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Abstract—In this paper an improved nonlinear state error 

feedback controller (INLSEF) has been proposed for perfect 

reference tracking and minimum control energy. It consists of a 

nonlinear tracking differentiator together with nonlinear 

combinations of the error signal.  The tracking differentiator 

generates a set of reference profile for the input signal, which is 

the signal itself in addition to its derivatives. On the other hand, 

the 12-parameters nonlinear combinations of the error signal 

make the INLSEF controller can handles with time-varying and 

system’s nonlinearity. Digital simulation studies have been 

conducted for the proposed controller and compared with several 

works from literature survey on two case studies, mass-spring-

damper which is a very nonlinear system and nonlinear ball and 

beam systems.  The parameters of the nonlinear combination of 

the error signal are tuned to satisfy the optimality condition by 

minimizing the OPI performance index defined in this work. 

From the simulations results one can conclude that the proposed 

INLSEF controller performance is better than that of its 

counterpart in terms of speed and control energy and minimum 

error. Also, the results showed that the proposed controller is 

effectively enhancing the stability and performance of the closed 

loop system. 

Keywords—tracking differentiator; state error feedback; 

Lyapunov function; asymptotic stability; nonlinear PID 

I. INTRODUCTION 

The proportional-integral-derivative (PID) control 
algorithm has been being widely used in many industrial 
process control applications. Due to its simple structure, easy 
tuning and effectiveness, this technology has been being the 
tool of choice for so long among practicing engineers; Today, 
PID control algorithm is used in over 95% of industrial 
applications. In addition to PID, classical control theory 
provided additional control blocks such as lead and lag 
compensators that further enhanced the performance of this 
error-based control law. 

Although its popularity and long term, applied experience 
shows that the PID technology itself has limitations and 
shortages as follows, The regular PID control action:    

      ∫       
  

  
 is based on linear combination of the 

current (P), past (I) and future (D) of the error. The linear 
combination is not the best one which corresponds to speedily 
of system response. Secondly, the differential part of the 
control signal is sensitive to noise. Last but not the least, the 
input signal e(t) is not smoothly even non-continuous. It is not 
reasonable that the error e(t) is directly used without any pre-

processing in PID algorithm.  Finally, the integral part of u(t) is 
used for eliminating the steady error. But at the same time, it's 
probably leads to instability of system. 

The nonlinear PID controllers are classified into two broad 
classes according to how the state is affecting the gain. In the 
first class, the controller gain is directly related to the 
magnitude of the state, and the second class uses the phase of 
the state as the parameter to modify the gain of these 
controllers. 

Several applications for NPID controller includes: control 
of quad-rotor UAV [1], twin rotor MIMO system [2], motion 
systems [3], and pneumatic actuator system [4]. The Marroquin 
nonlinear controller in [5] was experimentally demonstrated to 
give better performance than standard linear control. Han in [6] 
proposed a control law which could improve the dynamic 
response velocity, veracity, and robustness of the controlled 
plant. A nonlinear algorithm was employed in [7] by Huang to 
realize the nonlinear control for the purpose of enhancing 
transient stability of the model to be controlled. A nonlinear 
controller is suggested by Su in 2005 which enhances the 
performance of the standard linear PID controller [8]. The PID 
controllers are also combined with fuzzy logic [9-12], neural 
networks [13-16], or implemented based on fractional order 
[17-19]. 

This paper proposes a nonlinear controller known as 
Improved nonlinear state error feedback controller. The 
proposed controller derived by combining the nonlinear gains 
and the PID with a modified structure that includes tracking 
differentiators. A nonlinear tracking differentiator is used to 
estimate the plant states, which are required by the nonlinear 
controllers. The nonlinear tracking differentiator is chosen to 
attain a high robustness against noise and generate a high-
quality differential signal. The controllers has been simulated 
and tested on two case studies (nonlinear  mass-spring-damper 
and nonlinear ball and beam) in order to investigate their 
performance in terms of tracking. For the purpose of 
comparison, the same simulations and experiments are 
repeated for both types of controller subject to the same data 
applied to the set-point. 

The paper is organized as follows: section II includes the 
problem statement. Next, in section III a nonlinear  controller is 
presentation. In section IV, the improved nonlinear state error 
feedback  controller  structure and mathematical model is 
completely described, which is followed by a bunch of tested 
nonlinear SISO plants in section V. A numerical simulation 
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and results discussion example in section VI. Conclusion and 
remarks are given in section VII. 

II. PROBLEM STATEMENT 

Consider the following nonlinear control plant model: 

      (   ̇         )        

    

where     is the state vector;   is the measured output 
variable;   is the scalar control input. The control problem is to 
provide asymptotical stability of the closed system. In addition, 
it is necessary to provide the desired quality of the transient 
processes at the output        of system (1) with minimum 
control effort and reduction in the chattering phenomenon. 

III. THE NONLINEAR STATE FEEDBACK CONTROLLER 

The nonlinear PID (NPID) control has found two broad 
classes of applications: 

1) Nonlinear systems, where NPID control is used to 

accommodate the nonlinearity, usually to achieve consistent 

response across a range of conditions. 

2) Linear systems, where NPID control is used to achieve 

performance not achievable by a linear PID control, such as 

increased damping, reduced rise time for step or rapid inputs, 

improved tracking accuracy [8]. 
In this paper, an INLSEF control method with a tracker of 

differential (TD) is proposed to obtain a low-noise and precise 
derivative of a specific nonlinear input signal. 

With respect to the shortcomings mentioned previously, the 
possible solutions could be as follows: 

1) Tracking differentiator (TD) could be designed so that 

de/dt would be obtained in a precise way. 

2) Appropriate nonlinear control algorithm could be 

applied [7]. 
The proposed control scheme is shown in Figure 1 and is 

described in more details in the subsequent sections. 

 
Fig. 1. The nonlinear state error feedback controller 

Lemmas 1: 

Consider the observable n-th order SISO nonlinear control 
system in (1) With PD controller,           ̇ , which is 

given in Fig. 2 (a). If the system is linearizable (in the sense of 
Taylor approximation) then the linear control law u could be 

written in the general form         as shown in figure 2 (b). 
Such that   is sector bounded and satisfy  (0) = 0. 

 
(a) 

 
(b) 

Fig. 2. The SISO system in lemma 1, (a) Linear combination control law, (b) 

Nonlinear combinational control law 

Proof: 

Without loss the generality; consider the following second 
order nonlinear system 

 ̈       ̇        

    
Because the system is linearizable then g(x) = b; where b is 

2×1 vector with constant entries. The control law with the 
conventional PD controller has the following formula 

         ̇  

where e = r-y. By considering        ̇     , then 
system in (1) can be represented as: 

 ̇     

 ̇              

     
Also, consider the general formula for a finite time 

convergent of TD: 

       
|    |      ,              

|    ̇|     

Then   

          e = z1- x1  ,        ̇   ̇   ̇  ,         ̇        

where    is the final time. Finally, the control law takes the 

following form: 

                         

This formula can be expanded for the n-th order systems to 
take the following form: 

  ∑         

 

   

 ∑        

 

   

 

    (1) 
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Where k1 = kp, k2 = kd and ki for i > 2 is the weighting for the 
higher derivatives. Then the linear combination can be 
generalized to nonlinear form: 

              

with Ψ(0) = 0 since u(0) = kp(0)+kd(0) = 0 
Definition: 

A function φ : R → R is said to be in sector [kl, ku] if for all 
q ∈ R, p = φ(q) lies between kl and ku 

Theorem 1: 

Recall the system in lemma (1). The system is stable with 
the nonlinear controller      if Ψ is sector bounded and odd 
function. 

Proof: 

Consider the following n-th order system which is 
controlled by the controller in lemma (1) 

      (   ̇         )     

It is stable if the matrix         is stable. 

       (   ̇         )        
The linearized state-space system is given as  

        ̇           

For r = 0 then            

               

           ̇            

           ̇           
Choose a candidate Lyapunov function as 

V(x) = 1/2 x T x 
Then, 

  ̇       ̇               
  ̇                         

It is clear that   ̇     will be negative definite for stable 
    . 

IV. THE IMPROVED NONLINEAR STATE ERROR FEEDBACK 

(INLSEF) CONTROLLER 

1) The Improved Nonlinear Tracking Differentiator 

(INTD) 
The improved nonlinear tracking differentiator based on the 

hyperbolic tangent function is given as follows: 

 ̇    

 ̇         (
          

 
)     

 

where z1 tracking the input v, and z2 tracking the derivative 
of input v. the parameters             are the appropriate 
design parameters, where                       
[20]. 

2) The Nonlinear Combination 
The nonlinear algorithm using sign and exponential 

functions has been developed as follows: 

                                                  (2) 

Where e  is n × 1 state error vector, defined as:  

   [                  ]  
e

(i)
 is the i-th derivative of the state error, defined as:  

                
k(e) is the nonlinear gain function, defined as: 

     

[
 
 
 
 
     

 
     

 
     ]

 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 

(    
   

     (    
   

 
 
)

)

 

(    
   

     (    
     

 
 
)

)

 

(    
   

     (    
     

 
 
)

)

]
 
 
 
 
 
 
 
 
 
 
 

           (3) 

The coefficients    ,    , and    are positive constants. The 
benefit of the nonlinear gain term       is to make the 

nonlinear controller much more sensitive to small. When         

= 0,                , while as         goes large enough 

           For values of          in between, The nonlinear 
gain       term is bounded in the sector [ ki1, ki1+ki2/2], see 
Fig. 3.  The function  f(e) is the error function, defined as: 

     

[|    |
  

        |    |
  
    (    ) |      |

  
          ]

 
    

(4) 

 
(a) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 1, 2017 

315 | P a g e  

www.ijacsa.thesai.org 

 
(b) 

Fig. 3. Characteristics of the nonlinear gain function k(e) for n=1, (a) 

              (b)            

Equation (4) shows significant features in the nonlinear 
term | |   . For     << 1, the term | |   is rapidly switching its 
state as shown in Fig. 4.a. This feature makes the error function 
f(e) is sensitive for small error values (as shown below). As    
goes beyond 1, the nonlinear term becomes less sensitive for 
small variations in e. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Characteristics of the nonlinear error function  f(e) 

              (b)            (c)           (d)            

The integral action              is introduced to eliminate 

the steady-state error. Sometimes it causes saturation problems 
(known as integrator windup) during transient response. On the 
other hand, when the error is small, the integral 
action              has to take large values in order to eliminate 

steady-state error. For these reasons, the integral action should 
be designed carefully to act in both situations and to change 
gradually between minimum and maximum values. To achieve 
the above requirements the following form of the integral 
nonlinear action is used: 

             |∫     |      ∫       
 

     (  ∫      
 
)
     (5) 

The coefficients   ,k, and   are constants. Figure 5 shows 
the characteristics of the proposed integral control action. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 1, 2017 

316 | P a g e  

www.ijacsa.thesai.org 

 
(a) 

 
(b) 

Fig. 5. Characteristics of the integral action,              

      ,     (b)     ,    

 
Fig. 6. The characteristic of the control signal u with the following values of 

the parameters:  k11=k12=20, k12=k22=5, α1=α2=0.5, μ1=25,μ2=15,δ=3 

The control signal u can be limited using the nonlinear 

hyperbolic function tanh(.) in the form           
       

 
 , 

where         is defined in (2). It has the following features: 

1) The idea is that any real number [-∞, ∞] is mapped to a 

number between [-δ, δ]. 

2)  The tanh(.) function is symmetric about the origin, only 

zero-valued inputs are mapped to zero outputs. 

3) The control action u is limited via mapping but not 

clipped.  Therefore, no strong harmonics in the high-frequency 

range. 
Figure 6 shows the control signal u applied to the 

controlled plant by considering the limiter stage. 

V. NONLINEAR SYSTEMS MODELING AND STABILITY TEST 

OF THE CLOSED-LOOP SYSTEM 

1) The Nonlinear Mass-Spring-Damper Model 
A simple nonlinear mass-spring-damper (MSD) mechanical 

system as shown in Figure 7. It is assumed that the stiffness 
coefficient of the spring, the damping coefficient of the 
damper, and the input term have nonlinearity or uncertainty 
[21, 22]: 

  ̈       ̇          ̇                                       (6) 

 

Fig. 7. The nonlinear mass spring damper model 

where M is the mass and U is the input force,      is the 
nonlinear or uncertain term with respect to the spring,      ̇ is 
the nonlinear or uncertain term with respect to the damper, and 
   ̇  is the nonlinear term with respect to the input term. 
Assume that      ̇           ̇

               
 , 

and    ̇       ̇
 , and furthermore, assume that  ∈

[    ]         ̇ ∈ [     ]           . 

The above parameters are set as follows: 

                                                      
                            bThen, equation (6) can 

be rewritten as follows:   

 ̈       ̇                                        (7) 
The state space representation of the nonlinear mass spring 

dumper model is: 

 ̇     

 ̇        
                 

                         (8) 

     
The stability of the nonlinear mass spring dumper system 

can be proven according to theory A.1 

Where      ,         ,           ,        , 

      , 

    ,and      
Then, the candidate Lyapunov function: 
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Which leads to   ̇                       
  

        
  

For then the system to be globally asymptotically stable( ̇ 
is negative definite) 

Let          Then              

and          

2) The Nonlinear Beam and Ball Model 
The dynamic model of the beam and ball (BB) is 

considered, which is as follows: 

(
 

  
  )  ̈            ̇    

where α is the incline angle of the beam, g is acceleration 
of gravity, m is the ball‟s mass, J is the ball‟s moment of 
inertia, γ represents the ball‟s position on the beam, R is the 
ball‟s radius. Assume that the movement of the ball is roll, and 
the friction is neglected. θ is the angle of the gear as well as the 
control input u. The state space representation of the model is: 

 ̇     

 ̇  
 

(
 

    )
             ̇

   

  
 

 
  

     

 
The model state space representation can be linearized near 

the zero angle and the following equation is obtained: 

let   
    

 

 
 

(
 

    )
 , then 

 ̇     

 ̇     

 
The proposed control law in this paper is given by: 

                     

Then, the simplified state space representation of the closed 
loop system is given by: 

 ̇     

 ̇                         
The candidate Lyapunov function is:  

      
 

 
  

  
 

 
  

  

The rate of change of      along the trajectory of (8) 

 ̇       ̇     ̇  

 ̇                                 

 ̇    [    ] [
  

                
] *

  

  
+       

Where     [    ] and   [
  

                
] 

The characteristic equation of P can be defined as: 

        |    |    

Then, 

 |*
  
  

+  [
  

                
]|    

                                 
For asymptotically stable system, the following conditions 

must satisfy: 

         and          

VI. NUMERICAL SIMULATION 

The numerical simulations are done by using 
MATLAB®/Simulink® ODE45 solver for the models with 
continuous states as shown in Figure 8. This Runge-Kutta 
ODE45 solver is a fifth-order method that performs a fourth-
order estimate of the error.  

(a) 

(10) 

(12) 

(11) 
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(b) 

Fig. 8. The Simulink® models for the INLSEF controller for, (a) the nonlinear mass spring dumper plant, (b) the beam and ball plant 

The parameters of the beam and ball model and the 
improved tracking differentiator are listed in tables 1and 2, 
respectively. This numerical simulations include comparing the 
proposed INSEF controller, with a group of five different 
controllers described in Table 3. The parameters of the  
controllers to be simulated in this work are listed in tables 4-9. 
Fig. 9 shows the simulated responses for the output signal y(t) 
and the control input signal u(t) for the six controllers include 
the proposed one for the nonlinear Mass-Spring-Damper. The 
same comparison results are obtained for the nonlinear Ball-
and-Beam as shown in Fig. 10. The results (including the 
performance indices defined in table 10) from the numerical 
simulation of the controlled model are shown in tables 11,12. 

TABLE I. THE PARAMETERS OF THE BEAM AND BALL MODEL 

Parameter Value 

  0.1110 

  0.0150 

  -9.8000 

  1.0000 

  0.0300 

      

 
 

TABLE II. THE PARAMETERS OF THE ITD MODEL 

parameter Value for the MSD Value for the BB 

  0.9789 1.9778 

  5.5872 2.6256 

  8.3864 3.3667 

  26.5005 3.3796 

TABLE III. THE TESTED AND THE PROPOSED CONTROLLERS 

Controller 

Label 

Control Law 

Han[6][23][24] 

                        ̇       

      (∫         ) 

           {

 

    
| |   

| |        | |   
 

 

Huang[7] [25] 

     
             ̇

        ̇ 

    ∫     
  

    (∫    ) 

 

Linear          ̇    ∫     

Marroquin[5] 
         | |          | ̇|  ̇

   (    |∫    |)∫     

Su [8] [4] 

                 ̇    ∫         

     
          

 
 

  {
              | |      

          | |      
          

INLSEF 

                          

   (    
   

          
   

) | |          

   (    
   

           ̇
  

) | ̇|        ̇  

           

 
  

         ∫    
 
  
|∫    |

  

     ∫      
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TABLE IV.  PARAMETERS FOR HAN CONTROLLER 

Parameter Value for the MSD Value for the BB 

δ1 0.0486 0.6136 

α1 0.1698 0.35946 

β1 0.7310 0.2816 

δ2 0.1029 0.1709 

α2 0.0192 1.8072 

β2 0.7951 1.10563 

δ3 0.9062 Not Available 

α3 1.4548 Not Available 

β0 0.0675 Not Available 

TABLE V. PARAMETERS FOR HUANG CONTROLLER 

Parameter Value for the MSD Value for the BB 

   0.7426 0.6553 

   1.0001 0.1723 

   0.8100 0.7933 

   1.9962 1.7724 

   1.8388 Not Available 

   1.0643 Not Available 

TABLE VI. PARAMETERS FOR THE LINEAR CONTROLLER 

Parameter Value for the MSD Value for the BB 

Kp 5.9702 1.37670 
Kd 2.8908 3.9704 
Ki 0.3990 Not Available 

TABLE VII. PARAMETERS FOR MARROQUIN CONTROLLER 

Parameter Value for the MSD Value for the BB 

b0 0.0161 0.0548 
K0 5.8419 1.3482 
b1 0.0182 0.0633 
K1 2.7905 3.8506 
b2 0.0367 Not Available 
K2 0.3114 Not Available 

TABLE VIII.  PARAMETERS FOR SU CONTROLLER 

Parameter Value for the MSD Value for the BB 

K0 0.0424 0.1112 
Kp 6.7315 0.0032 
Kd 3.0049 3.1001 
Ki 1.7583 Not Available 

emax 4.0040 0.1884 

TABLE IX. PARAMETERS FOR INSEF CONTROLLER 

Parameter Value for the MSD Value for the BB 

k11 14.3805 2.2772 
k12 3.0109 1.5979 
k21 7.3156 2.7004 
k22 0.9606 1.5868 
k31 7.1760 Not Available 
δ 0.7999 0.5072 
   3.5365 2.5266 
   3.8318 0.2970 
   4.1307 Not Available 
   0.8573 1.4245 
   0.9618 0.9303 
   2.2723 Not Available 

 
(a) 

 
(b) 

Fig. 9. The time response for 0.1u(t) reference input applied to the closed 

loop system for the nonlinear mass spring dumper plant, (a) The  output signal  

(b) The control signal 

 
(a) 
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 (b) 

Fig. 10. The time response for 0.2u(t) reference input applied to the closed 

loop system for the nonlinear beam and ball plant, (a) The  output signal  (b) 

The control signal 

TABLE X. THE MATHEMATICAL REPRESENTATION OF THE CALCULATED 

PERFORMANCE INDICES 

Performance 

Index 

Description Mathematical 

Representation 

ITAE Integrated time absolute 
error ∫  |    |

  

 

    

USQR Controller energy 
∫      

  

 

    

UABS Integrated absolute of 
the control signal ∫ |    |

  

 

    

*tf is the final time of simulation. 

 

The objective performance index (OPI) is a quantitative 
measure of the performance of a system and is chosen so that 
emphasis is given to the important system specifications. The 
OPI is represented in this work as: 

       
    

  

    
    

  

    
    

  

 

Where       ,           ,               , 
and        

For the nonlinear mass spring dumper, let the initial value 
of the internal states of the tracking differentiator are zeros. At  
t = 0 the error     is equal to 0.1. Because of the delay 
inherited by the integrators of the tracking [20], the tracking 
differentiator tracks the input signal and rises up for a short 
time (from 0 to 0.675 s). The large error value e1=e=z1-x1 
causes a very large positive controller signal   ,because of the 
gain function k(e1) with the large values of the gain parameters 
(k11, k12) and error function f(e1) with the parameter α less than 
1.The same behavior for the error signal e2. This control signal 
        is limited by the tanh(.) function stage to the maximum  
positive output which is  equal to the value of the parameter δ. 
The controller signal u forces the plant to achieve a good jump 
to approach the required set point (0.1m). After the zero 
crossing point from positive to negative values of e2= ̇, the 
relatively large negative and sharp positive slop control signal 
u2 reduce the overshoot and bring the plant output back to the 
predetermined set point and stay there fast which in turn 
reduces the settling time. 

 

 

 

TABLE XI. THE NUMERICAL SIMULATION RESULTS FOR THE NONLINEAR MASS SPRING DUMPER PLANT 

 Han 

Controller 

Huang 

Controller 

linear Controller Marroquin 

Controller 

Su 

Controller 

INSEF 

ITAE 0.0138 0.0116 0.0528 0.0566 0.0549 0.0108 
USQR 0.2926 0.4927 1.0377 0.9957 1.1524 0.1930 
UABS 0.4484 0.5019 0.7909 0.7827 0.8503 0.3845 
OPI 1.8615 2.1814 6.0353 6.1678 6.4507 1.4161 

TABLE XII. THE NUMERICAL SIMULATION RESULTS FOR THE BEAM AND BALL PLANT 

 Han 

Controller 

Huang 

Controller 

linear Controller Marroquin 

Controller 

Su 

Controller 

INSEF 

ITAE 0.3930 0.3749 0.9804 1.0180 0.4132 0.3345 
USQR 0.5846 0.4043 1.4101 1.3597 0.6277 0.2949 
UABS 1.1911 1.0443 1.8805 1.8649 1.1811 0.9632 
OPI 25.9351 24.3483 63.5226 65.6649 27.2281 21.6197 
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(a) 

 
(b) 

 
(c) 

Fig. 11. The components of the control signal. (a)The nonlinear gain functin, 

k1(e1)   (b) The nonlinear gain functin, k2(e2), (c) The control action ,u 

The proposed nonlinearities stated in this paper and 
included in the proposed INLSEF controller lead to an 
improvement on the performance of the classical state 
feedback controller, where the OPI of the proposed controller 
is approximately reduced by 71.2% as compared to the 
classical linear PID controller for both tested models. The 
performance indices of the proposed controller are near to 
indices values for both Han [6][23][24] and Huange [7][25] 
controllers. This closeness is due to the common term  
| |         included in the structure of these controllers. 
Moreover, the proposed controller further reduces the values of 

the performance indices  because of the nonlinear gain function 
k(e), which enhances the transient behavior of the system 
response.  The proposed INLSEF shows a significant reduction 
in the energy relative to all other controllers. The energy saving 
feature can be noticed from the USQR  performance index. 
This decrease in the energy is associated with the tanh(.) 
limiting function  in the proposed controller. 

VII. CONCLUSION 

In this paper an improvement has been introduced to the 
behavior of the traditional PID controller by suggesting an 
improved nonlinear state error feedback controller (INLSEF) 
which consists of a sector-bounded nonlinear gain function, a 
nonlinear tracking differentiators, and the linear PID control 
structure.  The proposed nonlinear controller has been tested on 
two nonlinear models, the Mass-spring, and  Ball-and-Beam 
models. A precise tracking differentiator has been designed to 
produce an accurate differential signal in the existence of noise. 
The INLSEF controller shows a minimum ITAE index among 
other nonlinear controllers selected from literature. The 
INLSEF controller shows a fast and smooth output in response 
to the set point reference. Additionally, it satisfies the time 
domain specifications. To avoid actuator saturation and to 
reduce the energy of the control signal, a mapping via 
hyperbolic function has been introduced which acts as a limiter 
for the control signal, this is indicated from the tables of 
comparisons by adopting the indices  USQR and UABS as 
measures.  By adopting Lyapunov technique, the stability of 
the closed-loop system with the new INLSEF controller has 
been tested and verified for both models.  The results were 
produced by the numerical simulation show that the proposed 
controller improves the transient response and the stability of 
the selected models. Further work will introduce an 
optimization tool as an addition for design of the suggested 
INLSEF controller. 

APPENDIX A 

Theory A.1: 

  Consider the control system, which is represented by the 
following differential equation:  ̈    ̇    ̇          , 
where             are positive parameters and         are odd 
positive constants. The stability of this system can be checked 
by using the following Lyapunov function: 

         
 

 
   

  
 

   
     

    
 

 
  

  Where      and 

    ̇ 
which is radially unbounded function i.e.            as 

‖       ‖   , 

and positive definite function i.e.            for all 
             . And          

Proof:  

Since,      ̇ 

Then,  ̇   ̈     ̇    ̇         

The state-space representation of the control system is: 

 ̇     

 ̇          
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Since  ̇  
  

   
 ̇  

  

   
 ̇  

Then, 

  ̇           
   ̇     ̇           

     

           
         

   

And  ̇             
                

       
  

   
     

Final,  ̇      
     

    

Since   is negative definite with respect to      , then the 
system is globally asymptotically stable. 
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