Sphere test function. 

TABLE VII.  COMPARISON OF OTHER PLATFORMS 

Plat_ 

form 
Xilinx xc3S500 Xilinx microblaze Spartran xc3S200 

 

Averag

e nb. 

Iter. 
(st.dev) 

Average

.Exe. 

time (s) 
(st.dev) 

Average
.nb. iter. 

(st.dev) 

Average

.Exe. 

time(s)(
st.dev) 

Average.

nb. 

iter.(st.d
ev) 

Averag

e.Exe. 

time(s) 
(st.dev) 

Spher

e 

functi

on 

338 

(30.9) 

0.28 

(0.03) 

382 

(27.0) 

10.4 

(0.65) 

420 

(88.9) 

0,024 

(0.001) 

The random number generator plays a big role in the 
implementation of the two algorithms. That‟s why we can 
obtain some difference in the number of iterations even we use 
the same equation of random generator and the same initial 
seed used for the three tests. In order to evaluate the 
performance of our proposed PSO algorithm, we consider and 
compare two implementations of the PSO process: the first one 
is our algorithm and the second use the processor Xilinx 
MicroBlaze [18]. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 8, 2016 

64 | P a g e  

www.ijacsa.thesai.org 

TABLE VIII.  DEVICE UTILIZATION SUMMARY OF THE PSO ALGORITHM ON 

SPARTAN XC3S200 AND XC3S500 

 
Tested 

function 

(sphere) 

Number of 

slices 

Block 

BRAM 

 

MULT18x18s 

 

Other PSO 

algorithm 

[18] 

Xilinx 

xc3s500 

1523 

(32.7%) 
 

7 

(35%) 

8 

(40%) 

proposed 

algorithm 

Xilinx 

xc3s200 

225 

(11%) 

5 

(41%) 

3 

(37%) 

VII. CONCLUSION 

In this work, we developped a hardware implementation on 
FPGA of a Particle Swarm Optimization algorithm. The 
effectiveness of our PSO algorithm has been tested on several 
benchmark functions for many degrees of parallelism. This 
architecture exploits all the parallelism to allow updating the 
particle positions and velocities to get a good performance of 
the fitness function using a finite state machine and 
implemented as hardware on Xilinx spartran 3 (xc3s200). In 
this algorithm we used a FSM to exploit all the parallelisms 
that make the program converge very quickly. The FSM allow 
updating the positions and velocities of particles and after that 
we can take independently the result of the better optimized 
fitness from the position of particles. In this paper the 
simulation results demonstrate that all the states and modules 
can be executed at the same time and the execution time can be 
reduced a lot. 

The proposed PSO algorithm proves that it has a favorable 
convergence speed compared to the other meta-heuristic 
algorithms and the complexity of the algorithm depends on the 
size of design space, it means the number of allocated particles 
and the complexity of the problem. So, the PSO‟s robustness is 
attached to its enhanced ability to achieve a satisfaction 
between two requirements, the numbers of used memory and 
the processing time of algorithm to solve complex problems. 
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