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Abstract—Starting from the RFID and the wireless sensor 
networks, the Internet of connected things has attracted the 
attention of major IT companies and later, of the industrial 
environment that recognized the concept as one of their key axes 
for future growth and development. The implementation of IoT 
in the industrial environment raises some significant issues 
related to the diversity of fieldbuses, the large number of devices 
and their configuration. The requirements related to reliability, 
security and real-time are very important. This paper proposes 
an industrial IoT and communications at the edge framework 
which has some outstanding features related to: the easy 
integration of fieldbuses and devices used in industrial 
environments with automatic configuration features, integration 
of multiple middleware technologies (CORBA, OPC and DDS), 
the uncoupling of the industrial activity from the publishing data 
on the Internet, security at different levels of the framework. 
Another important feature of the proposed framework is that it 
is based on mature standards and on open source or public 
implementations of these standards. The framework is modular, 
allowing the easy integration of new fieldbus protocols, 
middleware technologies and new objects in the client 
application. This paper is focused mainly on CORBA and DDS 
approaches. 
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I. INTRODUCTION 
KEVIN Ashton, from the MIT Auto-ID Center, was the 

first who proposed the term "Internet of Things" (IoT), 
referring to the connection between the information provided 
by radio frequency identifiers (RFID) and the Internet [1]. 
Quickly, the interest in the Internet of connected things caught 
the attention of governments and IT companies which have 
recognized the concept as one of the key axes for their future 
growth and development [2]. An increasingly accepted 
definition of the IoT was provided in [3]. In this definition, the 
emphasis is placed on virtual and physical “things” which: use 
intelligent interfaces; are fully integrated into an information 
network; have identifiers, physical attributes, and virtual 
personalities using a global infrastructure network with 
dynamic configuration (mobile), auto-configuration facilities, 
and interoperable communication protocols. 

The potential growth of IoT technologies has led to 
increased interest in their use in various industries, where 
devices, machines, sensors, or simple things communicate with 
each other using standard Internet technologies [4]. It can be 
stated that the real value of the Industrial IoT (IIoT) is the 

availability of ubiquitous information and consequently, the 
decisions that can be made from it. An IIoT platform must 
validate the sharing of dispersed and ubiquitous data in an 
efficient and timely way for the web, cloud, desktop, 
embedded, and mobile applications. Therefore, IIoT can be 
defined [5] as the connection between the sensors from the 
physical world, devices and machines on the Internet and, by 
applying a thorough analysis using the software, the 
transformation of massive data into powerful insight, and 
intelligence. 

It is becoming increasingly clear that the industry needs a 
functional and useful architecture for the Industrial Internet of 
Things (IIoT), which should include the recent progresses and 
novelty technologies in the field. Such an architecture should 
be easily understood and, at the same time, complete. Most 
projects and specialized literature are focused on how "things" 
can be converted so that they can be connected to the Internet 
through the addition of intelligence and connectivity, for 
instance by using the RFID technology for things/objects in 
everyday life [6][7]. Beside the RFID technology, they also 
take into account the wireless sensor networks. These 
architectures can be found in [8][9][10][11][12]. An important 
issue of this solution is security [13]. 

Although the issues listed above are essential for the IoT, it 
can be considered that in addition of RFID, wireless 
communication, sensors and actuators as IoT things, it can be 
added devices and machines with wired communication in 
order to define IIoT things. Furthermore, it can be pointed out 
that industrial automation involves difficult requirements 
regarding communication and the ensuring security and 
reliability. These requirements must be met by IIoT from the 
beginning. Currently, the implementation and operation of the 
complex production processes or of the Internet applications 
(Internet-enabled) requires time and a manual network setup 
that is susceptible to errors. This situation is generated by the 
need to ensure a high level of determinism, safety, and security 
during the production process and to avoid both critical 
security failures and costly production interruptions. These 
objectives should be IIOT-specific, including a high level of 
automation for the network configuration processes (including 
the fieldbuses pertaining to the industrial environment). 

In this paper, it is proposed an IIoT framework organized 
on three levels, based on the three observations outlined above 
(italic): the device that integrates the hardware (sensors, 
actuators, RFID) in order to sense/control the physical world 
and to acquire data, middleware for data transport and an 
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application which provides the means to interact with the user 
and other IoT applications [14]. The proposed framework can 
be the edge that bridges the information technologies and 
world of things, where the available resources in the cloud 
cannot be directly accessed [14]. In this case, the operational 
technologies are the fieldbuses with their features that 
represents additional challenges. At the low level, the 
framework understands different network topology, and data 
protocols that will be found into the world of things. This 
contains solutions for automatically discovery and 
identification of the real industrial things, data associated and 
to be able to perform storage at high-frequency updates. At the 
high level, the framework collects the data and sent it to the 
cloud via IIoT standards. In the CISCO visions [15], the 
framework represents the Edge Computing (that is also called 
Fog Computing). 

The framework is in accordance with the IIoT definition 
which was presented previously. The solution uses OPC (Open 
Platform Communication) [16], OPC .NET [16], OPC UA 
[16], TAO [17] and DDS (Data Distribution Service) standard 
[18][19] are used as middleware (an important component in 
IIoT) in order to show the data at enterprise level and DDS for 
the external enterprise interoperability. This article mainly 
takes into account the implementations based on TAO and 
DDS. In the process of defining the framework, three great 
challenges arise: (i) the large number of fieldbuses, description 
of devices and automatic configuration; (ii) middleware choice 
and provision of real-time services; and (iii) separation of the 
industrial activity from the operations, for the sake of data 
publication and subscription on the Internet, and incorporation 
of different types of technology. The proposed framework can 
be used in smart factory but the utilisation can be extended for 
smart home, smart buildings, smart living, and smart city. 

Furthermore, this paper is organized as follows: Section II 
briefly presents different architectures proposed for the use of 
IoT in industry. Section III presents our proposal for an IoT 
based on TAO for the industry field. Section IV presents the 
test performed in order to compare the bandwidth used by a 
TAO-based server with one based on OPC DA, OPC UA and 
OPC.NET in a local network. Section V presents a comparison 
between TAO/OpenDDS and OPC UA as support for IIoT. 
The final conclusions are drawn in Section VI. 

II. RELATED WORK OF THE INDUSTRIAL IOT 
ARCHITECTURE 

When a new IIoT architecture and a practical 
implementation are proposed, a natural question which arises 
is: what are the existing solutions? The literature specialised in 
the field is very poor in such solutions because IIoT is at the 
beginning. A courageous attempt is made in [20]. The authors, 
relying on a rich bibliography, tried to understand the current 
status and the future research opportunities related to the use of 
the IoT concept in industry. Only Section V strictly refers to 
the applications of IoT in industry, fields such as healthcare 
service, food supply chain, transport and logistics, and 
firefighting, which are more in the field of services and 
infrastructure and not industry, are being taken into account. 
The only industrial sector already addressed is mining 
production [21][22]. Our bibliographic studies have led to 

similar conclusions. There are few articles related to IIoT and 
those are strictly focused on specific applications. In what 
follows, we will briefly present some concerns present at 
institutional level or which are covered by research projects. 

In Germany, the IoT is associated with the field of 
production and logistics through the term "Industry 4.0"[23], 
and the grounds are being prepared for a new social and 
technological revolution which will drastically change the 
whole industrial environment. Industry 4.0 is a sophisticated 
change of the entire chain of values: communication, planning, 
logistics, and production. Due to the success it recorded in the 
fields of information and communication technologies (ICT) 
(currently 90% of all manufacturing processes are already 
supported by ICT) and embedded systems, (strong autonomous 
microcomputers) either connected to each other or to the 
Internet, wired or wireless, it will lead to a convergence 
between the physical and the virtual (cyberspace) world. This 
convergence takes the form of a Cyber- Physical Systems 
(CPS), term used international to describe Industry 4.0 concept. 
With the development of IPv6 standards, there are now enough 
addresses to allow, for the first time, the networking of 
resources, information, objects, and people, in order to create 
the Internet of Things and Services. The proposed architecture 
is set on four levels (from bottom to top): Internet of Things, 
Internet-based System & Service Platforms, Internet of 
Services and Applications. More details can be found in [23]. 

Another interesting research project in the IIoT field is the 
IoT@Work [24]. The project focuses on the exploitation of IoT 
technologies in the industrial and automation sectors. The 
architecture proposed in this project has five horizontal levels 
and three vertical planes. The horizontal levels refer to: 
Field/Control Infrastructure & Network, Device and Network 
Embedded Services (auto-configuration, device semantic, 
network management), Device Resource Creation & 
Management Services (abstraction, context/dependencies), 
Application Level Middleware Services (commissioning, 
composition, adaptation), and Automation Applications. The 
vertical planes are the following: communication plane, 
security plane and management plane. The project proposes the 
following technologies for the IIoT: Directory Service, Auto-
Configuration of Real-Time Ethernet, Event Dispatching 
(Event Notification Service), Capability-based Access Control, 
Complex Event Processing, Network Slices, and Embedded 
Access Control. More details on the proposed architecture and 
technologies can be found in [24]. 

An interesting discussion is launched by Herman Storey (co 
-chair ISA 100), Rick Bullota and Daniel Drolet in [25]. The 
discussion begins with the observation that IIoT should 
primarily provide security, robustness, and punctuality as far as 
the requirements of automation networks are concerned and, 
secondly, remote access. The IIOT proposed architecture has 
four horizontal levels: multiple physical media and link layer, 
IPv6/6LoWPAN common network layer, more communication 
stack layers and multiple applications layer. Vertically, the 
architecture has two levels: Common time and Common 
network management and security. As an essential element, the 
IIoT must provide a way to integrate multiple physical 
environments and multiple applications in a single industrial 
network system using common technologies. To integrate such 
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a variety of communication and application environments, the 
IIoT must use IPv6 as a network protocol. IPv6 has an 
extension called 6LoWPAN which allows it, as a network 
layer, to be used for low power networks or limited bandwidth. 
Although it was designed for battery-powered wireless devices, 
it may be used for wired networks as well. ISA 100.15 
published a document which provides models and concepts for 
architectures adequate for IIoT. 

Following the analysis of the three architectures presented 
above, it can be said that currently, there is a low degree of 
standardization. Efforts are being made to achieve an IIoT 
standard (Industry 4.0, ISA 100). The IIoT is a different IoT 
from the non-industrial ones due to the special characteristics 
of the production processes. Except for Industry 4.0, IIoT 
architecture is based on ground level devices, which are 
interconnected via fieldbuses and which have access points to 
local networks and the Internet, while on the upper level it has 
specific applications. Intermediate levels ensure services for 
the safe transport of information. In addition to the horizontal 
levels, there may also be vertical planes, able to ensure 
management and security, time management, and so on. The 
expectations of IIoT refer to the possibility that devices, 
machines, and other objects could interact with each other 
without relying on human intervention to achieve added value. 
Among the most important requirements for IIoT [26], we can 
mention: reliability, robustness, reasonable cost, security and 
safety, easy use, low/no maintenance, optimal and adaptive set 
of features, standardization, integration capabilities, reach 
sensing and data capabilities, industry degree support, and 
services. The challenges faced by IIoT refer to IoT devices, 
lifetime and energy, data and information, humans and 
business. 

III. THE IOT FRAMEWORK PROPOSED FOR INDUSTRY 
In this section, it is presented the new proposed IoT 

framework for industry where devices, machines, sensors, or 
simple things must communicate with each other. This IIoT 
framework is composed of three levels (device, middleware, 
and application). The first level is the device level. It is 
composed of three elements, namely: the device which 
acquires data directly from the environment and can transfer 
this information using a wired or wireless network/fieldbus, the 
gateway which adapts the specific network protocol to the 
specific computer protocol used by the middleware in order to 
connect to the IIoT environments (which can also add real time 
facilities) and the software driver for the gateway device which 
adapts the information sent or received to/from the gateway in 
order for it to be compatible with the middleware. The 
middleware level is designed to provide data transportation 
inside the IIoT and it is based on the OPC, CORBA (with TAO 
implementation (The ACE ORB)) and DDS. The application 
level provides support for the implementation of the basic 
applications pertaining to the proposed framework and the 
level’s middleware objects which can be embedded in other 
IIoT applications [27]. The specific interoperability model is 
provided by the OPC and TAO, while the global 
interoperability is ensured by the DDS middleware standard 
[28]. 

A. The motivation of the proposed framework 
In order to motivate the proposed framework, we can begin 

from the question: is it a new technology? The answer is that it 
is a new vision related to the reorganisation of a sum of 
existing technologies in order to satisfy new requirements 
concerning the future development of the industry. 

Regarding the device level, the following major problems 
were considered: there are different physical and data link 
layers which respond to different requirements of specific 
applications in the industry field; at the extremity of the global 
network, there are fieldbuses that are intended to acquire 
information from sensors and transducers, and to emit 
commands via actuators; and that all these fieldbuses must 
have common support for IPv4/IPv6. For this level, a gateway 
device is defined, one which must implement the gateway 
function [29] in order to transfer the information to the higher 
level. It must transform the process-specific information into 
information useful for the higher level [30] and it must provide 
real-time behaviour at fieldbus level. Furthermore, a 
description method for devices, recognised by all partners who 
require information about devices, must be developed. 
Network/fieldbus configuration for acquisition of information 
from the process is a time-consuming and expensive operation 
which means that tools capable of automating this operation 
must be created. In the fieldbuses area field, there is currently a 
multitude of standards (and perhaps new standards will appear 
in the future) which means that, consequently, the framework 
must support the integration of new protocols. 

The middleware level has the important task of transporting 
information between different nodes placed in the Intranet, 
Extranet, and the Internet. This level implies important design 
decisions. Standard-based middleware’s were taken into 
account due to their stability and impact on the industry.  Since 
the OPC specifications are specially designed for industrial 
applications, a first major question is: why TAO and DDS? A 
second question may be: why not just DDS? The short answer 
to the first question is: the OPC specifications have no explicit 
real-time requirements and use the client-server paradigm, 
which is less suitable for data centre frameworks of the 
publisher/subscriber type; and answer to the second question 
is: TAO is better prepared for real time. Further, these two 
answers are expanded. 

A very interesting discussion on the utilization of standards 
for real-time distribution middleware is presented in [31]. The 
authors, out of several distribution models, chose those which 
are based on the standard, are mature, stable and with impact 
on the industry; namely: CORBA/RT-CORBA, Distributed 
System Ada Annex (DSA), Data Distribution Service for Real-
time System (DDS) and Distributed Real-Time Specification 
for Java (DRTSJ). Even though the authors of [31] do not 
provide a verdict or have not carried out a ranking, however, a 
classification can be made. 

CORBA/RT-CORBA has the following advantages: it is 
based on a very mature technology, one involved in a wide 
range of applications [31], such as Software Defined Radios 
[32] and Industrial Robotics [33]; RT-CORBA entities validate 
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the development of critical real-time applications; from the 
point of view of scheduling, the RT-CORBA provides static 
scheduling based on Fixed Priority Scheduling (FPS), the use 
of threads as schedulable entities, control of the competition 
degree on the servers using thread pools, deterministic access 
to shared resources, the use of different scheduling policies, 
and the use of distributable threads as a schedulable entity; as 
far as network resource management is concerned, it provides 
mechanism for the fine-tuning of network properties, it uses 
private connections and definitions of priority-banded 
connections; it is the only standard which provides 
mechanisms for the specification of scheduling parameters 
which may be used during execution; facilitate interoperability 
between implementations (GIOP - General Inter-ORB 
Protocol); TAO implementation is the most popular and 
updated open-source implementation for RT-CORBA. As 
disadvantages of RT-CORBA, we can mention: unlike the 
CORBA specification updated in [34], RT-CORBA is not 
currently in the attention of the Object Management Group 
(OMG), the last update being performed in 2005 [35][36]; it 
does not take into consideration the network scheduling; it uses 
TCP/IP stack which means that even the use of Ethernet 
switches is unsuitable for implementation of hard real-time 
systems; TAO implementation does not provide synchronous 
protocols (it is based on the operating system); it does not 
implement the priority transforms model, the use of buffers to 
store remote requests in thread pools nor the borrowing of 
threads among thread pool lanes. 

The DDS has the following advantages: it is considered a 
mature technology involved in several real-time applications 
[31] in the fields such as Defence [17], Automation [37], and 
Space [38]; supports anonymous and asynchronous 
dissemination of information; has specific requirements for 
distributed applications such as control systems, sensor 
networks, and industrial automation systems; it is a data-centric 
middleware [18] and, therefore, it is aware of the contents of 
the interchanged data which can be directly managed; it 
provides multiplatform and multi-language support; the types 
of shared data can be defined by using IDL language [34]; 
interoperability between different implementations is provided 
by DDS Interoperability Wire Protocol (DDSI) [39]; it is a 
recently updated specification, OMG provides specification for 
the Extensible and Dynamic Topic Types [40], which provides 
support in order to define and modify dynamic (on runtime) 
data for the extension and evolution of systems based on DDS; 
the DDS model defines a strongly typed  Global Data Space 
where publishers (Data Writer (DW)) can write (provide) data 
and subscribers (Data Reader (DR)) can read (consume) data 
allowing the middleware to focus on obtaining data 
independent of their origin; the standard was explicitly 
designed for distributed real-time systems; specifications 
define a set of QoS parameters in order to configure non-
functional properties for each entity and allow the change of 
some of them during an operation; a subset of QoS parameters 
allows the control of temporal behaviour and improves the 
application predictability; it defines different mechanisms 
meant to validate the communication between entities (polling, 
synchronous mode and asynchronous mode for the DR entity) 

and provides the opportunity to notify the application by 
Polling, Listeners, Conditions, and Wait-sets; there are both 
commercial (CoreDX or RTI-DDS) and open source 
(OpenSplice or OpenDDS) implementations. Among the DDS 
disadvantages, we can mention: there are no evaluations in 
detail done on the DDS real-time performance (an attempt can 
be found in [41]); it does not explicitly addressed the 
scheduling of threads at processor level; it is oriented on IP 
networks and not on the real-time networks (still lists a set of 
requirements for network support); considers only network 
policies based on fixed priority scheduling and excludes any 
other type of predictable network used in industry; some 
internal middleware operations generate meta-traffic thus 
introducing an override that must be taken into account in the 
analysis of behaviour in time; DDSI has an indefinite number 
of sub-messages; there is still no profile for safety-critical 
applications. 

The DSA and DRTSJ are not competitive for real time as 
CORBA/RT-CORBA and DDS. The DSA [31] was 
specifically designed to support predictable applications and 
several features, which ensure determinism, are left to 
application implementation; while the DRTSJ [31] 
specification is not complete, there are still problems which 
were not addressed and there is no formal DRTSJ specification 
(only a draft). On the other hand, all these protocols and their 
implementations for real-time communication use IP-based 
networks. Even if local networks that use switches are used, 
real time is not easily achieved. 

For the application level, the design issues taken into 
account are: easy embedding and integration of several 
technologies (OPC DA, OPC .NET, OPC UA, and CORBA); 
default communication between application objects by defining 
a "software bus" so that the application objects communicate 
with each other and the implementation, at the current level, of 
the gateway function between different technologies; 
decoupling of the company’s activities and specific production 
processes, which requires a high degree of security; the 
publication of some information on the Internet; platform-
independent communication between the instances of several 
applications; establishment of a connection with the usual 
databases which benefit from a specialized middleware for data 
communication. 

The IoT framework of the system proposed in this article, 
in order to integrate IoT in the monitoring and control of the 
industrial processes, is presented in Fig. 1. The proposed 
framework is based on the OPC specification, DDS and 
CORBA middleware (TAO implementation). Furthermore, the 
framework will be presented from the point of view of 
CORBA and DDS middlewares. These middlewares were used 
because they allow the development of applications 
distributable on the Internet. In industry, CORBA middleware 
is not widely used although there is the DAIS [42] standard 
which describes how to develop SCADA applications based on 
CORBA. In the proposed framework, new TAO servers and 
clients are considered supplementary uses, which, just as 
DAIS, are based on the OPC DA 2.05 specification. Our 
solution is easier to implement compared to DAIS. 
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Fig. 1. Distribution on Internet of the proposed framework 

From the point of view of implementation, the proposed 
framework consists of two main functional modules: the data-
acquisition module (which will be referred to as the server 
module) and the Human-Machine Interface (HMI) module (for 
the information retrieved from the server modules) which will 
be referred to as the Human Machine Interface - Process 
Control and Monitoring (HMI-PCM) module, and it is mainly 
a client application for TAO and OPC servers. DDS is 
implemented as an object in the HMI-PCM. By using the TAO, 
the information acquired from the industrial process can be 
distributed on the Internet, in a client-server manner, as 
noticeable in Fig. 1. A functional (complex) system can be 
composed of multiple servers and multiple HMI-PCM clients. 
A HMI-PCM client can connect to multiple server modules 
and database servers, as described in the following sections. 
Clients can generate history based on the data read from the 
server, history stored in a database which can be consulted later 
by the client who generated this history or by other clients. 

B. Server module 
The architecture of the server module is shown in Fig. 2. 

This architecture is structured on three main levels. On the 
lower level, we have the drivers which acquire data from the 
fieldbuses and store it on the cache located on the upper level. 
This level is integrated in the device level of the IIoT 
framework. Its main role is the implementation of the 
acquisition cycle which is specific to the fieldbuses protocol 
used for communication. On this level there are more software 
modules, each module specific for one fieldbus. Furthermore, 
these modules receive data from the top level, which will be 
sent to the fieldbuses (e.g. commands for actuators). These 
modules receive all the data which must be updated 
continuously from the top level (data that is in at least one 
client's subscription list). This data is included in the 
acquisition cycle implemented in the drivers. Furthermore, 
these modules implement mechanisms for the data read on 
request (asynchronously read). They rely on a running platform 
(Linux or Windows) and are developed as independent 
modules (as libraries). This allows the development of new 
drivers without recompiling the other server modules. Between 
this level and the upper level, there is a well-defined interface 
that allows the integration of drivers for new fieldbus protocols 
(API 1 from Fig. 2). 

 
Fig. 2. The server module architecture 

On the intermediate level, we have the Fieldbuses Cache 
Management (FCM) module which deals with the management 
of the cache which stores the data read from the fieldbuses, and 
which is also developed as an independent module (as a 
library). This memory cache is necessary to achieve a rapid 
response to the requests received from the upper level. The 
cache memory is a resource shared by several threads and has 
all the access control mechanisms implemented to ensure data 
consistency. Furthermore, this module stores a list of data on 
which clients are subscribed to ensure continuous updating of 
the cache (data update is provided only for that list of data). 
The data received from clients, which must be submitted to the 
devices connected on fieldbuses, are stored in the cache and are 
forwarded to the appropriate network driver. This level is part 
of the middleware level. Between this level and the upper level 
(the server itself), there is a well-defined interface which 
allows the adaptation of the FCM to any desired type of server, 
including TAO server (API 2 from Fig. 2). 

On the top level, we have the server which provides 
support to access the cache with both read and in writing 
operations, in other words, the access to field devices 
connected to networks. Furthermore, the server integrates the 
TAO middleware which provides services for the 
transmission/reception of data to/from the HMI-PCM clients. 
To ensure these services, a CORBA IDL interface was defined, 
one which has been integrated into the server and the client 
modules. The interface is based on the OPC DA 2.05 classical 
specification. So, four interfaces were defined, namely: 
DataServer, an interface with a Register (server connection) 
and DeRegister (disconnected from server) methods; IServer 
interface with Addgroup, RemoveGroup, and SetState methods 
(edits the properties of the group); IGroup interface with 
AddItems and RemoveItems methods; IUpdate interface with 
OnDataChange (updates data to the client group) and 
Disconnect (server being offline) methods; IBrowse interface 
with BrowseAddressSpace (accesses the server address space), 
ChangeBrowsePosition (browses the address space server), 
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GetItemID (takes over the address space identifier of server), 
QueryAvailableProperties (reads the properties of an Item), 
SyncRead (synchronously reads the value and quality of a list 
of items, from the cache or device), and SyncWrite methods 
(synchronously writes the value and quality of a list of item, 
from the cache or device). We detail the implementation based 
on TAO because it is a less used a solution in industrial 
environments compared with servers based on OPC 
specifications. 

C. HMI-PCM – Human Machine Interface -Process Control 
and Monitoring 
The client application (HMI-PCM) is an environment that 

can instantiate many objects (controls). There are three types of 
objects: graphical objects, middleware objects and expression 
objects. They expose data members in the HMI-PCM 
environment. The data members can be interconnected in order 
to transfer data between objects, or can be used in different 
math expressions to which other objects can connect 
(subscribe) by using a standard interface (API 3 from Fig. 3). 
Middleware objects connect to data providers (servers) based 
on different middleware packages (OPC.NET objects to 
transport data from/to OPC.NET data servers, OPC DA objects 
to transport data from/to OPC DA servers; OPC UA objects to 
transport data from/to OPC UA servers; TAO objects to 
transport data from/to CORBA servers). The architecture of the 
HMI-PCM module is presented in Fig. 3. 

OpenDDS is an open source implementation of the DDS 
specification based on TAO. The DDS objects from HMI-PCM 
environment ensure the interoperability between different 
HMI-PCM applications running anywhere (on the same 
computer, the computers interconnected throughout local 
network or computers interconnected throughout the Internet). 
The objects can expose the HMI-PCM address space, including 
middleware objects that partially or fully expose the server 
address space (see subsection D). 

 
Fig. 3. The HMI-PCM module architecture 

The most important feature of this application is that it 
allows the interconnection of objects in the HMI-PCM. Each 
object has data members that can be connected to each other or 
to the data members of other objects from the HMI-PCM. 
Thus, to display the data from the server, a graphical object is 

used, one that connects to the TAO objects that are connected 
to these servers. With this feature, the HMI-PCM application 
can be easily configured according to the user’s requirements 
and preferences. Another important feature of the HMI-PCM is 
that new objects can be added as dynamic libraries. They must 
comply with HMI-PCM standard interface (API 3 from Fig. 3) 
that enables communication between the HMI-PCM objects 
(objects derived from a basic object). So, it is not necessary to 
compile the whole clients (only the object added). 

D. Implementation considerations 
The server is developed and implemented as an application 

in C++. For each fieldbus, there is a library which implements 
the function specific to the fieldbus. It was implemented a 
library for MODBUS RTU (with a RS485–RS232 interface), a 
library for MODBUS TCP/IP and a library for CANOpen 
(with a USB-CAN interface). The libraries for EtherCAT and 
Ethernet/IP are under development process. Since there are 
many Modbus TCP/IP gateways to other fieldbuses, these 
systems can be easily integrated into the proposed framework 
(should be considered the differences in terms of real time 
between fieldbuses and MODBUS TCP / IP because TCP/IP 
stack is best effort type and not real time). For the transport 
protocol between server and client, the following protocol was 
employed: IIOP (default) Internet Inter-ORB Protocol, 
SHMIOP - shared memory transport protocol, IIOP over 
Secure Sockets Layer (SSL), HTTP Tunnelling Inter-ORB 
Protocol, and ZIOP – IIOP with compression). 

Due to the modular software architecture of the server (see 
Fig. 2), servers based on more middleware types were 
developed, while this paper deals with the server based on the 
TAO middleware (version 6.2.5). The server will expose data 
as a collection of industrial networks, each network having a 
collection of devices. Every device connected to an industrial 
process can be seen as a collection of objects. For this reason, a 
dictionary of objects was developed, managed by the FCM, 
exposing all the capabilities of the devices. Each object can 
have multiple data members and each data member can be 
characterized by properties such as value, data type, access 
rights, or other property that can be defined by the user based 
on the application. The content of the object dictionary (data 
provider) forms the address space of the server. Each 
middleware object will expose this address space to the client. 
A natural question is how to create this address space? FCM 
has on the upper level a defined standard interface for server 
connection (API 2 from Fig. 2), and another one at the bottom 
for connection to the fieldbus-specific drivers (API 1 from Fig. 
2). Any driver that implements this interface is loaded without 
recompiling the entire application. 

At this point, another question appears: how are the system 
devices described? Among the various solutions (EDDL - 
Electronic Device Description Language, FDT –Field Device 
Tool, FDI-Field Device Integration, EDS - Electronic Data 
Sheet), for simplicity reasons, a solution was adopted, based on 
the CiA DS 306 D3 v1.3 specification (EDS). This 
specification has been extended to support Modbus, M-Bus and 
ASCII-DCON protocols in addition to CANOpen. Modbus 
TCP/IP gateway connects to other protocol implementing 
devices, such as Profibus, Profinet, EtherCAT, EP PowerLink, 
Ethernet / IP, LonWork, etc. From a device, one cannot get 
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more than the information that is defined in the corresponding 
EDS. For example, for the Modbus protocol, a new section 
called [Communication] was added. This section of the EDS 
file describes the commands required to access objects like: 

[IndexObject]: Request: FC: SFC-x: ADR: L-x:E: 
ADR:L-x:E: ADR, L-x:/ 

        Response: FC: SFC-x: ADR: L-x:/ 

Where: IndexObject – Process Data Object (PDO) or 
Service Data Object (SDO) that describes the data. Request: 
the format of request commands: FC – function code; SFC – 
sub-function code; ADR – address; L-x – length or count, x = 
number of bytes of this field; E – The extension of the 
commands. Response: the response format that is optional. For 
the functions of the MODBUS protocol, the answer can be 
built depending on request commands. If the PDO or SDO 
objects have a defined separate area for read and write 
operation, subsections [read] and [write] may be used. “:” - 
fields’ separator (if a field is missing from a MODBUS 
command/ response, only a separator, “/” – terminator is used). 

In the (automatic or manual) configuration process, a file is 
created in order to attach a driver to each fieldbus (a specific 
dynamic library) and an ID and an EDS file to each device 
from the fieldbus. This file is used by the FCM, which sends 
the path to the EDS files of the active devices from the fieldbus 
to the driver. There may be several fieldbuses of the same type 
and more identical devices in one fieldbus. A configuration file 
associated with the server and built on EDS files contains the 
entire tree structure of the information that can be accessed and 
forms the address space of the server. This address space can 
be accessed by the TAO object from the HMI-PCM application 
through the IDL interfaces defined at the end of subsection 
III.B. 

Once the server address space is defined, the server will 
expose this information to the clients, using the interfaces 
defined in IDL (see the end of subsection III.B). The main 
implementing objectives of the server refer mainly to the 
service name, client management, client-associated group 
management, group-associated items management, updating 
groups, reading and writing items, browsing in the address 
space, security information, and QoS. 

The HMI-PCM is developed and implemented as an 
application in C#. Each object (see Fig. 3) is a library which 
exports a class derived from a base object. For the TAO object, 
a wrapper was used to marshall data from C++ to C# (TAO is 
developed for C++ application). The HMI- PCM application is 
developed in C#, as it offers the possibility of rapidly 
developing graphical applications and for productivity reasons. 
The HMI-PCM application is very interesting, allowing the 
communication between servers implemented with different 
technologies. Each server has one or more simulation drivers (a 
client can write or read to simulating some functionalities 
which can read or write by other clients). In addition to their 
role of simulation, these drivers allow the implementation of a 
relay function (gateway) between different types of servers. 
For example, suppose that the HMI-PCM has activated two 
middleware objects, one for OPC UA (data profile) and one of 
TAO type. A TAO user wishes to expose, to TAO clients, the 

nodes of the OPC UA. Firstly, it must create an EDS file for 
the simulation driver for the TAO server with the desired 
objects that are visible from the OPC UA object (the 
compatibility of data types must be ensured). The objects 
exposed by the TAO object based on the EDS file will be 
found in the FCM dictionary of objects. In the HMI-PCM 
client, any item of the OPC UA object (from the ones chosen 
and described in the EDS file from TAO) can be connected to a 
corresponding item exposed by the TAO server based on the 
EDS file for the simulator (read or write - IN or OUT). 

All the TAO clients can read or write properly from/in the 
items exposed by the simulator. There can be any number of 
simulators (depending on the host system resources). This type 
of relay can be attained between any of the middleware objects 
using a simulation driver and its attached EDS file. Connection 
can also be made directly, with the specification that an item 
should be output (or bidirectional) and the other input (or 
bidirectional), and the data types must be compatible. In 
addition, one can connect an intermediate expression object 
which can operate on source value using a mathematical 
expression. 

For low power communication stack, there is the MICRO 
PROFILE and COMPACT PROFILE as part of CORBA/e 
(and it is implemented in TAO), while reliable communications 
and Internet-enabled communications are provided by TAO 
through transport protocols and naming service. 

E. Security 
Security features are presented at different levels of the 

proposed framework. In general, at the fieldbus protocols, 
security features are not provided, because they introduce an 
additional overhead and are non-deterministic components. In 
order to use the FCM component, the server must authenticate 
throughout a unique identification key. In the absence of 
authentication, the exported functions of the FCM module do 
not work correctly. The same thing happens with the fieldbus 
drivers. The current security level of the application is sent to 
the FCM in order to enable/disable the controls from the 
windows of the network manager, the connection manager, and 
from other configuration windows exposed by FCM and 
fieldbus drivers. The server application has an access panel that 
requires a user name and a password in order to view and 
change configuration parameters of the fieldbuses. Users are 
divided into groups, for users, manager, administrators and 
guests, each group having restricted access to the 
functionalities of the server, except for the administrator group. 
The server configuration is stored in an encrypted XML file 
(hidden somewhere in the system). The same vision is applied 
to the HMI-PCM application. 

At the middleware level, in TAO there is the possibility to 
comprise messages (using pluggable ZIOP protocols) and to 
secure the communication (using SSLIOP pluggable protocol 
that is based on SSL). In the original DDS specification, related 
to the security, only the following is specified: “the application 
could attach security credentials via the USER_DATA policy 
that can be used by the remote application to authenticate the 
source”. The new DDS security specification [43] (request for 
proposal) proposes interesting solutions based on Domains 
Secure and Confidential Topics. RTI has a wide range of 
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security solutions such as: domain separation, access control 
and secure bridging; deep packet inspection; data filtering; 
secure operating system; secure transport; improved paradigm 
for secure distributed infrastructure [44]. OpenSplice ensure 
DDS Secure Networking Service and Access Control [45]. For 
OpenDDS, we integrated the SSLIOP (from TAO) through 
Extensible Transport Framework, in order to enable 
confidentiality and authentication. 

OPC DA security for the communication is based on 
DCOM security, OPC. NET has different binding modes and 
types of authentication security modes depending on the type 
of binding (Named piped, TCP, HTTP Basic and HTTP WS) 
more types of authentication are being offered. OPC UA 
contains the philosophy related to the security in the 
specification, namely OPC UA part 2 - Security Model [46]. 
OPC UA is Secure-by-default, encryption enabled, and uses 
advanced certificate handling. 

IV. EXPERIMENTAL RESULTS 
This section presents the tests performed for the proposed 

solution based on TAO (with 3 transport protocols: IIOP, 
SSLIOP, ZIOP) when it is used in a local network. First, the 
bandwidth used by the server based on TAO was compared 
with the one used by the server based on OPC DA, OPC UA 
and OPC.NET. Tests were performed in a network composed 
of eight computers, identical in terms of hardware and 
software, and a switch with 100Mbps Ethernet ports. Each 
computer had an AMD Athlon (tm) 64 X2 Dual Core 
Processor 4200+ 2.21GHz, 1GB of RAM and a Windows 
operating system. On one computer (which will be referred to 
as the server), are executed in turn the data server based on 
OPC DA, OPC UA, OPC.NET,  and the server based on TAO. 
All these servers use the same data provider (a simulator that 
generates random values for items and stores them in the cache 
memory of the server). For the experimental test, we used 
version 6.2.5 for TAO and the IIOP, SSLIOP, and ZIOP 
protocols. On the other computers, the HMI-PCM application 
is executed in turn with TAO, OPC.NET HTTP, OPC.NET 
TCP, OPC UA BIN (data profile), OPC.DA objects connected 
to TAO, OPC.NET HTTP, OPC.NET TCP, OPC UA BIN 
(data profile), and respectively, OPC DA servers. For the TAO 
objects, the IIOP, SSLIOP and ZIOP were used, as transport 
protocols. Clients will make a group/subscription/list (the 
names are specific to the used middleware) that contains 16 
items/nodes whose data type is BYTE. 

With Colasoft Capsa software package, the traffic speed on 
the server computer was measured. It should be noted that 
there is no network traffic generated by other applications (the 
LAN is not connected to the Internet). The software 
architecture of the tests performed is shown in Fig. 4. 

The first test consisted in determining the transfer rate 
when data is updated at a rate of 100ms. The test results are 
shown in Fig. 5. In this figure, we can see that the bandwidth 
occupied when using TAO with IIOP and SSLIOP is higher 
than when using the OPC DA, OPC UA BIN and OPC.NET 
TCP, and smaller than when using the OPC.NET HTTP, but is 
lowest when ZIOP is used as transport protocol. 

 
Fig. 4. The software architecture of the tests performed 

The second test consisted in determining the transfer rate 
when data is updated at a rate of 500ms. The test results are 
shown in Fig. 5. From this figure, we can see that the occupied 
bandwidth when TAO is used is higher than when OPC DA 
and OPC.NET TCP are used, and lower than when OPC.NET 
HTTP or OPC UA BIN is used. Unlike the previous test, the 
bandwidth occupied by TAO is much closer to the bandwidth 
occupied by OPC.NET TCP and OPC DA. 

The third test consisted in determining the transfer rate 
when data is updated at a rate of 1000ms. The test results are 
shown in Fig. 5. As in the previous tests, the same 
approximation trend of the band occupied by TAO with the 
band occupied by OPC DA and OPC.NET TCP can be noticed. 

 
Fig. 5. Bandwidth occupied for a refresh rate of 100ms 

Fig. 6 presents a synthesis of the 3 cases presented so far. 
An approximation trend of the bandwidth occupied by TAO 
with the bandwidth occupied by OPC.DA and OPC .NET TCP 
can be easily noticed. It should be noted that the tests were 
done in a local network, a framework widely used in the 
operation of industrial SCADA applications. 
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Fig. 6. Comparison for the bandwidth occupied 

The proposed framework is designed to provide access to 
data via the Internet, where the response time cannot be 
guaranteed. It is unlikely to apply a refresh rate of 100ms for a 
client to connect to a server through the Internet, and very 
likely to use refresh rates of around 1000ms (in the Internet, 
this refresh rate cannot be guaranteed because the 
communication protocols are best-effort type depending on the 
network load). 

The performances of the application based on TAO IIOP 
are very close to the performances of the applications based on 
OPC DA and OPC.NET TCP at an update rate of around 
1000ms, but OPC DA is based on DCOM technology that 
works in a LAN network and OPC.NET TCP is dependent on 
.NET platform, based on Windows Communication 
Foundation. Furthermore, to use OPC.NET and to get the 
source code, you must be a member of the OPC Foundation. 
One advantage of using the TAO middleware is that it is an 
open source. 

TAO with ZIOP transport protocol is the best because the 
messages are archived, but it does not provide any security 
mechanism. The use of security and encryption of the 
messages with SSLIOP transport protocol (based on SSL) 
introduces an additional overhead of the messages related to 
the IIOP transport protocol, which can be seen in the graphs, 
due to certificate exchanges and the increasing of the message 
size. The same difference can be seen for OPC.UA binary and 
OPC.UA binary with security and encryption of the messages. 
The use of the HTTP protocol leads to a significant increase of 
the messages that can be seen for OPC.NET HTTP and 
OPC.UA HTTP. In the case of the OPC.UA middleware, an 
important traffic generated by the keep alive mechanism 
(observed with Wireshark tool) can be observed. This traffic is 
much lower in the TAO implementation. From Wireshark tool, 
it can be seen that if the encryption or archiving mechanisms 
are not used, the data can easily be identified in the messages. 

Table 1 presents the number of bytes of Ethernet frames 
and TAO for the three transport protocols (IIOP, ZIOP, and 
SSLIOP) sent by the server in order to update a group 
consisting of 1, 2, 4, 8, and 16 items. This information was 
obtained with Wireshark tool. As expected, the smallest frames 
are obtained by activating the ZIOP transport protocol. If the 

messages are small, and the size of the archived message (plus 
archived message header) is higher than the size of the original 
message (with IIOP), then the message is no longer archived 
and it is sent using the IIOP transport protocol. 

TABLE I. THE MESSAGE FOR TAO TRANSPORT PROTOCOLS 

 TAO-IIOP TAO-ZIOP TAO-SSLIOP 
1 items 296B/1 frame 314B/1 frame 351B/1 frame 
2 items 402B/1 frame 324B/1 frame 475B/1 frame 
4 items 674B/1 frame 335B/1 frame 810B/2 frames 
8 items 1174B/1 frame 357B/1 frame 1310/2 frames 

16 items 2236/2 frames 397B/1 frame 2401/3 frames 

From the point of view of the memory footprint, the 
working set for the server with TAO is about 11MB for IIOP, 
increased to about 36MB for ZIOP and reaches about 38MB 
for SSLIOP, while the processor load depends on the refresh 
rate of the items, reaching 8% for a refresh rate of 100ms. On 
the other hand, OPC UA has a working set that varies from 
48MB (without encryption and security) and reaches about 
174MB with encryption and security. The processor load at a 
refresh rate of 100ms is about 50%. This may be due to the 
development mode of the server, which is developed in C# and 
the code is interpreted, while TAO is implemented in C++. 

V. CONCLUSION 
In the rather poor landscape of IIoT architectures, the 

proposed framework can be a starting point, especially since 
efforts are being made to implement and to perform a practical 
demonstration of the proposed functionalities. 

This model was referred as framework and not as 
architecture because it is concerned with the IIoT device 
platform that transport the specific messages (little data) and 
which, through the DDS objects, can connect to the IoT 
services and applications (big data). 

The framework enjoys several powerful points. First, it is 
based on mature and very mature standards and it can say that 
it is highly standardised. At device level, a unified method to 
describe the devices based on the EDS specification from CiA 
was defined. It was extended, among others, for the MODBUS 
protocol. Currently, there are many MODBUS TCP/IP - other 
protocol gateways which have their own mechanism of 
describing the devices; it can be depicted by the EDS modified 
for MODBUS. This solution resolved the challenge related on 
the large number of fieldbuses. The standardised interface from 
the lower level of FCM is scalable, allowing the integration of 
drivers specific for other fieldbus protocols without 
recompiling the FCM module and the server. The presence of 
the objects' dictionary, which creates the server address space, 
is the reason for the decoupling (virtualisation) between server 
and the complexity of fieldbuses, and a unified way of 
describing them. The configuration interfaces of the fieldbuses 
have a semi-automatic behaviour (drivers identify the field 
devices and the display on the server objects which can be 
exposed, and the server automatically restores the last saved 
configuration). 

At the middleware level, several technologies were selected 
and implemented (OPC, TAO, and DDS) which enable a 
proper adaptation to the specific application. The PCM-HMI 
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application allows easy exchange of information between 
servers and, by implementing the DDS objects; it allows the 
publisher / subscriber a type of communication between PCM- 
HMI applications on the same computer, in the local networks 
or on the Internet. This solution resolved the challenge related 
on middleware choice and separation of the industrial activity. 

Sensing the weaknesses of the framework, the authors 
intend: to clearly define the vertical planes such as security, 
timing and management; to improve support for automatic 
configuration of fieldbuses; to directly connect the DDS object 
to the FCM in order to retrieve data from fieldbuses through 
the objects' dictionary (there is a risk of creating a security 
breach, because the same object has direct access to process 
data and may publish the data acquired from the sensors and 
transducers on the Internet and can take commands from the 
Internet for the actuators); to be embedded, even partially, 
based on a new profile, in TAO and DDS, the address space 
concept and the information model from OPC UA; to develop 
tools for the easy configuration of DDS objects; to develop 
OPC UA security concepts in OpenDDS. 

ACKNOWLEDGMENT 
This work was partially supported from the project 

“Integrated Centre for research, development and innovation in 
Advanced Materials, Nanotechnologies, and Distributed 
Systems for fabrication and control”, Contract No. 
671/09.04.2015, Sectoral Operational Program for Increase of 
the Economic Competitiveness co-funded from the European 
Regional Development Fund. 

REFERENCES 
[1] K. Ashton, “Internet of Things,” RFID Journal, June 22 2009. 
[2] Qazi Mamoon Ashraf, Mohamed Hadi Habaebi, „Autonomic schemes 

for threat mitigation in Internet of Things,” Journal of Network and 
Computer Applications, Volume 49, March 2015, Pages 112-127, ISSN 
1084-8045, http://dx.doi.org/10.1016/j.jnca.2014.11.011. 

[3] R. van Kranenburg, The Internet of Things: A Critique of Ambient 
Technology and the All-Seeing Network of RFID. Institute of Network 
Cultures, 2008 

[4] Jordán Pascual Espada, Ronald R. Yager, Bin Guo, Internet of things: 
Smart things network and communication, Journal of Network and 
Computer Applications, Volume 42, June 2014, Pages 118-119, ISSN 
1084-8045, http://dx.doi.org/10.1016/j.jnca.2014.03.003. 

[5] Scott MacDonald, Whitney Rockley, McRock CAPITAL, The Industrial 
Internet of THINGS – IIoT Report, 2014.  

[6] Roselli, L.; Mariotti, C.; Mezzanotte, P.; Alimenti, F.; Orecchini, G.; 
Virili, M.; Carvalho, N.B., "Review of the present technologies 
concurrently contributing to the implementation of the Internet of 
Things (IoT) paradigm: RFID, Green Electronics, WPT and Energy 
Harvesting," Wireless Sensors and Sensor Networks (WiSNet), 2015 
IEEE Topical Conference on , vol., no., pp.1,3, 25-28 Jan. 2015. 

[7] Bolic, M.; Rostamian, M.; Djuric, P.M., "Proximity Detection with 
RFID: A Step Toward the Internet of Things," Pervasive Computing, 
IEEE , vol.14, no.2, pp.70,76, Apr.-June 2015. 

[8] Eugster, P.; Sundaram, V.; Xiangyu Zhang, "Debugging the Internet of 
Things: The Case of Wireless Sensor Networks," Software, IEEE, 
vol.32, no.1, pp.38,49, Jan.-Feb. 2015.  

[9] Senouci, Mustapha Reda, et al. "WSNs deployment framework based on 
the theory of belief functions." Computer Networks 88 (2015): 12-26.. 

[10]  Palattella, M.R.; Accettura, N.; Vilajosana, X.; Watteyne, T.; Grieco, 
L.A.; Boggia, G.; Dohler, M., "Standardized Protocol Stack for the 
Internet of (Important) Things," Communications Surveys & Tutorials, 
IEEE , vol.15, no.3, pp.1389,1406, Third Quarter 2013, doi: 
10.1109/SURV.2012.111412.00158. 

[11] Sanchez, Luis, et al. "SmartSantander: IoT experimentation over a smart 
city testbed." Computer Networks 61 (2014): 217-238. 

[12] Jian An, Xiaolin Gui, Wendong Zhang, Jinhua Jiang, Jianwei Yang, 
Research on social relations cognitive model of mobile nodes in Internet 
of Things, Journal of Network and Computer Applications, Volume 36, 
Issue 2, March 2013, Pages 799-810, ISSN 1084-8045, 
http://dx.doi.org/10.1016/j.jnca.2012.12.004. 

[13] Zheng Yan, Peng Zhang, Athanasios V. Vasilakos, A survey on trust 
management for Internet of Things, Journal of Network and Computer 
Applications, Volume 42, June 2014, Pages 120-134, ISSN 1084-8045, 
http://dx.doi.org/10.1016/j.jnca.2014.01.014. 

[14] Satyanarayanan, M.; Simoens, P.; Yu Xiao; Pillai, P.; Zhuo Chen; 
Kiryong Ha; Wenlu Hu; Amos, B., "Edge Analytics in the Internet of 
Things," Pervasive Computing, IEEE , vol.14, no.2, pp.24,31, Apr.-June 
2015, doi: 10.1109/MPRV.2015.32 

[15] Therese Sullivan, The Cutting-Edge of IoT, How does the IoT really 
change the future of commercial building operations?, November 
2014,AutomatedBuildings.com, November 2014, 
http://www.automatedbuildings.com/news/nov14/articles/buildingcontex
t/141030095606bldgcntx.html  

[16] Akram Hakiri, Pascal Berthoua, Aniruddha Gokhale, Douglas C. 
Schmidt, Gayraud Thierry, Supporting End-to-end Scalability and Real-
time Event Dissemination in the OMG Data Distribution Service over 
Wide Area Networks , Elsevier Journal of Systems and Software, 2013.  

[17] D. C. Schmidt, A. Corsaro, and H. V. Hag. 2008. Addressing the 
challenges of tactical information management in net-centric systems 
with DDS. Journal of Defense Software Engineering, 24–29.  

[18] OMG. 2007. Data Distribution Service for Real-Time Systems. v1.2. 
[19] http://www.omg.org/spec/DDS/1.2/ 
[20] Li Da Xu, Wu He, Shancang Li, Internet of Things in Industries: A 

Survey, DOI 10.1109/TII.2014.2300753, IEEE Transactions on 
Industrial Informatics, 2014. 

[21]  Q. Wei, S. Zhu, C. Du, “Study on key technologies of Internet of 
Things perceiving mine,” Procedia Engineering, vol.26, pp.2326-2333, 
2011. 

[22] Bo Cheng, Xin Cheng, Junliang Chen,  Lightweight monitoring and 
control system for coal mine safety using REST style,  ISA 
Transactions, In Press, Corrected Proof, Available online 8 August 
2014. 

[23] ACATECH – Recommandations for implementing the strategic 
initiative INDUSTRIE 4.0. April 2013. 
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Webs
ite/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_rep
ort__Industrie_4.0_accessible.pdf 

[24] IoT@Work, https://www.iot-at-work.eu/ (Accessed April 2016). 
[25] Herman Storey (co - chair ISA 100), Rick Bullota and Daniel Drolet. 

The Industrial Internet of Things,  http://www.csemag.com/single-
article/the-industrial-internet-of-things/c98837a0efec387df9fc14c2d 
e0a3b2f .html (Accessed April 2016). 

[26] Ovidiu Vermesan, Peter Friess, Internet of Things: Converging 
Technologies for Smart Environments and Integrated Ecosystems, 
pp158, ISBN: 978-87-92982-73-5, River Publishers, 2013.  

[27] International Telecommunications Union, ITU-T Y.2060, Overview of 
the Internet of things, 2012. 

[28] OMG, Data Distribution Service (DDS) http://www.omg.org/hot-
topics/dds.htm (Accessed April 2016). 

[29] Vasile-Gheorghita Gaitan, Nicoleta-Cristina Gaitan, Ioan Ungurean, A 
flexible acquisition cycle for incompletely defined fieldbus protocols, 
ISA Transaction journal, Elsevier, Volume 53, Issue 3, pp. 776-786, 
May 2014. 

[30] Yucel Cetinceviz, Ramazan Bayindir, Design and implementation of an 
Internet based effective controlling and monitoring system with wireless 
fieldbus communications technologies for process automation—An 
experimental study,  ISA Transactions journal, Elsevier, Volume 51, 
Issue 3Pages 461–470, May 2012. 

[31] H. Perez, J.J. Gutierrez, "A survey on Standards for real-time 
distribution middleware" Journal ACM Computing Surveys, vol. 46, 
issue 4, March 2014, article no.49. 

40 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 7, No. 9, 2016 

[32] J. Bard and V. J. Kovarik. 2007. Software Defined Radio: The Software 
Communications Architecture. Wiley-Blackwell. ISBN: 0-47086-518-0. 

[33] M. Amoretti, S. Caselli, and M. Reggiani. 2006. Designing distributed, 
component-based systems for industrial robotic applications. In 
Industrial Robotics: Programming, Simulation and Applications, Low 
Kin Huat (Ed.). ISBN: 3-86611-286-6, InTech, DOI:10.5772/4892. 

[34] OMG. 2012. Corba Core Specification. v3.3. 
http://www.omg.org/spec/CORBA/3.3/, or 
http://www.omg.org/spec/ZIOP/ (Accessed April 2016). 

[35] OMG. 2005. Realtime Corba Specification. v1.2. 
http://www.omg.org/spec/RT/1.2/ (Accessed April 2016). 

[36] D. C. Schmidt. 2005. TAO Developer’s Guide: Building a Standard in 
Performance. Object Computing, Inc.  

[37] M. Ryll and S Ratchev. 2008. ”Application of the data distribution 
service for flexible manufacturing automation.” International Journal of 
Aerospace and Mechanical Engineering 2, 3, 193–200. 

[38] M. Gillen, J. Loyall, K. Z. Haigh, R. Walsh, C. Partridge, G. Lauer, and 
T. Strayer. 2012. Information dissemination in disadvantaged wireless 
communications using a data dissemination service and content data 
network. In Proceedings of the SPIE Conference on Defense 
Transformation and Net-Centric Systems, Vol. 8405. 

 
[39] OMG. 2009. The Real-Time Publish-Subscribe Wire Protocol. DDS 

interoperability wire protocol specification. v2.1. 
http://www.omg.org/spec/DDSI/2.1/ 

[40] OMG. 2012. Extensible and Dynamic Topic Types for DDS. v1.0. 
http://www.omg.org/spec/DDS-XTypes/1.0/ (Accessed April 2016). 

[41] H. P´erez, J. J. Guti´errez, and M. Harbour. 2012. Adapting the end-to-
end flow model for distributed Ada to the Ravenscar profile. Ada Letters 
33, 1, 53–63. 

[42] http://www.omg.org/spec/DAIS/1.1/PDF (Accessed April 2016). 
[43] http://www.omg.org/cgi-bin/doc?omg/11-08-01.pdf (Accessed April 

2016). 
[44] https://www.rti.com/docs/RTI_Security_Solutions.pdf (Accessed April 

2016). 
[45] http://www.prismtech.com/opensplice/resources/documentation, 

OpenSplice_SecurityConfiguration_Guide_A131. Pdf (Accessed April 
2016). 

[46] https://opcfoundation.org/developer-tools/specifications-unified-
architecture/part-2-security-model/ (Accessed April 2016). 

 

41 | P a g e  
www.ijacsa.thesai.org 


	I. Introduction
	II. Related Work of the Industrial Iot Architecture
	III. The Iot Framework Proposed for Industry
	A. The motivation of the proposed framework
	B. Server module
	C. HMI-PCM – Human Machine Interface -Process Control and Monitoring
	D. Implementation considerations
	E. Security

	IV. Experimental Results
	V. Conclusion
	Acknowledgment
	References


